• Non ci sono risultati.

Global and societal implications of the diabetes epidemic

N/A
N/A
Protected

Academic year: 2021

Condividi "Global and societal implications of the diabetes epidemic"

Copied!
37
0
0

Testo completo

(1)

BBiBiibbbllliiiooogggrraraafffiiiaaa

1. King H, Aubert RE, Herman WH: Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21: 1414–1431, 1998.

2. Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetes epidemic. Nature; 414:

782–787, 2001.

3. Skyler JS, Oddo C. Diabetes trends in the USA. Diabetes Metab Res Rev 18 Suppl 3: S21-26, 2002.

4a Passa P. Diabetes trends in Europe. Diabetes Metab Res Rev 18 Suppl 3: S3-8, 2002.

4b Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 444: 881-7, 2006.

5. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287: 2570-81, 2002.

6a Howard BV, Rodriguez BL, Bennett PH, et al. Prevention Conference VI: Diabetes and Cardiovascular disease:

Writing Group I: epidemiology. Circulation 105:e132-7, 2002.

6b Surdacki A, Stochmal E, Szurkowska M, Bode-Boger SM, Martens-Lobenhoffer J, Stochmal A, Klecha A, Kawecka-Jaszcz K, Dubiel JS, Huszno B, Szybinski Z. Nontraditional atherosclerotic risk factors and extent of coronary atherosclerosis in patients with combined impaired fasting glucose and impaired glucose tolerance.

Metabolism 56: 77-86, 2007.

7. Rosamond WD, Chambless LE, Folsom AR, et al. Trends in the incidence of myocardial infarction and in mortality due to coronary heart disease, 1987 to 1994. N Engl J Med 339: 861-7, 1998.

8. Rosamond WD, Folsom AR, Chambless L, et al; ARIC Investigators. Atherosclerosis Risk in Communities.

Coronary heart disease trends in four United States communities. The Atherosclerosis Risk in Communities (ARIC) study 1987-1996. Int J Epidemiol 30 Suppl 1: S17-22, 2001.  

9. Hunink MG, Goldman L, Tosteson AN, et al. The recent decline in mortality from coronary heart disease, 1980- 1990. The effect of secular trends in risk factors and treatment. JAMA 277 :535-42, 1997.

10. Salomaa V, Ketonen M, Koukkunen H, et al. Trends in coronary events in Finland during 1983-1997. The FINAMI study. Eur Heart J 24: 311-9, 2003.  

11. McGovern PG, Pankow JS, Shahar E, et al. Recent trends in acute coronary heart disease--mortality, morbidity, medical care, and risk factors. The Minnesota Heart Survey Investigators. N Engl J Med 334: 884-90, 1996.

12a Gu K, Cowie CC, Harris MI. Diabetes and decline in heart disease mortality in US adults. JAMA 281: 1291-7, 1999.

12b Avogaro A, Giorda C, Maggini M, Mannucci E, Raschetti R, Lombardo F, Spila-Alegiani S, Turco S, Velussi M, Ferrannini E, Study Group AT. Incidence of coronary heart disease in type 2 diabetic men and women:

impact of microvascular complications, treatment and geographic location. Diabetes Care 2007. [Epub ahead of print]

13. Gu K, Cowie CC, Harris MI. Mortality in adults with and without diabetes in a national cohort of the U.S.

population, 1971-1993. Diabetes Care 21: 1138-45, 1998.

14. Muggeo M, Verlato G, Bonora E, et al. The Verona diabetes study: a population-based survey on known diabetes mellitus prevalence and 5-year all-cause mortality. Diabetologia 38: 318-25, 1995.

(2)

15. Roman SH, Harris MI. Management of diabetes mellitus from a public health perspective. Endocrinol Metab Clin North Am 26: 443-74, 1997.

16. Krolewski AS, Warram JH, Freire MB. Epidemiology of late diabetic complications. A basis for the development and evaluation of preventive programs. Endocrinol Metab Clin North Am 25: 217-242, 1996.

17. Warram JH, Kopczynski J, Janka HU, et al. Epidemiology of non-insulin-dependent diabetes mellitus and its macrovascular complications. A basis for the development of cost-effective programs. Endocrinol Metab Clin North Am 26: 165-88, 1997.

18. Pan WH, Cedres LB, Liu K, et al. Relationship of clinical diabetes and asymptomatic hyperglycemia to risk of coronary heart disease mortality in men and women. Am J Epidemiol 123: 504-16, 1986.

19. Barrett-Connor EL, Cohn BA, et al. Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo Study. JAMA 265: 627-31, 1991.

20. Manson JE, Colditz GA, Stampfer MJ, et al. A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women. Arch Intern Med 151: 1141-7, 1991.

21. Moss SE, Klein R, Klein BE. Cause-specific mortality in a population-based study of diabetes. Am J Public Health 81: 1158-62, 1991.

22. Kleinman JC, Donahue RP, Harris MI, et al. Mortality among diabetics in a national sample. Am J Epidemiol 128: 389-401, 1988.

23. Head J, Fuller JH. International variations in mortality among diabetic patients: the WHO Multinational Study of Vascular Disease in Diabetics. Diabetologia 33: 477-81, 1990.

24. Uusitupa MI, Niskanen LK, Siitonen O, et al. Ten-year cardiovascular mortality in relation to risk factors and abnormalities in lipoprotein composition in type 2 (non-insulin-dependent) diabetic and non-diabetic subjects.

Diabetologia 36: 1175-84, 1993.

25a Laakso M, Ronnemaa T, Pyorala K, et al. Atherosclerotic vascular disease and its risk factors in non-insulin- dependent diabetic and nondiabetic subjects in Finland. Diabetes Care 11: 449-63, 1988.

25b Bonora E. The metabolic syndrome and cardiovascular disease. Ann Med 38: 64-80, 2006.

26. Kuusisto J, Mykkanen L, Pyorala K, et al. NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 43: 960-7, 1994.

27. Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16: 434-44, 1993.

28. Raman M, Nesto RW. Heart disease in diabetes mellitus. Endocrinol Metab Clin North Am 25: 425-38, 1996.

29. Clark CM Jr, Perry RC. Type 2 diabetes and macrovascular disease: epidemiology and etiology. Am Heart J 138: S330-3, 1999.

30. Balkau B, Shipley M, Jarrett RJ, et al. High blood glucose concentration is a risk factor for mortality in middle- aged nondiabetic men. 20-year follow-up in the Whitehall Study, the Paris Prospective Study, and the Helsinki Policemen Study. Diabetes Care 21: 360-7, 1998.

31. Tominaga M, Eguchi H, Manaka H, et al. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 22: 920-4, 1999.

(3)

32. Hu FB, Stampfer MJ, Haffner SM, et al. Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care 25: 1129-34, 2002.

33. Qiao Q, Jousilahti P, Eriksson J, et al. Predictive properties of impaired glucose tolerance for cardiovascular risk are not explained by the development of overt diabetes during follow-up. Diabetes Care 26: 2910-4, 2003.

34. Abbud ZA, Shindler DM, Wilson AC, et al. Effect of diabetes mellitus on short- and long-term mortality rates of patients with acute myocardial infarction: a statewide study. Myocardial Infarction Data Acquisition System Study Group. Am Heart J 130: 51-8, 1995.

