• Non ci sono risultati.

Jr., Principles of laser materials processing, John Wiley &amp

N/A
N/A
Protected

Academic year: 2021

Condividi "Jr., Principles of laser materials processing, John Wiley &amp"

Copied!
18
0
0

Testo completo

(1)

[1] Kannatey-Asibu, E. Jr., Principles of laser materials processing, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2009. 4, 5, 126, 128 [2] Welding Handbook, Vol. 1, American Welding Society, 9th edition, 2001.

4

[3] McClung, R.C, A literature survey on the stability and significance of residual stresses during fatigue, Fatigue Fracture Engng Mater Struct, 2007, 30, 173205. 5

[4] ASM Handbook Vol. 8. Mechanical Testing and Evaluation, ASM Inter- national, 2000. 8

[5] ASM Handbook Vol. 6. Welding, Brazing and Soldering, ASM Interna- tional, 1993. 8

[6] Withers, P.J. and Bhadeshia, H.K.D.H. Overview: Residual stress Part 1 - Measurement techniques. Materials Science and Technology, 2001, 17, 355-365. 8

[7] Prime, M.B. Residual Stress Measurement by Successive Extension of a Slot: The Crack Compliance Method. Applied Mechanics Reviews, 1999, 52(2), 75-96. 8, 11

(2)

[8] The Helmholtz Centre Berlin for Materials and Energy website. Avail- able at: http://www.hmi.de/bensc/stress/stress_instruments_

en.html. Accessed June 9 2008. 9

[9] Bray, D.E., Kim, S.-J. and Fernandes, M. Ultrasonic Evaluation of Residual Stresses in Rolled Aluminum Plate. In Ninth International Symposium on Nondestructive Characterization of Materials, Sydney, Australia, June 28-July 2 1999. American Institute of Physics Conference.

Proceedings, 1999, 497, 443-448. 10

[10] ASTM E 837-01. Standard Test Method for Determining Residual Stresses by the Hole drilling Strain-Gauge Method, 2001. 10

[11] Handbook of Measurement of Residual Stresses, Society for Experimental Mechanics, ed. Jian Lu, The Fairmont Press Inc., 1996. 10

[12] Schajer, G.S., Roy, G., Flaman, M.T. and Lu, J. Hole-Drilling and Ring-Core Methods, in: Lu, J. Handbook of Measurement of Residual Stresses, The Fairmont Press Inc., 1996, pp. 5-34. 10

[13] Lambda Technologies website. Available at: http://www.lambdatechs.

com. Accessed November 16 2009. 10

[14] Tebedge, N., Alpsten, G. and Tall, L.. Residual Stress Measurement by the Sectioning Method. Experimental Mechanics,1973, 13, 88-96. 12, 89 [15] Prime, M.B. et al. Residual Stress Measurement in a Thick, Dissimilar Aluminum-Alloy Friction Stir Weld. Acta Materialia, 2006, 54(15), 4013- 4021. 12

[16] Woo, W. et al. Microstructure, texture, and residual stress in a friction stir processed AZ31B magnesium alloy. Acta Materialia, 2008, 56(8), 1701-1711. 12

[17] Hill, M.R. and Nelson, D.V.. Determining Residual Stress Through the Thickness of a Welded Plate. ASME, PVP v. 327. New York, NY, 1996, 29-36. 12

(3)

[18] Schajer, G. S., and Steinzig, M. Full-field Calculation of Hole Drilling Residual Stresses from Electronic Speckle Pattern Interferometry Data.

Experimental Mechanics, 2005, 45, 526-532. 13

[19] Tjhung, T. and Li, K. Measurement of In-Plane Residual Stresses Vary- ing With Depth by the Interferometric Strain/Slope Rosette and Incre- mental Hole-Drilling. Journal of Engineering Materials and Technology, 2003, 125, 153-162. 13

[20] Masubuchi, K. Analisys of Welded Structures, Pergamon press Ltd., 1980. 15

[21] Lanciotti, A. and Belmondo, A. Mechanical Properties of Al 2219 VPPA Weldments. In 48th International Astronautical Congress, Turin, 6-10 October 1997, paper IAF-97-1.4.07, pp 1-14. 18, 20

[22] ASM Handbook Vol. 2. Properties and Selection: Non-Ferrous Alloys and Special Purpose Materials. ASM International, 1990. 20, 114 [23] Chao, Y.J., Qi, X. and Tang, W. Heat Transfer in Friction Stir Welding-

Experimental and Numerical Studies. Journal of Manufacturing Science and Engineering, 2003, 125, 138-145. 21, 22, 105