35a Orlander PR, Goff DC, Morrissey M, et al. The relation of diabetes to the severity of acute myocardial infarction and post-myocardial infarction survival in Mexican-Americans and non-Hispanic whites. The Corpus Christi Heart Project. Diabetes 43: 897-902, 1994.

35b Zarich SW. The role of intensive glycemic control in the management of patients who have acute myocardial infarction. Cardiol Clin 23: 109-17, 2005.

36. Scheidt-Nave C, Barrett-Connor E, et al. Resting electrocardiographic abnormalities suggestive of asymptomatic ischemic heart disease associated with non-insulin-dependent diabetes mellitus in a defined population.

Circulation 81: 899-906, 1990.

37. Savage MP, Krolewski AS, Kenien GG, et al. Acute myocardial infarction in diabetes mellitus and significance of congestive heart failure as a prognostic factor. Am J Cardiol 62: 665-9, 1988.

38. Solang L, Malmberg K, Ryden L. Diabetes mellitus and congestive heart failure. Further knowledge needed. Eur Heart J 20: 789-95, 1999.

39. Bell DS. Diabetic cardiomyopathy. A unique entity or a complication of coronary artery disease? Diabetes Care 18: 708-14, 1995.

40. Bell DS. Diabetic cardiomyopathy. Diabetes Care 26: 2949-51, 2003.

41. Picano E. Diabetic cardiomyopathy. the importance of being earliest. J Am Coll Cardiol 42: 454-7, 2003.

42. Woodfield SL, Lundergan CF, Reiner JS, et al. Angiographic findings and outcome in diabetic patients treated with thrombolytic therapy for acute myocardial infarction: the GUSTO-I experience. J Am Coll Cardiol 28:

1661-9, 1996.

43. Granger CB, Califf RM, Young S, et al. Outcome of patients with diabetes mellitus and acute myocardial infarction treated with thrombolytic agents. The Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) Study Group. J Am Coll Cardiol 21: 920-5, 1993.

44. Mueller HS, Cohen LS, Braunwald E, et al. Predictors of early morbidity and mortality after thrombolytic therapy of acute myocardial infarction. Analyses of patient subgroups in the Thrombolysis in Myocardial Infarction (TIMI) trial, phase II. Circulation 85: 1254-64, 1992.

45. Stein B, Weintraub WS, Gebhart SP, et al. Influence of diabetes mellitus on early and late outcome after percutaneous transluminal coronary angioplasty. Circulation 91: 979-89, 1995.

46. Zuanetti G, Latini R, Maggioni AP, et al. Influence of diabetes on mortality in acute myocardial infarction: data from the GISSI-2 study. J Am Coll Cardiol 22: 1788-94, 1993.

47. Gundersen T, Kjekshus J. Timolol treatment after myocardial infarction in diabetic patients. Diabetes Care 6:

285-90, 1983.

(4)

48. Miettinen H, Lehto S, Salomaa V, et al. Impact of diabetes on mortality after the first myocardial infarction. The FINMONICA Myocardial Infarction Register Study Group. Diabetes Care 21: 69-75, 1998.

49. Sprafka JM, Burke GL, Folsom AR, et al. Trends in prevalence of diabetes mellitus in patients with myocardial infarction and effect of diabetes on survival. The Minnesota Heart Survey. Diabetes Care 14: 537-43, 1991.

50. Mukamal KJ, Nesto RW, Cohen MC, et al. Impact of diabetes on long-term survival after acute myocardial infarction: comparability of risk with prior myocardial infarction. Diabetes Care 24: 1422-7, 2001.

51a Malmberg K, Yusuf S, Gerstein HC, et al. Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation 102: 1014-9, 2000.

51b Heller GV. Evaluation of the patient with diabetes mellitus and suspected coronary artery disease. Am J Med 118 Suppl 2:9S-14S, 2005.

52. Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339: 229-34, 1998.

53. Airaksinen KE. Silent coronary artery disease in diabetes--a feature of autonomic neuropathy or accelerated atherosclerosis? Diabetologia 44: 259-66, 2001.

54. Hu FB, Stampfer MJ, Solomon CG, et al. The impact of diabetes mellitus on mortality from all causes and coronary heart disease in women: 20 years of follow-up. Arch Intern Med 161: 1717-23, 2001.

55. Lotufo PA, Gaziano JM, Chae CU, et al. Diabetes and all-cause and coronary heart disease mortality among US male physicians. Arch Intern Med 161: 242-7, 2001.

56. Evans JM, Wang J, Morris AD. Comparison of cardiovascular risk between patients with type 2 diabetes and those who had had a myocardial infarction: cross sectional and cohort studies. Br Med J 324: 939-42, 2002.

57. Cho E, Rimm EB, Stampfer MJ, et al. The impact of diabetes mellitus and prior myocardial infarction on mortality from all causes and from coronary heart disease in men. J Am Coll Cardiol 40: 954-60, 2002.

58. Barzilay JI, Kronmal RA, Bittner V, et al. Coronary artery disease and coronary artery bypass grafting in diabetic patients aged ≥65 years (report from the Coronary Artery Surgery Study [CASS] Registry). Am J Cardiol 74: 334-9, 1994.

59a The Bypass Angioplasty Revascularization Investigation (BARI) Investigators. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med 335: 217-25, 1996.

59b Chyun DA, Young LH. Diabetes mellitus and cardiovascular disease. Nurs Clin North Am 41: 681-95, 2006.

60. Fuller JH, Shipley MJ, Rose G, et al. Mortality from coronary heart disease and stroke in relation to degree of glycaemia: the Whitehall study. Br Med J 287: 867-70, 1983.

61. Neaton JD, Wentworth DN, Cutler J, et al. Risk factors for death from different types of stroke. Multiple Risk Factor Intervention Trial Research Group. Ann Epidemiol 3:493-9, 1993.

62. Tuomilehto J, Rastenyte D, Jousilahti P, et al. Diabetes mellitus as a risk factor for death from stroke.

Prospective study of the middle-aged Finnish population. Stroke 27: 210-5, 1996.

63. Lehto S, Ronnemaa T, Pyorala K, et al. Predictors of stroke in middle-aged patients with non-insulin-dependent

(5)

64. Stegmayr B, Asplund K. Diabetes as a risk factor for stroke. A population perspective. Diabetologia. 38: 1061-8, 1995.

65. Sprafka JM, Virnig BA, Shahar E, et al. Trends in diabetes prevalence among stroke patients and the effect of diabetes on stroke survival: the Minnesota Heart Survey. Diabet Med 11: 678-84, 1994.

66. Sowers JR. Diabetes mellitus and cardiovascular disease in women. Arch Intern Med 158: 617-21, 1998.

67. Kaseta JR, Skafar DF, Ram JL, et al. Cardiovascular disease in the diabetic woman. J Clin Endocrinol Metab 84:

1835-8, 1999.

68a Schaper NC, Nabuurs-Franssen MH, Huijberts MS. Peripheral vascular disease and type 2 diabetes mellitus.

Diabetes Metab Res Rev 16 Suppl 1: S11-5, 2000.

68b Marso SP, Hiatt WR. Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol 47: 921-9, 2006.

69. Beks PJ, Mackaay AJ, de Neeling JN, et al. Peripheral arterial disease in relation to glycaemic level in an elderly Caucasian population: the Hoorn study. Diabetologia 38: 86-96, 1995.

70. Adler AI, Stevens RJ, Neil A, et al. UKPDS 59: hyperglycemia and other potentially modifiable risk factors for peripheral vascular disease in type 2 diabetes. Diabetes Care 25: 894-9, 2002.

71. Reunanen A, Takkunen H, Aromaa A. Prevalence of intermittent claudication and its effect on mortality. Acta Med Scand 211: 249-56, 1982.

72. Brand FN, Abbott RD, Kannel WB. Diabetes, intermittent claudication, and risk of cardiovascular events. The Framingham Study. Diabetes 38: 504-9, 1989.

73. Lehto S, Ronnemaa T, Pyorala K, et al. Risk factors predicting lower extremity amputations in patients with NIDDM. Diabetes Care 19: 607-12, 1996.

74. Humphrey LL, Palumbo PJ, Butters MA, et al. The contribution of non-insulin-dependent diabetes to lower- extremity amputation in the community. Arch Intern Med 154: 885-92, 1994.

75. Trautner C, Haastert B, Giani G, et al. Incidence of lower limb amputations and diabetes. Diabetes Care 19:

1006-9, 1996.

76. Creager MA, Luscher TF, Cosentino F, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 108: 1527-32, 2003.

77. Beckman JA, Goldfine AB, Gordon MB, et al. Ascorbate restores endothelium-dependent vasodilation impaired by acute hyperglycemia in humans. Circulation 103: 1618–1623, 2001.

78. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404: 787–790, 2000.

79. Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88: E14–E22, 2001.

80. Cosentino F, Eto M, De Paolis P, et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation 107: 1017–1023, 2003.

(6)

81. Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105: 1656–1662, 2002.

82. Schmidt AM, Yan SD, Wautier JL, et al. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84: 489–497, 1999.

83. Schmidt AM, Hori O, Brett J, et al. Cellular receptors for advanced glycation end products: implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 14: 1521–1528, 1994.

84. Schmidt AM, Stern D. Atherosclerosis and diabetes: the RAGE connection. Curr Atheroscler Rep 2: 430–436, 2000.

85. Tan KC, Chow WS, Ai VH, et al. Advanced glycation end products and endothelial dysfunction in type 2 diabetes. Diabetes Care 25: 1055–1059, 2002.

86. Wautier MP, Chappey O, Corda S, et al. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 280: E685–E694, 2001.

87. Lusis AJ. Atherosclerosis. Nature 407: 233-241, 2000.

88. Wahab NN, Cowden EA, Pearce NJ, et al. ICONS Investigators. Is blood glucose an independent predictor of mortality in acute myocardial infarction in the thrombolytic era? J Am Coll Cardiol 40: 1748-1754, 2002.

89. Umpierrez GE, Isaacs SD, Bazargan N, et al. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab 87: 978-982, 2002.

90. Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group. BMJ 314: 1512-1515, 1997.

91. Malmberg K, Ryden L, Efendic S et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortalità at 1 year. J Am Coll Cardiol 26: 57-65, 1995

92. UKPDS Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352: 837-853, 1998.

93. Stratton IM, Adler AI, Neil AW, et al. Association of glycemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321: 405-412, 2000.

94a Turner RC, Millns H, Neil HA, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23) BMJ. 316: 823-828, 1998.

94b Stratton IM, Cull CA, Adler AI, Matthews DR, Neil HA, Holman RR. Additive effects of glycaemia and blood pressure exposure on risk of complications in type 2 diabetes: a prospective observational study (UKPDS 75).

Diabetologia 49: 1761-9, 2006.

95. Arauz-Pacheco C, Parrott MA, Raskin P. The treatment of hypertension in adult patients with diabetes. Diabetes Care 25: 134-147, 2002.

(7)

96. Collado-Mesa F, Colhoun HM, Stevens LK, et al. Prevalence and management of hypertension in type 1 diabetes mellitus in Europe: the EURODIAB IDDM Complication Study. Diabetic Med 16: 41-48, 1999.

97. Jandeleit-Dahm K, Cooper ME. Hypertension in Diabetes. Curr Opin Nephrol Hypertens 11: 221-228, 2002.

98. Hypertension in Diabetes Study (HDS): II. Increased risk of cardiovascular complications in hypertensive type 2 diabetic patients. J Hypertens 11: 319-325, 1993.

99. Tuomilehto J, Rastenyte D, Birkenhager WH, et al, for the Systolic Hypertension in Europe Trial Investigators.

Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension. N Engl J Med 340: 677-684, 1999.

100. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial.

HOT Study Group. Lancet. 351: 1755-1762, 1998.

101. UK Prospective Diabetes Study (UKPDS) Group. Tight blood pressure control and risk of macrovascular and microvascular complication in type 2 diabetes: UKPDS 38. BMJ 317: 703-712, 1998.

102. Adler AI, Stratton IM, Neil HA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ. 321: 412- 419, 2000.

103a Gotto AM Jr, Boccuzzi SJ, Cook JR, et al. Effect of lovastatin on cardiovascular resource utilization and costs in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS).

AFCAPS/TexCAPS Research Group. Am J Cardiol. 86: 1176-1181, 2000.

103b Chahil TJ, Ginsberg HN. Diabetic dyslipidemia. Endocrinol Metab Clin North Am 35: 491-510, 2006.

104. Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary heart desease: The Scandinavian Simvastatin Survival Study (4S). Lancet 344: 1383-1389, 1994.

105. Kjekshus J, Pedersen TR. Reducing the risk of coronary events: evidence from the Scandinavian Simvastatin Survival Study (4S). Am J Cardiol. 76: 64C-68C, 1995.

106. Pfeffer MA, sacks FM, Moyé LA et al., for the CARE Investigators. Cholesterol and reccurent events: a secondary prevention trial in normolipidemic patients. Am J Cardiol 76: 98C-106C, 1995.

107. Tokin AM, for the LIPID Study Group. Management of Long-term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study after the Scandinavian Simvastatin Survival Study (4S). Am J Cardiol 76: 107C-112C, 1995.

108. Steiner G. Lipid Intervention Trials in Diabetes. Diabetes Care 23(Suppl 2):B49-B53, 2000.

109. Hoogwerf BJ, Waness A, Cressman M et al. Effects of aggressive cholesterol lowering and low-dose anticoaugulation on clinical and angiographic outcomes in patients with diabetes. The Post Coronary Artery Bypass Graft Trial. Diabetes 48: 1289-1294, 1999.

110. Heart Protection Study Collaborative Group MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20536 high-risk individuals: a randomised placebo-controlled trial. The Lancet 360: 7-22, 2002.

111. Collins R, Armitage J, Parish S, et al. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial.. Lancet 361: 2005-2016, 2003.

(8)

112. Frick MH, Elo O, Haapa K et al. Helsinki Heart Study: Primary prevention trial with genfibrozil in middle-aged men with dyslipidemia. Safety of treatment, chenges in risk factors, and incidence of coronary heart disease. N Engl J Med 317: 1237-1345, 1987.

113. Tenkanen L, Pietilä K, Manninen V, et al. The triglyceride issue revisited. Findings from the Helsinki Heart Study. Arch Intern Med 154: 2714-2720, 1994.

114. Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 341: 410-418, 1999.

115. Gaede P, Vedel P, Larsen N, Jensen GVH, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 348: 383-393, 2003.

116. Natali A, Vichi S, Landi P, et al. Coronary atherosclerosis in Type II diabetes: angiographic findings and clinical outcome. Diabetologia. 43:632-641, 2000.