[24] Chen, Y., Liu, H., Feng, J., Friction stir welding characteristics of dif- ferent heat-treated-state 2219 aluminum alloy plates, Materials Science and Engineering A, 2006, 420(1-2), 21-25. 23

[25] Saroni, S. Propagazione di difetti in pannelli con irrigidimenti integrali realizzati con diverse tecnologie, Master Thesis in Aerospace Engineering, University of Pisa, 2008. 33, 36, 55

[26] A. Lanciotti, L. Lazzeri, C. Polese. DaToN - Innovative Fatigue and Damage Tolerance Methods for the Application of New Structural Con- cepts, Working Document of the Department of Aerospace Engineering, University of Pisa, 2008. 33, 36, 55

[27] Eclipse Aerospace website. Available at: http://www.

eclipseaerospace.net/company/about/innovations.php. Accessed December 9 2009. 34

(4)

[28] Llopart, Ll. et al. Investigation of fatigue crack growth and crack turn- ing on integral stiffened structures under mode I loading, Engineering Fracture Mechanics, 73(15), 2006, 2139-2152. 34

[29] G. Ivetic, A. Lanciotti, C. Polese. Electric Strain Gauge Measurement of Residual Stress in Welded Panels, Journal of Strain Analysis for Engineering Design, Vol. 44-1, 2009, 117-126. 62, 89, 104

[30] T. Fett, D. Munz, Stress Intensity Factors and Weight Functions, Com- putational Mechanics Publications, Southampton, 1997. 79, 83

[31] H.M. Westergaard, Bearing pressures and cracks, Journal of Applied Mechanics, Trans. ASME 61, 1939, pp. A49-A53. 81

[32] H. Tada, P.C. Paris, The Stress Intensity Factor for a Crack Perpen- dicular to the Welding Bead, International Journal of Fracture, n. 21, 279-284, 1983. 81

[33] E.F. Rybicki, M.F. Kanninen, A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral, Engineering Fracture Mechanics, vol.9, pp. 931-938, 1977. 82

[34] VCCT for ABAQUS User’s Manual, Abaqus inc., 2005 82

[35] H. Br¨uckner, A Novel Principle for Computation of Stress intensity Factors, Zeitschrift f¨ur angewandte Mathematik und Mehanik (ZAMM), Vol 50, No. 529, . 129-146, 1970. 82

[36] H.-J. Schnidler, W. Cheng, I. Finnie, Experimental determination of Stress Intensity Factors Due to Residual Stresses, Experimental Me- chanics, Vol. 37, No. 3., September 1997 83

[37] H. Terada, Stress Intensity Factor Analysis and Fatigue Behavior of a Crack in the Residual Stress Field of Welding, Journal of ASTM International, May 2005, Vol. 2, No. 5 84, 87

[38] I. Meneghin, M. Pacchione, P.Vermeer. Investigation on the Design of Bonded Structures for Increased Damage Tolerance, 25th Symposium

(5)

of the International Committee on Aeronautical Fatigue, Rotterdam, The Netherlands,27-29 May 2009 113, 121, 124

[39] P. Cheng, A. J. Birnbaum, Y. L. Yao. Correction of Butt-Welding Induced Distortion by Laser Forming. SME J. of Manufacturing Process, 2005 101, 102

[40] A. S lu˙zalec, Theory of Thermomechanical Processes in Welding, Springer, 2005. 101

[41] J. Mackerle. Finite element analysis and simulation of welding: a bib- liography (1976-1996). Modelling and Simulation in Materials Science and Engineering, 4, (1996), 501-533 102

[42] J. Mackerle. Finite element analysis and simulation of welding - an addendum: a bibliography (1996-2001). Modelling and Simulation in Materials Science and Engineering, 10-3, (2002), 295-318 102

[43] D. Deng, W. Liang, H. Murakawa. Determination of Welding Defor- mation in Fillet-welded Joint by Means of Numerical Simulation and Comparison with Experimental Measurements. J. of Materials Process- ing Technology 183 (2007), 219-225 102, 103

[44] D. Deng, Y. Luo, H. Serizawa, M. Shibahara. Numerical Simulation of Residual Stress and Deformation Considering Phase Transformation Effect, Transactions of JWRI 32-2 (2003), 325-333 102, 103

[45] D. Camilleri, T. G. F. Gray. Computationally Efficient Welding Distor- tion Simulation Techniques. Modelling Simul. Mater. Sci. Eng 13 (2005), 1365-1382 102, 103