117. Reilly MP, Rader DJ. The metabolic syndrome: more than the sum of its parts? Circulation. 108: 1546-1551, 2003.

118a Hanley AJ, Williams K, Stern MP, et al. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes Care. 25: 1177-1184, 2002.

118b Grundy SM. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol 47: 1093-100, 2006.

119. Bonora E, Formentini G, Calcaterra F, et al. HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study. Diabetes Care. 25: 1135-1141, 2002.

120. Narayan KM, Gregg EW, Fagot-Campagna A, et al. Diabetes--a common, growing, serious, costly, and potentially preventable public health problem. Diabetes Res Clin Pract. 50 (Suppl 2): S77-S84, 2000.

121. Levey AS. Nondiabetic kidney disease. N Engl J Med 347: 1505-1511, 2002.

122. Parmar MS. Chronic renal disease. BMJ 325: 85-90, 2002.

123. US Renal Data System. USRDS 2000 Annual Data Report. The National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2001. Reference Section A: incidence of reported ESRD.

Reference Section B. prevalence of reported ESRD. (Accessed September 13, 2002, at http://www.usrds.org/adr_2000.htm).

124a Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 341: 1127-1133, 1999.

124b Susztak K, Bottinger EP. Diabetic nephropathy: a frontier for personalized medicine. J Am Soc Nephrol 17:

361-7, 2006.

125. Ritz E, Rychlik I, Locatelli F, et al. End-stage renal failure in type 2 diabetes: a medical catastrophe of worldwide dimensions. Am J Kidney Dis 34: 795-808, 1999.

126. Krolewski AS. Genetic of diabetic nephropathy: evidence for major and minor gene effects. Kidney Int 55:

1582-1596, 1999.

(9)

127. Krolewski AS, Ng DP, Canani LH, et al. Genetics of diabetic nephropathy: how far are we from finding susceptibility genes? Adv Nephrol Necker Hosp 31: 295-315, 2001.

128. American Diabetes Association. Diabetic Nephropathy. Diabetes Care 26 (suppl. 1): S94-S98, 2003a.

129a Bonow RO, Mitch WE, Nesto RW, et al. Prevention Conference VI: Diabetes and Cardiovascular Disease:

Writing Group V: management of cardiovascular-renal complications. Circulation 105: e159-164, 2002.

129b Basi S, Lewis JB. Microalbuminuria as a target to improve cardiovascular and renal outcomes. Am J Kidney Dis 47: 927-46, 2006.

130. Estacio RO, Schrier RW. Diabetic nephropathy: pathogenesis, diagnosis, and prevention of progression. Adv Intern Med 46: 359-408, 2001.

131a Caramori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes 49: 1399-1408, 2000.

131b Caramori ML, Fioretto P, Mauer M. Enhancing the predictive value of urinary albumin for diabetic nephropathy. J Am Soc Nephrol 17: 339-52, 2006.

132. Grundy SM, Howard B, Smith S Jr, et al. Prevention Conference VI: Diabetes and Cardiovascular Disease:

executive summary: conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation 105: 2231-2239, 2002.

133a Skyler JS. Microvascular complications. Retinopathy and nephropathy. Endocrinol Metab Clin North Am 30: 833-856, 2001.

133b Ruggenenti P, Remuzzi G. Time to abandon microalbuminuria? Kidney Int 70: 1214-22, 2006.

134. The EURODIAB IDDM Complications Study Group. Microvascular and acute complications in insulin dependent diabetes mellitus: the EURODIAB IDDM Complications Study. Diabetologia 37: 278-285, 1994.

135. Chaturvedi N, Bandinelli S, Mangili R, et al. Microalbuminuria in type 1 diabetes: rates, risk factors and glycemic threshold. Kidney Int 60: 219-227, 2001.

136. Scott LJ, Warram JH, Hanna LS, et al. A nonlinear effect of hyperglycemia and current cigarette smoking are major determinants of the onset of microalbuminuria in type 1 diabetes. Diabetes 50: 2842-2849, 2001.

137. Rossing P. Promotion, prediction and prevention of progression of nephropathy in type 1 diabetes mellitus.

Diabet Med 15: 900-919, 1998.

138. UK prospective Diabetes Study (UKPDS). X. Urinary albumin excretion over 3 years in diet-treated type 2 (non-insulin-dependent) diabetic patients, and association with hypertension, hyperglycemia and hypertriglyceridaemia. Diabetologia 36: 1021-1029, 1993.

139. Dalla Vestra M, Saller A, Bortoloso E, et al. Structural involvement in type 1 and type 2 diabetic nephropathy.

Diabetes Metab 26 (suppl 4): 8-14, 2000.

140. Ismail N, Becker B, Strzelczyk P, et al. Renal disease and hypertension in non-insulin-dependent diabetes mellitus. Kidney Int 55: 1-28, 1999.

141. Remuzzi G, Schieppati A, Ruggenenti P. Nephropathy in patients with type 2 diabetes. N Engl J Med 346: 1145- 1151, 2002.

(10)

142. Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med 157: 1413-1418, 1997.

143. Mattock MB, Barnes DJ, Viberti G, et al. Microalbuminuria and coronary heart disease in NIDDM: an incidence study. Diabetes 47: 1786-1792, 1998.

144. Valmadrid CT, Klein R, Moss SE, et al. The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus. Arch Intern Med 160:

1093-1100, 2000.

145. Spoelstra-de Man AM, Brouwer CB, Stehouwer CD, et al. Rapid progression of albumin excretion is an independent predictor of cardiovascular mortality in patients with type 2 diabetes and microalbuminuria.

Diabetes Care 24: 2097-2101, 2001.

146. Stehouwer CD, Gall MA, Twisk JW, et al. Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 51: 1157-1165, 2002.

147. Parving HH. Renoprotection in diabetes: genetic and non-genetic risk factors and treatment. Diabetologia 41:

745-759, 1998.

148. Mogensen CE. Microalbuminuria, blood pressure and diabetic renal disease: origin and development of ideas.

Diabetologia 42: 286-291, 1999.

149. Krolewski AS, Laffel LMB, et al. Glycosilated hemoglobin and the risk of microalbuminuria in patients with insulin-dependent diabetes mellitus. N Engl J Med 332: 1251-1255, 1995.

150. Scott LJ, Warram JH, Hanna LS, et al. A nonlinear effect of hyperglycemia and current cigarette smoking are major determinants of the onset of microalbuminuria in type 1 diabetes. Diabetes 50: 2842-2849, 2001.

151. Orchard TJ, Forrest KY, Ellis D, et al. Cumulative glycemic exposure and microvascular complications in insulin-dependent diabetes mellitus. The glycemic threshold revisited. Arch Intern Med 157: 1851-1856, 1997.

152. The Diabetes Control and Complications Study Group. The absence of a glycemic threshold for the development of long-term complications: the perspective of the Diabetes Control and Complications Trial. Diabetes 45: 1289- 1298, 1996.

153. Warram JH, Scott LJ, Hanna LS, et al. Progression of microalbuminuria to proteinuria in type 1 diabetes:

nonlinear relationship with hyperglycemia. Diabetes 49: 94-100, 2000.

154a American Diabetes Association. Implications of the United Kingdom Prospective Diabetes Study. Diabetes Care 26 (suppl 1): S28-S32, 2003.

154b Fioretto P, Bruseghin M, Berto I, Gallina P, Manzato E, Mussap M. Renal protection in diabetes: role of glycemic control. J Am Soc Nephrol 17 (4 Suppl 2): S86-9, 2006.