[46] D. Camilleri, P. Mollicone, T. G. F. Gray. Alternative Simulation Tech- niques for Distortion of Thin Plate due to Fillet-welded Stiffeners. Mod- elling Simul. Mater. Sci. Eng 14 (2006), 1307-1327 102, 103

[47] S. A. Tsirkas, P. Papanikos, Th. Kermanidis. Numerical Simulation of the Laser Welding Process in Butt-Joint Specimens. J. of Materials Processing Technology 134 (2003), 59-69 102, 103

(6)

[48] X. K. Zhu, Y. J. Chao. Effects of temperature dependant material properties on welding simulation. Computers and Structures 80 (2002), 967-76 104

[49] Wikipedia Laser article. Available at: http://en.wikipedia.org/

wiki/Laser. Accessed November 10 2009. 126, 127, 129

[50] R.M. White, Elastic wave generation by electron bombardment or electromagnetic wave absorption, J. Appl. Phys. 34 (1963) 2123-2124.

131, 229

[51] N.C. Anderholm, Laser-generated stress waves, Appl. Phys. Lett. 16 (3) (1970) 113-114. 131, 229

[52] A.H. Clauer, B.P. Fairand and J. Holbrook, in L. Murr (Ed.), Shock Waves and High Strain Phenomena in Metals - Concepts and Applica- tions, Plenum, New York, 1981, pp. 675-702. 131

[53] Y. Sano, N. Mukai, K. Okazaki, M. Obata, Residual stress improvement in metal surface by underwater laser irradiation, Nucl. Instrum. Methods Phys. Res. B121 (1997) 432-436. 131

[54] G. Hammersley, L.A. Hackel, F. Harris, Surface prestressing to improve fatigue strength of components by laser shot peening, Opt. Lasers Eng.

34 (2000) 327-337. 131, 133

[55] A. H. Clauer, Laser Shock Peening for Fatigue Resistance, in J. K.

Gregory, H. J. Rack, and D. Eylon (Eds.), Surface Performance of Titanium, TMS, Warrendale, PA. (1996) pp. 217-230. 131, 137, 181 [56] P. Peyre, R. Fabbro, P. Merrien, H.P. Lieurade, Laser shock processing

of aluminium alloys. Application to high cycle fatigue behaviour, Mater.

Sci. Eng. A210 (1996) 102-113. 131, 133, 134, 135, 168, 172, 181, 235 [57] O. Hatamleh, J. Lyons, R. Forman, Laser and shot peening effects on

fatigue crack growth in friction stir welded 7075-T7351 aluminium alloy joints, Int. J. Fatigue 29 (2007) 421-434. 131, 242

(7)

[58] H. Luong, M.R. Hill, The effects of laser peening on high-cycle fatigue in 7085-T7651 aluminium alloy, Mater. Sci. Eng. A477 (2008) 208-216.

131, 243

[59] A. Kruusing, Handbook of Liquids-Assisted Laser Processing, Elsevier Ltd., 2008. 131, 133, 134, 140, 172, 228

[60] Y. Sano, Development and Applications of Laser Peening System for Field Operation, First International Conference on Laser Peening De- cember 15-17, 2008, Houston, USA 133

[61] M. Morales, J.A. Porro, M. Blasco, C. Molpeceres, J.L. Oca˜na, Numerical simulation of plasma dynamics in laser shock processing experiments, Appl. Surf. Sci. 255 (10) 2009 5181-5185. 133

[62] J.L. Oca˜na, C. Molpeceres, J.A. Porro, G. G`omez, M. Morales, Experi- mental assessment of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys, Appl. Surf. Sci. 238 (2004) 501-505. 133

[63] J.L. Oca˜na et al., Theoretical Description and Experimental Diagnosis of the Laser-Plasma Interaction in LSP applications. An Evaluation of the Effect of Interaction Parameters, First International Conference on Laser Peening December 15-17, 2008, Houston, USA. 133, 134

[64] W. Zhang, Y. L. Yao, Microscale Laser Shock Processing - Modeling, Testing and Microstructure Characterization, J. Manuf. Proc. 3 (2) (2001) 128-143. 133, 239

[65] B. Wu, Y.C. Shin, A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments, J. Appl. Phys. 97 (11) (2005) 113517. 133

[66] Dubrujeaud B, Fontes A, Forget P, et al. Surface modification using high-power lasers: influence of surface characteristics on properties of laser processed materials. Surf Eng 1997; 13(6):461470. 134, 135 [67] Masse JE. Laser generation of stress waves in metal. Surf CoatTechnol

1995; 70(2-3):231-234. 135, 235

(8)

[68] T. Rockstroh, Laser Shock Processing: Aircraft Engine Components, First International Conference on Laser Peening December 15-17, 2008, Houston, USA. 136

[69] K. Ding, L. Ye, FEM simulation of two sided laser shock peening of thin sections of Ti-6Al-4V alloy, Surf. Eng. 19 (2) (2003) 127-133. 137 [70] K.R. Edwards, G. Dearden, K.G. Watkins, S.P. Edwardson, Laser

peen forming of thin sheet ferrous materials, Photon06 conference, 4-7 September 2006, University of Manchester 137

[71] M. Zhou, Y.K. Zhang, L. Cai, Ultrahigh-strain-rate plastic deformation of a stainless-steel sheet with TiN coatings driven by laser shock waves, Appl. Phys. A: Mater. Sci. Process. 77 (3-4) (2003) 549-554. 137 [72] J. Cheng, Y. L. Yao, Process Design of Laser Forming for Three-

Dimensional Thin Plates, J. Manuf. Sci. Eng. 126 (2004) 217-225. 137 [73] A.H. Clauer, C.T. Walters, S.C. Ford, The effects of laser shock pro-

cessing on the fatigue properties of 2024-T3 aluminium. In: Lasers in materials processing. Metals Park ASM, 1983, pp. 7-22. 137, 176, 233 [74] J.-M. Yang, Y.C. Her, N. Han a, A. H. Clauer, Laser shock peening on

fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes, Mater. Sci. Eng. A298 (2001) 296-299. 137, 180, 238

[75] W. Zhang, Y. L. Yao, Micro Scale Laser Shock Processing of Metallic Components, J. Manuf. Sci. Eng. 124 (2002) 369-378. 137

[76] M. Dorman, Investigation of the Transformation of Defects into Fatigue Cracks - The Effects of Laser Shock Peening on the Fatigue Endurance of Scribed 2024-T351, MSc Individual Research Project Thesis, Cranfield University, College of Aeronautics, School of Engineering Department of Aerospace Technology, 2008. 139, 150

[77] W. Braisted, R. Brockman, Finite element simulation of laser shock peening, Int. J. Fatigue 21 (1999) 719-724. 165, 245

(9)

[78] A.W. Warren, Y.B. Guo, S.C. Chen, Massive parallel laser shock peening:

Simulation, analysis, and validation, Int. J. Fatigue 30 (2008) 188-197.

165, 248

[79] P. Peyre, A. Sollier, I. Chaieb, L. Berthe, E. Bartnicki, C. Braham, R.

Fabbro, FEM simulation of residual stresses induced by laser Peening, Eur. Phys. J. AP 23 (2003) 83-88. 165, 166, 168, 246

[80] K. Ding, Three-dimensional Dynamic Finite Element Analysis of Multi- ple Laser Shock Peening Process, Surf. Eng. 19(5) (2003) 351-358. 165, 246

[81] Y.X. Hu, Z.Q. Yao, J. Hu, 3-D FEM simulation of laser shock processing, Surf. Coat. Technol. 201 (2006) 1426-1435. 165, 172, 246

[82] C. Yang, P. D. Hodgson, Q. Liu, L. Ye, Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening, J. Mater. Process. Technol. 201 (2008) 303-309. 165, 166, 247 [83] K.Ding, L. Ye, Simulation of multiple laser shock peening of a 35CD4

steel alloy, J. Mater. Process. Technol. 178 (2006) 162-169. 165, 247 [84] Q. Liu, C.H. Yang, K. Ding, S.A. Barter, L. Ye, The effect of laser power

density on the fatigue life of laser-shock-peened 7050 aluminium alloy, Fatigue Fract. Eng. Mater. Struct. 30 (11) (2007) 1110-1124. 165, 242 [85] M.A. Meyers, Dynamic Behaviour of Materials, second ed., Wiley, 1994.

166

[86] ASM International, ASM handbook, vol. 2 - Properties and selection:

non-ferrous alloys and special purpose materials, ASM International, Materials Park, Ohio, 1990. 166

[87] P. Ballard, J. Fournier, R. Fabbro, J. Frelat, Residual stresses induced by laser-shocks. J Phys IV Coll. C3 1 (1991) 487-494. 166, 233

[88] G. R. Johnson, W. H.Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures,

(10)

Proc. of 7th Int. Symp. Ball., Hague, The Netherlands, (1983) 541-547.

166, 167

[89] C. Yang, P.D. Hodgson, Q. Liu, L. Ye, Three-dimensional Finite Element modelling of Laser Shock Peening Process, Mater. Sci. Forum 561-565 (2007) 2261-2264. 166, 184

[90] P. Peyre, I. Chaieb, C. Braham, FEM calculation of residual stresses induced by laser shock processing in stainless steels, Model. Simul. Mater.