155. Stephenson JM, Fuller JH, Viberti G-C, et al, and the EURODIAB IDDM Complications Study Group. Blood pressure, r etinopathy and urinary albumin excretion in insulin dependent diabetes :The EURODIAB IDDM Complications Study. Diabetologia 38: 599-603, 1995. 

156. Marks JB, Raskin P. Nephropathy and hypertension in diabetes. Medical Clinics of North America 82: 877-907, 1998.

(11)

157. Microalbuminuria Collaborative Study Group U.K. Predictors of the development of microalbuminuria in patients with type 1 diabetes mellitus: a seven year prospective study. Diabet Med 16: 918-925, 1999.

158. Schultz CJ, Neil HA, Dalton RN, et al. Blood pressure does not rise before the onset of microalbuminuria in children followed from diagnosis of type 1 diabetes. Oxford Regional Prospective Study Group. Diabetes Care 24: 555-560, 2001.

159. Rossing P, Hougaard P, Parving HH. Risk Factors for Development of Incipient and Overt Diabetic Nephropathy in Type 1 Diabetic Patients: A 10-year prospective observational study. Diabetes Care 25: 859- 864, 2002.

160. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 355: 253-259, 2000.

161a Rossing P, Hommel E, Smidt UM, et al. Impact of arterial blood pressure and albuminuria on the progression of diabetic nephropathy in IDDM patients. Diabetes 1993; 42: 715-719.

161b Remuzzi G, Macia M, Ruggenenti P. Prevention and treatment of diabetic renal disease in type 2 diabetes:

the BENEDICT study. J Am Soc Nephrol 17 (4 Suppl 2): S90-7, 2006.

162. Baba T, Neugebauer S, Watanabe T. Diabetic nephropathy. Its relationship to hypertension and means of pharmacological intervention. Drugs 54: 197-234, 1997.

163. Hovind P, Rossing P, Tarnow L, et al. Progression of diabetic nephropathy. Kidney Int 59: 702-709, 2001.

164. Soedamah-Muthu SS, Colhoun HM, Abrahamian H, et al, the EURODIAB Prospective Complications Study Group. Trends in hypertension management in Type I diabetes across Europe, 1989/1990 - 1997/1999.

Diabetologia 45: 1362-1371, 2002.

165. Colhoun HM, Dong W, Barakat MT, Mather HM, Poulter NR. The scope for cardiovascular disease risk factor intervention among people with diabetes mellitus in England: a population based analysis from the Health Surveys for England 1991-94. Diabetic Med 16: 35-40, 1999.

166. Royal College of Physicians of Edinburgh Diabetes Register Group. Near normal urinary albumin concentrations predict progression to diabetic nephropathy in type 1 diabetes. Diabet Med 17: 782-791, 2000.

167. Rossing P, Hougaard P, Parving HH. Risk Factors for Development of Incipient and Overt Diabetic Nephropathy in Type 1 Diabetic Patients: A 10-year prospective observational study. Diabetes Care 25: 859- 864, 2002.

168. Yokoyama H, Tomonaga O, Hirayama M, et al. Predictors of the progression of diabetic nephropathy and the beneficial effect of angiotensin-converting enzyme inhibitors in NIDDM patients. Diabetologia 40: 405-411, 1997.

169. The GISEN Group. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 349: 1857-1863, 1997.

170. The AIPRID Study Group. Jafar TH, Stark PC, Schmid CH, et al, for the AIPRID Study Group. Proteinuria as a modifiable risk factor for the progression of non-diabetic renal disease. Kidney Int 60: 1131-1140, 2001.

171. Colhoun HM, Lee ET, Bennett PH, et al. Risk factors for renal failure: the WHO Mulinational Study of Vascular Disease in Diabetes. Diabetologia 44 (Suppl 2): S46-S53, 2001.

(12)

172. Roglic G, Colhoun HM, Stevens LK, et al, and the EURODIAB IDDM Complications Study Group. Parental history of hypertension and parental history of diabetes and microvascular complications in insulin-dependent diabetes mellitus: the EURODIAB IDDM Complications Study. Diabet Med 15: 418-426, 1998.

173. Earle K, Walker J, Hill C, et al. Familial clustering of cardiovascular disease in patients with insulin-dependent diabetes and nephropathy. N Engl J Med 326: 673-677, 1992.

174. De Cosmo S, Bacci S, Piras GP, et al. High prevalence of risk factors for cardiovascular disease in parents of IDDM patients with microalbuminuria. Diabetologia 40: 1191-1196, 1997.

175. Fagerudd JA, Tarnow L, Jacobsen P, et al. Predisposition to essential hypertension and development of diabetic nephropathy in IDDM patients. Diabetes 47: 439-444, 1998.

176. Rudberg S, Stattin EL, Dahlquist G. Familial and perinatal risk factors for micro- and macroalbuminuria in young IDDM patients. Diabetes 47: 1121-1126, 1998.

177. Seaquist ER, Goetz FC, Rich S, et al. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 320: 1161-1165, 1989.

178. Quinn M, Angelico MC, Warram JH, et al. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia. 39: 940-945, 1996.

179. The Diabetes Control and Complications Trial Research Group. Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. Diabetes 46: 1829-1839, 1997.

180. Canani LH, Gerchman F, Gross JL. Familial clustering of diabetic nephropathy in Brazilian type 2 diabetic patients. Diabetes 48: 909-913, 1999.

181. Fogarty DG, Rich SS, Hanna L, et al. Urinary albumin excretion in families with type 2 diabetes is heritable and genetically correlated to blood pressure. Kidney Int 57: 250-257, 2000.

182. Staessen JA, Wang JG, Ginocchio G, et al. The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertens 15: 1579-1592, 1997.

183. Fujisawa T, Ikegami H, Kawaguchi Y, et al. Meta-analysis of association of insertion/deletion polymorphism of angiotensin I-converting enzyme gene with diabetic nephropathy and retinopathy. Diabetologia 41: 47-52, 1998.

184. Tarnow L, Gluud C, Parving HH. Diabetic nephropathy and the insertion/deletion polymorphism of the angiotensin-converting enzyme gene. Nephrol Dial Transplant 13: 1125-1130, 1998.

185. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 342: 381-9, 2000.

186. Trevisan R, Vedovato M, Mazzon C, et al. Concomitance of diabetic retinopathy and proteinuria accelerates the rate of decline of kidney function in type 2 diabetic patients. Diabetes Care 25: 2026-2031,2002.

187. Karamanos B, Porta M, Songini M, et al. Different risk factors of microangiopathy in patients with type I diabetes mellitus of short versus long duration. The EURODIAB IDDM Complications Study. Diabetologia 43:

348-355, 2000.

188. Mattock MB, Cronin N, Cavallo-Perin P, et al.  Plasma lipids and urinary albumin excretion rate in Type 1 diabetes mellitus: the EURODIAB IDDM Complications Study. Diabet Med 18: 59-67, 2001.

(13)

189a Chaturvedi N, Fuller JH, Taskinen MR. Differing associations of lipid and lipoprotein disturbances with the macrovascular and microvascular complications of type 1 diabetes. Diabetes Care 24: 2071-2077, 2001.

189b Svensson M, Eriksson JW. Insulin resistance in diabetic nephropathy--cause or consequence? Diabetes Metab Res Rev 22: 401-10, 2006.