Sci. Eng. 15 (2007) 205-221. 166, 247

[91] H.K. Amarchinta, R.V. Grandhi, K. Langer, D.S. Stargel, Material model validation for laser shock peening process simulation, Model.

Simul. Mater. Sci. Eng. 17 (2009) 015010 (15pp). 166, 248

[92] Y. Fan, Y. Wang, S. Vukelic, Y. L. Yao, Wave-solid interactions in laser-shock-induced deformation processes, J. Appl. Phys. 98 (2005) 104904. 166, 241

[93] D. Lesuer, Experimental Investigations of Material Models for Ti-6Al-4V Titanium and 2024-T3 Aluminum, U.S. Department of Transportation, DOT/FAA/AR-00/25, 2000. 166, 167

[94] X. Teng, T. Wierzbicki , Evaluation of six fracture models in high velocity perforation, Eng. Fract. Mech. 73(12) (2006) 1653-1678. 166, 167

[95] X.L. Fu, X. Ai, S. Zhang, Y. Wan. Constitutive Equation for 7050 Aluminum Alloy at High Temperatures, Materials Science Forum, 532 - 533, (2006), 125-128. 167, 192, 193

[96] ABAQUS 6.7 user manual, Dassault Syst`emes 2007 167, 168

[97] D.J. Steinberg, Equation of state and strength properties of selected materials, Lawrence Livermore National Laboratory, Report UCRL-MA- 106439-Change1 (1996). 168

[98] Y.X. Hu, Z.Q. Yao, FEM Simulation of Residual Stresses Induced by Laser Shock With Overlapping Laser Spots, Acta Metall. Sinica (Engl.

(11)

[99] Peyre P, Fabbro R, Berthe L, et al. Laser shock processing of materials and related measurements. In: Proc SPIE 3343 (Phipps CR, ed. High- Power Laser Ablation); 1998:183-193. 175

[100] L. Davison, Fundamentals of Shock Wave Propagation in Solids, Springer-Verlag Berlin Heidelberg, 2008. 177

[101] S. Eliezer, The Interaction of High-Power Lasers with Plasmas, Institute of Physics Publishing, Bristol, 2002. 178

[102] Luong, H, Hill, M.R The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy Mater. Sci. Eng. A (2009) , doi: 10.1016 /j.msea. 2009.08.045 192, 243

[103] Askaryan GA, Moroz EM. Pressure on evaporation of matter in radia- tion beam. Soviet Phys JETP 1963; 16:1638-1639. 229

[104] Neuman F. Momentum transfer and cratering effects produced by giant laser pulses. Appl Phys Lett 1964; 4(9):167-169. 229

[105] Gregg DW, Thomas SJ. Momentum transfer produced by focused laser giant pulses. J Appl Phys 1966; 37(7):2787-2789. 229

[106] Anderholm NC. Laser generated pressure waves. Bull Am Phys Soc 1968; 13:388. 229

[107] Skeen CH,York CM. Laser-induced blow-off phenomena. Appl Phys Lett 1968; 12(11):369-371. 229

[108] Metz SA, Smidt FA Jr. Production of vacancies by laser bombardment.

Appl Phys Lett 1971; 19(6):207-208. 230

[109] Yang LC, Menichelli VJ. Detonation of insensitive high explosives by a Q-switched ruby laser. Appl Phys Lett 1971; 19(11):473-475. 230 [110] Fairand BP,Wilcox BA, Gallagher WJ, et al. Laser shock-induced

microstructural and mechanical property changes in 7075 aluminium. J Appl Phys 1972; 43(9):3893-3895. 230

(12)

[111] O’Keefe JD, Skeen CH. Laser-induced stress-wave and impulse aug- mentation. Appl Phys Lett 1972; 21(10): 464-466. 230

[112] Hsu TR. Application of the laser beam technique to the improvement of metal strength. J Testing Evaluat JTEVA 1973; 1(6):457-458. 230 [113] O’Keefe JD,Skeen CH. Laser-induced deformation modes in thin metal

targets. JAppl Phys 1973;44(10):4622-4626. 230

[114] Fairand BP, Clauer AH, Jung RG, et al. Quantitative assessment of laser-induced stress waves generated at confined surfaces. Appl Phys Lett 1974; 25(8):431-433. 231

[115] Fox JA. Effect of water and paint coatings on laser-irradiated targets.

Appl Phys Lett 1974; 24(10):461-464. 231

[116] Yang LC. Stress waves generated in thin metallic films by a Q-switched ruby laser. J Appl Phys 1974; 45(6):2601-2608. 231

[117] Steverding B, Dudel HP. Laser-induced shocks and their capability ta produce fracture. J Appl Phys 1976; 47(5):1940-1945. 231

[118] Clauer AH,Fairand BP,Wilcox BA. Laser shock hardening of weld zones in aluminum alloys. Metallurg Trans A 1977; 8A:1871-1876. 232 [119] Fairand BP, Clauer AH. Use of laser generated shocks to improve the properties of metals and alloys. In: Proc SPIE 86 (Industrial applications of high power laser technology); 1976:112-119. 232

[120] Fairand BP, ClauerAH. Laser-generated stress waves:Their characteris- tics and their effects to materials. In: Ferris SD, Leamy NJ, Poate JM, eds. Laser-solid interactions and laser processing 1978.Am Inst Phys, Conf Proc 50; 1979:27-42. 232

[121] Clauer AH, Fairand BP. Interaction of laser-induced stress waves with metals. In: Applications of laser in material processing. Materials Park:ASM; 1979:291-315. 233

(13)

[122] Ballard P, Fournier J, Fabbro R, et al. Study of the plastification of metallic targets shocked by a laser pulse of high energy. J Phys Coll C3 1988; 49(9)(Suppl.):401-406. 233

[123] Banas G, Lawrence FV Jr. Shot peening versus laser shock process- ing. In: Proc. of 4th international conference on shot peening (ICSP- 4).Tokyo:The Japan Society of Engineering; 1990:95-104. 233

[124] Banas G, Elsayed-Ali HE, Lawrence FV Jr, et al. Laser shock-induced mechanical and microstructural modification of welded marging steel. J Appl Phys 1990; 67(5):2380-2384. 234

[125] Fournier J, Ballard P, Merrien P, et al. Mechanical effects induced by shock waves generated by high energy laser pulses. J Phys III France 1991; 1:1467-1480. 234

[126] Clauer AH. Laser shock processing increases the fatigue life of metal parts. Mater Process Rep 1991; 6:3-5. 234

[127] Clauer AH,Dulaney JL, Rice RC, et al. Laser shock processing for treating fastener holes in aging aircraft. In:Atluri SN, Harris CE, Hoggard A, et al., eds. Durability of metal aircraft structures, Proceedings of the InternationalWorkshop on Structural Integrity of Aging Airplanes, March 31 - April 2, 1992 Atlanta: Atlanta Technology Publications:

1992: 350-361. 234

[128] Vaccari JA. Laser shocking extends fatigue life. Am Machinist 1992;

(July):62-64. 234

[129] Gerland M, Hallouin M, Presles HN. Comparison of two new surface treatment processes, laser-induced shock waves and primary explosive:

application to fatigue behaviour. Mater Sci Eng A 1992;A156:175-182.

234

[130] Peyre P, Merrien P, Lieurade HP, et al. Laser induced shock waves as surface treatment for 7075-T7131 aluminium alloy. Surf Eng 1995;

11(1):47-52. 235

(14)

[131] Mukai N, Aoki N, Obata M, et al. Laser processing for underwater maintenance in nuclear plants. In: The 3rd JSME/ASME joint interna- tional conference on nuclear engineering. 2327April 1995, Kyoto, Japan;

vo1. 3. 1995:1489-1494. 235

[132] Peyre P, Fabbro R, L. Berthe L, et al. Laser shock processing of materials, physical processes involved and examples of applications. J Laser Appl 1996; 8:135-141. 236

[133] Konagai C, SanoY,Aoki N. Underwater direct metal processing by high- power copper vapour laser. In: Little CE, Sabotinov NV, eds. Pulsed metal vapour lasers. Dordrecht: Kluwer; 1996:371-376. 236

[134] SanoY, Mukai N,Aoki N, et al. Laser processing to improve residual stress of metal components. In: IEEE/LEOS 1996 Summer topical meet- ings: advanced applications of lasers in materials processing/broadband optical networks/smart pixels/optical MEMs and their applications, 5-6 August 1996. NewYork: IEEE; 1996:30-31. 236

[135] Peyre P,Berthe L,Fabbro R,et al. Laser shock processing of materials:

characterization and application of the process. In: Proc SPIE 3097 (Beckmann LHJF, ed. Lasers in material processing); 1997:558-569. 236 [136] Peyre P, Berthe L, Scherpereel X, et al. Laser-shock processing of aluminium-coated 55C1 steel in water confinement regime, characteriza- tion and application to high-cycle fatigue behaviour. J Mater Sci 1998;