190. Bruno G, Cavallo-Perin P, Bargero G, et al. Association of fibrinogen with glycemic control and albumin excretion rate in patients with non-insulin-dependent diabetes mellitus. Ann Intern Med 125: 653-657, 1996.

191. Chaturvedi N, Stephenson JM, Fuller JH and the EURODIAB IDDM Complications Study Group. The relationship between smoking and microvascular complications in the EURODIAB IDDM Complications Study.

Diabetes Care 18: 785-792, 1995.

192. Toeller M, Buyken A, Heitkamp G, et al.  Protein intake and urinary albumin excretion rates in the EURODIAB IDDM Complications Study. Diabetologia 40: 1219-1226, 1997. 

193. Raptis AE, Viberti G. Pathogenesis of diabetic nephropathy. Exp Clin Endocrinol Diabetes 109 (Suppl 2): S424- S437, 2001.

194. Rossing P, Tarnow L, Nielsen FS, et al. Low birth weight. A risk factor for development of diabetic nephropathy? Diabetes 44: 1405-1407, 1995.

195. Vestbo E, Olivarius Nde F, Mogensen CE. Is renal involvement related to birth weight and adult height?

Diabetes Metab 27: 9-12, 2001.

196. Brenner BM, Chertow GM. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis 23: 171-175, 1994.

197. Keller G, Zimmer G, Mall G, et al. Nephron number in patienrs with primary hypertension. N Engl J Med 348:

101-108, 2003.

198. Gall MA, Rossing P, Skott P, et al. Prevalence of micro- and macroalbuminuria, arterial hypertension, retinopathy and large vessel disease in European type 2 (non-insulin-dependent) diabetic patients. Diabetologia 34: 655-661, 1991.

199. Gall MA, Hougaard P, Borch-Johnsen K, et al. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: prospective, observational study. BMJ 314: 783–788, 1997.

200. Forsblom CM, Groop P-H, Ekstrand A, et al. Predictors of progression from normoalbuminuria to microalbuminuria in NIDDM. Diabetes Care 21: 1932–1938, 1998.

201. Gerstein HC, Mann JF, Pogue J, et al. Prevalence and determinants of microalbuminuria in high-risk diabetic and nondiabetic patients in the Heart Outcome Prevention Evaluation Study. The HOPE Study Investigators.

Diabetes Care 23 (suppl 2): B35-B39, 2000.

202. Ravid M, Brosh D, Ravid-Safran D, et al. Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Intern Med 158: 998–1004, 1998.

203. Barakat K, Hitman GA. Genetic susceptibility to macrovascular complications of type 2 diabetes. Best Pract Res Clin Endocrinol Metab 15: 359-370, 2001.

204. Rippin JD, Patel A, Bain SC. Genetic of diabetic nephropathy. Best Pract Res Clin Endocrinol Metab 15: 245- 358, 2001.

(14)

205. Zhang L, Krzentowski G, Albert A, et al. Factors predictive of nephropathy in DCCT Type 1 diabetic patients with good or poor metabolic control. Diabet Med 20: 580-585, 2003.

206. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813, 2001.

207. Palumbo PJ. Glycemic control, mealtime glucose excursions, and diabetic complications in type 2 diabetes mellitus. Mayo Clin Proc 76: 609, 2001.

208. Borch-Johnsen K, Norgaard K, Hommel E, et al. Is diabetic nephropathy an inherited complication? Kidney Int 41: 719, 1992.

209. Pettitt DJ, Saad MF, Bennett PH, et al. Familial predisposition to renal disease in two generation of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus in Pima Indians. Diabetologia 33: 438, 1990.

210. Faronato PP, Maioli M, Tonolo G, et al. Clustering of albumin excretion rate abnormalities in Caucasian patients with NIDDM. The Italian NIDDM Nephropathy Study Group. Diabetologia 40: 778, 1997.

211. Keller CK, Bergis KG Flkiser D, et al. Renal findings in patients with short term type 2 diabetes. J Am Soc Nephrol 7: 2627, 1996.

212. Canani LH, Gerchman F, Gross JL. Increased familial history of arterial hypertension, coronary heart disease, and renal disease in Brazilian type 2 diabetic patients with diabetic nephropathy. Diabetes Care 21: 1545-50, 1998.

213. Strojek K, Grzeszczak W, Morawin E, et al. Nephropathy of type II diabetes: evidence for hereditary factors.

Kidney Int 51: 1602, 1997.

214. Viberti GC, Keen H, Wiseman MJ. Raised arterial pressure in parents of proteinuric insulin dependent diabetics.

Br Med J 295: 515, 1987.

215. Krolewski AS, Canessa M, Warram JH, et al. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med 318: 140, 1988.

216. Barzilay J, Warram JH, Bak M, et al. Predisposition to hypertension: risk factor for nephropathy and hypertension in IDDM Kidney Int 41: 723, 1992.

217. Fogarty DG, Krolewski AS. Genetic susceptibility and the role of hypertension in diabetic nephropathy. Curr Opin Nephrol Hypertens 6: 184, 1997.

218. Tarnow L., Rossing P., Nielsen FS, et al. Cardiovascular morbidity and early mortality cluster in parents of type 1 diabetic patients with nephropathy. Diabetes Care 23: 30, 2000.

219. Nelson RG, Pettitt DJ, Baird HR, et al. Pre-diabetic blood pressure predicts urinary albumin excretion after the onset of type 2 (non-insulin-dependent) diabetes. Diabetologia 36: 998, 1993.

220a Viberti GC, Earle K. Predisposition to essential hypertension and the development of diabetic nephropathy.

J Am Soc Nephrol 3 (suppl 1): S27, 1992.

220b Conway BR, Savage DA, Maxwell AP. Identifying genes for diabetic nephropathy--current difficulties and future directions. Nephrol Dial Transplant 21: 3012-7, 2006.

220c Krolewski AS, Poznik GD, Placha G, Canani L, Dunn J, Walker W, Smiles A, Krolewski B, Fogarty DG, Moczulski D, Araki S, Makita Y, Ng DP, Rogus J, Duggirala R, Rich SS, Warram JH. A genome-wide linkage scan for genes controlling variation in urinary albumin excretion in type II diabetes. Kidney Int 69: 129-36, 2006.

(15)

221. Tuomilehto J, Borch-Johnsen K, Molarius A et al. Incidence of cardiovascular disease in Type 1 (insulin- dependent) diabetic subjects with and without diabetic nephropathy in Finland. Diabetologia 41: 784, 1998.

222a Nørgaard K, Mathiesen ER, Hommel E et al. Lack of familial predisposition to cardiovascular disease in type 1 (insulin-dependent) diabetic patients with nephropathy. Diabetologia 34: 370, 1991.

222b Liu Y, Freedman BI. Genetics of progressive renal failure in diabetic kidney disease. Kidney Int Suppl 99:

S94-7, 2005.

222c Freedman BI, Bowden DW, Sale MM, Langefeld CD, Rich SS. Genetic susceptibility contributes to renal and cardiovascular complications of type 2 diabetes mellitus. Hypertension 48: 8-13, 2006.

223a Carluccio M, Soccio M, De Caterina R. Aspects of gene polymorphisms in cardiovascular disease: the renin-angiotensin system. Eur J Clin Invest 31: 476, 2001.

223b Sayed-Tabatabaei FA, Oostra BA, Isaacs A, van Duijn CM, Witteman JC. ACE polymorphisms. Circ Res 98: 1123-33, 2006.

224. Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 359: 641, 1992.

225. Tiret L, Kee F, Poirier O, et al. Deletion polymorphism in the angiotensin-converting enzyme gene associated with parental history of myocardial infarction. Lancet 341: 991, 1993.

226. Bohn M, Berge KE, Bakken A, et al. Insertion/deletion (I/D) polymorphism at the locus for angiotensin I- converting enzyme and myocardial infarction. Clin Genet 44: 292, 1993.

227. Ruiz J, Blanche H, Cohen N, et al. Insertion/deletion polymorphism of the angiotensin-converting enzyme gene is strongly associated with coronary heart disease in non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 91: 3662, 1994.

228. Leatham E, Barley J, Redwood S, et al. Angiotensin-I converting enzyme (ACE) polymorphism in patients presenting with myocardial infarction or unstable angina. J Hum Hypertens 8: 635, 1994.

229. Zhao Y, Higashimori K, Higaki J, et al. Significance of deletion polymorphism of the angiotensin converting enzyme gene as a risk factor for myocardial infarction in Japanese. Hypertens Res 17: 55, 1994.

230. Nakai K, Itoh C, Miura Y, et al. Deletion polymorphism of the angiotensin-I converting enzyme is associated with serum ACE concentrations and increased risk for coronary artery disease in the Japanese. Circulation 90:

2199, 1994.

231. Friedl W, Krempler F, Paulweber B, et al. A deletion polymorphism in the angiotensin converting enzyme gene is not associated with coronary heart disease in an Austrian population. Atherosclerosis 112: 137, 1995.

232. Lindpaintner K, Pfeffer MA, Kreutz R, et al. A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 332: 706, 1995.

233. Ludwig E, Corneli PS, Anderson JL, et al. Angiotensin-converting enzyme gene polymorphism is associated with myocardial infarction but not with development of coronary stenosis. Circulation 91: 2120, 1995.

234. Katsuya T, Koike G, Yee TW, et al. Association of angiotensinogen gene T235 variant with increased risk of coronary heart disease. Lancet 345: 1600, 1995.

235. Beohar N, Damaraju S, Prather A, et al. Angiotensin-I converting enzyme genotype DD is a risk factor coronary

(16)

236. Fujisawa T, Ikegami H, Shen G-Q, et al. Angiotensin-I converting enzyme gene polymorphism is associated with myocardial infarction, but not with retinopathy or nephropathy, in IDDM. Diabetes Care 18: 983, 1995.

237. Keavney B, Dudley CRK, Stratton IM, et al. UK Prospective Diabetes Study (UKPDS) 14: association of angiotensin-converting enzyme insertion/deletion polymorphism with myocardial infarction in NIDDM.

Diabetologia 38: 948, 1995.

238. Samani NJ, O'Toole L, Martin D, et al. The insertion/deletion polymorphism in the angiotensin-converting enzyme gene and the risk of and prognosis following myocardial infarction. J Am Coll Cardiol 28: 338, 1996.

239. Samani N.J, Thompson R, O'Toole L, et al. A meta-analysis of the association of the deletion allele of the angiotensin-converting enzyme gene with myocardial infarction. Circulation 94: 708, 1996.

240. Baudin B. New aspects on angiotensin-converting enzyme: from gene to disease. Clin Chem Lab Med 40: 256- 265, 2002.

241. Niu T, Chen X, Xu X. Angiotensin converting enzyme gene insertion/deletion polymorphism and cardiovascular disease: therapeutic implications. Drugs 62: 977-993, 2002.

242. Butler R. The DD-ACE genotype and cardiovascular disease. Pharmacogenomics 1: 153-167, 2000.

243. Agerholm Larsen B, Nordestgaard BG, Steffensen R, et al. ACE gene polymorphism: ischemic heart disease and longevity in 10, 150 individuals. A case-referent and retrospective cohort study based on the Copenhagen City Heart Study. Circulation 95: 2358, 1997.

244. Gardemann A, Fink M, Stricker J, et al. ACE I/D gene polymorphism: presence of the ACE D allele increases the risk of coronary artery disease in younger individuals. Atherosclerosis 139: 153, 1998.

245. Biggart S, Chin D, Fauchon M, et al. Association of genetic polymorphisms in the ACE, ApoE, and TGF beta genes with early onset ischemic heart disease. Clin Cardiol 21: 831, 1998.

246. Arca M, Pannitteri G, Campagna F, et al. Angiotensin-converting enzyme gene polymorphism is not associated with coronary atherosclerosis and myocardial infarction in a sample of Italian patients. Eur J Clin Invest 28: 485, 1998.

247. Jeunemaitre X, Ledru F, Battaglia S, et al. Genetic polymorphisms of the renin-angiotensin system and angiographic extent and severity of coronary artery disease: the CORGENE study. Hum Genet 99: 6, 1997.

248. Bauters C, Amouyel P. Association between the ACE genotype and coronary artery disease. Eur Heart J 19 (suppl. J): J24, 1998.

249. Staessen JA, Wang JG, Ginocchio G, et al. The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertens 15: 1579-1592, 1997.

250. Agerholm-larsen B, Nordestgaard BG, Tybjaerg-hansen A. ACE gene polymorphism in cardiovascular disease:

meta-analyses of small and large studies in whites. Arterioscler Thromb Vasc Biol 20: 484, 2000.

251. Tarnow L, Gluud C, Parving HH. Diabetic nephropathy and the insertion/deletion polymorphism of the angiotensin-converting enzyme gene. Nephrol Dial Transplant 13: 1125, 1998.

252. Jardine AG, Padmanabhan N, Connell JM. Angiotensin converting enzyme gene polymorphisms and renal disease. Curr Opin Nephrol Hypertens 7: 259, 1998.

253. Fujisawa T, Ikegami H, Kawaguchi Y, et al. Meta-analysis of association of insertion/deletion polymorphism of

(17)

254. Marre M, Bernadet P, Gallois Y, et al. Relationship between angiotensin I converting enzyme gene polymorphism, plasma levels and diabetic retinal and renal complications. Diabetes 43: 384, 1994.

255. Doria A, Warram JH, Krolewski AS. Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin I-converting enzyme gene. Diabetes 43: 384, 1994.

256. Doi Y, Yoshizumi H, Yoshinari M, et al. Association between a polymorphism in the angiotensin-converting enzyme gene and microvascular complications in Japanese patients with NIDDM. Diabetologia 39: 97, 1996.

257. Fujisawa T, Ikegami H, Shen CQ. Angiotensin I-convering enzyme gene polymorphism is associated with myocardial infarction, but not with retinopathy or nephropathy, in NIDDM. Diabetes Care 18: 893, 1995.

258. Panagiotopoulos S, Smith TJ, Aldred GP, et al. Angiotensin-converting enzyme (ACE) gene polymorphism in Type II diabetic patients with increased albumin excretion rate. J Diabetes Complications 9: 272, 1995.

259. Powrie JK, Watts GF, Ingham JN, et al. Role of glycaemic control in development of microalbuminuria in patients with insulin dependent diabetes. BMJ 309: 1608, 1994.

260. Ringel J, Beige J, Kunz R, et al. Genetic variants of the renin angiotensin system, diabetic nephropathy and hypertension. Diabetologia 40: 193, 1997.