33(6):1421-1429. 236

[137] Peyre P, Scherpereel X, Berthe L, et al. Current trends in laser shock processing. Surf Eng 1998; 14(5):377-380. 237

[138] Zhang H, Zhang Y-K,Yu C-Y. Surface treatment of aluminium alloy by laser shock processing. Surf Eng 1999; 15(6):454-456. 237

[139] Ruschau JJ, John R,Thompson SR, et al. Fatigue crack growth rate characteristics of laser shock peened Ti-6Al-4V, Trans ASME. J Eng Mater Technol 1999; 121(3):321-329. 237

(15)

[140] Sano Y, Kimura M, Mukai N, et al. Process and applications of shock compression by nano-second pulses of frequency-doubled Nd:YAG laser.

In: Proc SPIE 3888 (Chen X, Fujioka T, Matsunawa A, eds. High-power lasers in manufacturing); 2000:294-306. 237

[141] Peyre P,Scherpereel X,Berthe L,et al. Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Mater Sci Eng A Propert Microstruct Process 2000;A280(2):294-302. 238

[142] Schmidt-UhligT, Karlitschek P,Yoda M, et al. Laser shock processing with 20MW laser pulses delivered by optical fibers. Eur Phys J Appl Phys 2000; 9(3):235-238. 238

[143] Schmidt-Uhlig T, Karlitschek P, Marowsky G, et al. New simplified coupling scheme for the delivery of 20MW Nd:YAG laser pulses by large core optical fibers. Appl Phys B 2001; 72:83-186. 238

[144] Tang Y, Zhang Y, Zhang H, et al. Effect of laser shock processing (LSP) on the fatigue resistance of an aluminum alloy.Trans ASME, J

Eng Mater Technol 2000; 122:104-107. 238

[145] Montross CS, Florea V, Brandt M, et al. Subsurface properties of laser peened 6061-T6 Al weldments. Surf Eng 2000; 16(2):116-121. 238 [146] Zhang W.,Yao YL. Modeling and simulation improvement in laser

shock processing. In: 20th international conference on applications of lasers electro-optics, laser materials processing conference, ICALEO, CD ROM Edition, 2001: 59-68. 239

[147] ZhangYK, Hu CL, Cai L, et al. Mechanism of improvement on fatigue life of metal by laser-excited shock waves. Appl Phys A 2001; 72:113-116.

239

[148] Zhang YK, Zhang XR,Wang XD, et al. Elastic properties modification in aluminum alloy induced by laser-shock processing. Mater Sci Eng 2001;A197:138-143. 239

(16)

[149] Yoshioka Y, Akita K, Suzuki H, et al. Residual stress measurements of laser peened steels by using synchrotron radiation. Mater Sci Forum 2002; 404-407:83-88. 239

[150] Hill MR,DeWald AT, Rankin JE, et al. The role of residual stress measurement in the development of laser peening. J Neutron Res 2003;

11(4):195-200. 239

[151] Nalla RK, Altenberger I, Noster U, et al. On the influence of mechanical surface treatments - deep rolling and laser shock peening - on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures. Mater Sci Eng 2003; A355:216-230. 239

[152] Rodopoulos CA, Romero JS, Curtis AS, et al. Effect of controlled shot peening and laser shock peening on the fatigue performance of 2024-T351 aluminum alloy. J Mater Eng Perform 2003; 12(4):414-419.

240

[153] Evans AD, King A, Pirling T, et al. Near surface residual stress deter- mination of laser shock peening by neutron diffraction. J Neutron Res 2003; 11(4):229-233. 240

[154] DeWald AT, Rankin JE, Hill MR, et al. Assessment of tensile residual stress mitigation in alloy 22 welds due to laser peening. Trans. ASME, J Eng Mater Technol 2004;126:465-473. 240

[155] Hill MR, DeWald AT, Rankin JE, et al. Measurement of laser peening residual stresses. Materi Sci Technol 2005; 21:3-9. 240

[156] Yilbas BS, Gondal MA,Arif AMF, et al. Laser shock processing of Ti-6Al-4V alloy. Proc Instn Mech Engrs Part B: J. Eng Manufact 2004;

218:473-482. 240

[157] Rubio-Gonzalez C, Oca˜na JL, Gomez-Rosas G, et al. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy. Mater Sci Eng A 2004; 386:291-295. 240

(17)

[158] Nikitin I, Scholtes B, Maier HJ, et al. High temperature fatigue behav- ior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304. Scripta Mater 2004; 50:1345-1350. 240 [159] Nikitin I, Altenberger I, Scholtes B. Residual stress state and cyclic

deformation behaviour of deep rolled and laser-shock peened AISI 304 stainless steel at elevated temperatures. Mater Sci Forum 2005; 490- 491:376-383. 240

[160] Akita K, Tanaka H, Sano Y, et al. Compressive residual stress evolution process by laser peening. Mater Sci Forum 2005; 490-491:370-375. 241 [161] Shepard MJ. Laser shock processing induced residual compression:

impact on predicted crack growth threshold performance. J Mater Eng Perform 2005; 14(4):495-502. 241

[162] King A, Evans AD, Withers PJ, et al. The effect of fatigue on residual peening stresses in aerospace components. Mater Sci Forum 2005; 490- 491:340-345. 241

[163] Sano Y, Obata M, Kubo T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Mater Sci Eng A 2006; 417:334-340. 241

[164] Rubio-Gonzalez C, Gomez-Rosas G, Oca˜na JL, et al. Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples. Appl Surf Sci 2006; 252:6201-6205.

242

[165] King A, Steuwer A,Woodward C, et al. Effects of fatigue and fretting on residual stresses introduced by laser shock peening. Mater Sci Eng A 2006; 435-436(5):12-18. 242

[166] Korsunsky AM, Liu J, Laundy D, et al. Residual elastic strain due to laser shock peening: synchrotron diffraction measurement. J Strain Anal 2006; 41(2):113-120. 242

(18)

[167] Hatamleh, O., Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints, Mater Sci Eng A 2008; 492:168- 176. 243

[168] Hatamleh, O., A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints Int.J. of Fatigue 31 (2009) 974-988 244

[169] Sano Y, Yoda M, Mukai N, et al. Residual stress improvement mech- anism on metal material by underwater laser irradiation. Nihon Gen- shiryoku Gakkaishi. J Atomic Energ. Soc Jpn 2000; 42(6):567-573. 245 [170] Zhang W,Yao YL. Improvement of laser induced redual stress distribu-

tions via shock waves. In: Proceedings of the laser materials processing conference ICALEO 2000, LIA, vol. 89; 2000:183-192. 245

[171] Sano Y, Yoda M, Mukai N, et al. Residual stress improvement on inside wall of small-diameter pipe by underwater laser ablation. Trans Inst Electr Eng Jpn, Part C 2002; 122-C(1):156-162. 245

[172] Zhang W,Yao YL, Noyan IC. Microscale laser shock peening of thin films, Part 1: Experiment, modeling and simulation.Trans ASME, J Manufact Sci Eng 2004; 126:10-17. 246

[173] Morales M, Molpeceres C, Porro JA, et al. Numerical simulation of laser shock processing of metal alloys. In: CLEO/Europe, conference on lasers and electro-optics Europe, 2005, 12-17 June 2005. 2005:649. 246 [174] Y.X. Hu, Z.Q. Yao, Numerical simulation and experimentation of overlapping laser shock processing with symmetry cell, Int. J. Mach.

Tools Manuf. 48 (2008) 152-162. 248

[175] G. Ivetic, 3-D FEM Analysis of Laser Shock Peening of Aluminium Alloy 2024-T351 Thin Sheets, Accepted for publishing in Surface En- gineering, July 26, 2009. DOI: 10.1179/026708409X12490360425846.

249

Riferimenti

Documenti correlati

Secondo gli umanisti del circolo di Bachtin, uno dei più gravi limiti della filosofia del linguaggio, della linguistica e della stilistica tradizionali è stato quello

A carta [1]r annotazione manoscritta (versi latini). Iniziali manoscritte in rosso e in blu. Sul dorso: nome dell’autore e titolo dell’opera manoscritti in caratteri epigrafici.

Sul piano dei metodi, il progetto ha permesso di confermare l’ap- plicabilità delle tecniche elettromagneti- che mobili GPR e TDR (sebbene l’accura- tezza del risultato rimanga

The Vb gene was also expressed under its own promoter and 35S in susceptible Gala plants to assess resistance mechanism against scab.. Material

8 (2015) della rivista «La Modernità letteraria» dedicato a Immaginari migranti e i Presidenti dei Panels: Mario Barenghi (Universi- tà di Milano “Bicocca”), Mauro

“Ufficio Vendite” in corsivo con spaziatura dopo 10cm- Tutto il timbro del mittente deve essere in colore

Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the

The selected neural network model that describes the process is composed of two neurons in the input layer, one neuron in the hidden one (because one is the number of the