261. Schmidt S, Schone N, Ritz E, et al. Association of ACE gene polymorphism and diabetic nephropathy? Kidney Int 47: 1176, 1995.

262. Tarnow L, Cambien F, Rossing P, et al. Lack of relationship between an insertion/deletion polymorphism in the angiotensin-I-converting enzyme gene polymorphism and diabetic nephropathy and proliferative retinopathy in IDDM patients. Diabetes 44: 489, 1995.

263. Barnas U, Schmidt A, Illievich A, et al. Evaluation of risk factors for the development of nephropathy in patients with IDDM: insertion/deletion angiotensin converting enzyme gene polymorphism, hypertension and metabolic control. Diabetologia 40: 327, 1997.

264. Muzuiri S, Hemmi H, Inoue A, et al. Angiotensin I-converting enzyme polimorphism and development of diabetic nephropathy in non-insulin-dependent diabetes mellitus. Nephron 70: 455, 1995.

265. Dudley CRK, Keavney B., Stratton IM, et al. UK Prospective Diabetes Study. XV: Relationship of renin- angiotensin system gene polymorphisms with microalbuminuria in NIDDM. Kidney Int 48: 1907, 1995.

266. Ohno T, Kawazu S, Tomono S. Association analysis of angiotensin-converting enzyme and angiotensinogen genes with diabetic nephropathy in Japanese non-insulin-dependent diabetes mellitus. Metabolism 45: 218, 1996.

267. Oh TG, Shin CS, Park KS, et al. Relationship between angiotensin I converting enzyme gene polymorphism and renal complication in Korean IDDM patients. Korean J Intern Med 11: 133, 1996.

268. Yoshida H, Kuriyama S, Atsumi Y, et al. Angiotensin I converting enzyme gene polymorphism in non-insulin dependent diabetes mellitus. Kidney Int 50: 657, 1996.

269. Chowdhury TA, Dronsfield MJ, Kumar S, et al. Examination of two genetic polymorphisms within the renin- angiotensin system: no evidence for an association with nephropathy in IDDM. Diabetologia 39: 1108, 1996.

270. Nakajima S, Baba T, Yajima Y. Is ACE polymorphism a useful marker for diabetic albuminuria in Japanese NIDDM patients? Diabetes Care 19: 1420, 1996.

(18)

271. Marre M, Jeunemaitre X, Gallois Y, et al. Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin-dependent-diabetes: Génétique de la Néphropathie Diabétique (GENEDIAB) Study Group. J Clin Invest 99: 1585, 1997.

272. Nagi DK, Mansfield MW, Stickland MH, et al. Angiotensin converting enzyme (ACE) insertion/deletion (I/D) polymorphism, and diabetic retinopathy in subjects with IDDM and NIDDM. Diabet Med 12: 997, 1995.

273. Hibberd ML, Millward BA, Demaine AG. The angiotensin converting enzyme (ACE) locus is strongly associated with age and duration of diabetes in patients with type I diabetes. J Diabetes Complications 11: 2, 1997.

274. Demurov LM, Chistyakov DA, Chugunova LA, et al. Insertion/deletion polymorphism of the angiotensin- converting enzyme gene in normalcy and among diabetics with vascular complications.Mol Biol 31: 49, 1997.

275. Jeffers BW, Estacio RO, Raynolds MV, et al. Angiotensin-converting enzyme gene polymorphism in non- insulin dependent diabetes mellitus and its relashionship with diabetic nephropathy. Kidney Int 52: 473, 1997.

276. Yoshida H, Mitarai T, Kawamura T et al. Role of the deletion polymorphism of the angiotensin converting enzyme gene in the progression and therapeutic responsiveness of IgA nephropathy. J Clin Invest. 96: 2162, 1995.

277. Navis G, de Jong PE, de Zeeuw D. I/D polymorphism of the angiotensin converting enzyme gene: a clue to heterogeneity in the progression of renal disease and in the renal response to the therapy? Nephrol Dial Transplant 12: 1097, 1997.

278. Yoshida H, Ichikawa I, Sakai O. Role of angiotensin-converting enzyme gene polymorfism in progressive loss of renal function in chronic renal diseases. Koide H., Ichikawa I. (eds): Progression of Chronic Renal Diseases.

Contrib Nephrol, 118: 249, 1996.

279. McLaughlin KJ, Harden PN, Ueda S, et al. The role of genetic polymorphisms of angiotensin-converting enzyme in the progression of renal diseases. Hypertension 28: 912, 1996.

280. Harden PN, Geddes C, Rowe P., et al. Polymorphisms in angiotensin-converting-enzyme gene and progression of IgA nephropathy. Lancet 345: 1540-1542, 1995.

281. Yoshida H, Kon V, Ichikawa I. Polymorphisms of the renin-angiotensin system genes in progressive renal disease. Kidney Int 50: 732, 1996.

282. Hunley TE, Julian BA, Phillips III JA, et al. Angiotensin converting enzyme gene polymorphism: potential silencer motif and impact on progression in IgA nephropathy. Kidney Int 49: 571, 1996.

283. Tarnow L, Cambien F, Rossing P, et al. Insertion/deletion polymorphism in the angiotensin-I-converting enzyme gene is associated with coronary heart disease in IDDM patients with diabetic nephropathy.

Diabetologia 38: 798, 1995.

284. Ruiz J, Blanché H, Cohen N, et al. Insertion/deletion polymorphism of the angiotensin-I-converting enzyme gene is strongly associated with coronary heart disease in non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci 91: 3662, 1994.

285. Grzeszczak W, Zychma MJ, lacka B et al. Angiotensin I-converting enzyme gene polymorphisms: relationship to nephropathy in patients with non-insulin dependent diabetes mellitus. J Am Soc Nephrol 9: 1664, 1998.

286. Freire MB, van Dijk DJ, Erman A, et al. DNA polymorphisms in the ACE gene, serum Ace activity and the risk of nephropathy in insulin-dependent diabetes mellitus. Nephrol Dial Transplant 13: 2553, 1998.

Riferimenti

Documenti correlati

The expression of NF-κB in liver tissue significantly increases in CCl 4 -induced rats hepatic fibrosis (Yao et al 2004), and NF-κB plays an important role in the activated HSCs

Angiotensin-Converting Enzyme Inhibitors (ACEIs) and Angiotensin II Receptor Antagonists (ARBs) for Treating Essential Hypertension; Comparative Effectiveness Review Number

Notably, three types of waterborne polymer dispersions based either on acrylic acid esters and styrene (Polidisp ® 7602), acrylic and methacrylic acid esters.. (Polidisp ®

Deletion of the kinase domain in death-associated protein kinase attenuates tubular cell apoptosis in renal ischemia-reperfusion injury.. Klinge CM, Wickramasinghe NS,

It is worth mentioning a recent prospective study conducted in India in 110 tuberculosis patients who were administered the standard four-drug antitubercular regimen,

residues D38, K31, E37, K353, and Y41 on ACE2 and Q498, T500, and R403 on the SARS-CoV-2 S-protein receptor- binding domain as true hot spots contributing to shaping and determining

Caselli Nirmal ha lui stesso affermato quanto l’attenzione al colore, insieme alla musica, sia fondante nella costruzione dello sguardo durante lo scatto e in

Come è ormai noto, non è la separazione a creare disagi emotivi nel minore, ma la conflittualità genitoriale, e come essa viene gestita; pertanto i genitori in fase di