• Non ci sono risultati.

(1)Bibliografia [1] S

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Bibliografia [1] S"

Copied!
5
0
0

Testo completo

(1)

Bibliografia

[1] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, V. Sundararajan, Improving power output for vibration-based energy scavengers, 2005, Pervasive Computing IEEE Vol. 4, Issue. 1, pp 28-36.

[2] S. Roundy, P. Wright and K. Pister, Micro-electrostatic vibration to electricity converters, 2002, Proc. IMECE, pp 1-10.

[3] T. Sterken, K. Baert, C. Van Hoof, R. Puers, G. Borghs, P. Fiorini, Comparative modelling for vibration scavenger, 2004, Proceedings IEEE Sensors.

[4] S. Roundy, Energy scavenging for wireless sensor nodes with a focus on vi- bration to electricity conversion, 2003, PhD Thesis University of Califonia, Berkeley.

[5] G. Despesse, T. Jager, J. Chaillout, J. Leger, A. Vassilev, S. Basrour and B. Chalot, Fabrication and characterisation of high damping electrostatic micro devices for vibration energy scavenging, 2005, Proc. Desing, Test, Integration and Packaging of MEMS and MOEMS, pp 368-90.

[6] R. Tashiro, N. Kabai, K. Katayama, Y. Ishizuka, F. Tsuboi and K. Tsuchiya, Development of an electrostatic generator that harnesses the motion of a living body, 2000, JSME Int.J.C 43 916-22.

[7] S. Meninger, J. Mur-Miranda, J. Lang, A. Chandrakasan, A. Slocum, M. Schmidt and R Amirtharajah, Vibration to electric energy conversion, 2001, IEEE Trans Very Large Scale Integration (VLSI), Syst.9 64-76.

[8] R. Tashiro, N. Kabei, K. Katayama, F. Tsuboi and K. Tsuchiya, Development of a electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion, 2002, J.Artif.Organs 239-45.

68

(2)

[9] P. Mitcheson, B. Stark, P. Miao, E. Yeatman, A. Holmes and T. Green, Analysis and optimisation of MEMS on-chip power supply for self powering of slow moving sensors, 2003, Proc. Eurosensors XVII (Guimaraes, Portugal), pp 30-1.

[10] T. Sterken, K. Baert, R. Puers and S. Borghs, Power extraction from ambient vibration, Proc. 3rd Workshop on Semiconductor Sensors and Actuators, pp 680-3.

[11] T. Sterken, P. Fiorini, K. Baert, G. Borghs and R. Puers, Novel design and fabrication of a MEMS electrostatic vibration scavenger, Power MEMS Conference (Kyoto Japan), pp 18-21.

[12] M. Miyazaki, H. Tanaka, G. Ono, T. Nagano, N. Ohkubo, T. Kawahara and K. Yano, Electric-energy generation using variable-capacitive resona- tor for power-free LSI: efficiency analysis and fundamental experiment, 2003, ISLPED ’03, pp 193-8.

[13] W. Ma, M. Wong and L. Ruber, Dynamic simulation of an implemented electrostatic power micro-generator, 2005, Proc. Design, Test, Integration and Packaging of MEMS and MOEMS, pp 380-5.

[14] Y. Arakawa, Y. Suzuki and N. Kasagi, Micro seismic power generator using electret polymer film, 2004, Power MEMS Conference (Kyoto, Japan), pp 187-90.

[15] F. Peano and T. Tambosso, Design and optimisation of a MEMS electret- based capacitive energy scavenger, 2005, J. Microelectromech. Syst. 14 435-529.

[16] J. Kymissis, C. Kendall, J. Paradiso and N. Gershenfeld, Parasitic power harvesting in shoes, 1998, Proc. 2nd IEEE Int. Conf. Wearable Computing (California), pp 132-9.

[17] M. Umeda, K. Nakamura and S. Ueha, Energy storage characteristics of a piezo-generator using impact induced vibrations, 1997, Japan. J. Appl.

Phys. 36 3146-51.

[18] N. S. Shenck and J. A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics, 2001, IEEE Micro. 21 30-42.

[19] M. J. Ramsay and W. W. Clark, Piezoelectric energy harvesting for bio MEMS applications, 2001, Proc. SPIE 4332 429-38.

[20] P. Glynne-Jones, S. P. Beeby and N. M. White, Towards a piezoelectric vibration powered microgenerator, 2001, IEEE Proc. Sci. Meas. Technol.

148 68-72.

(3)

[21] S. Roundy, P. K. Wright and J. Rabaye, A study of low level vibrations as a power source for wireless sensor nodes, 2003, Comput. Commun. 26 1131-44.

[22] H. A. Sodano, G. Park and D. J. Inman, Estimation of electric charge output for piezoelectric energy harvesting, 2004, Strain 40 49-58.

[23] R. Duggirala, H. Li, A. M. Pappu, Z. Fu, A. Aspel and A. Lal, Radioisotope micropower generator for CMOS self-powered sensor microsystems, 2004, Proc. 4th Int. Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications PowerMEMS 2004 (Kyoto, Japan), pp 133-6.

[24] A. Bayrashev, W. P. Robbins and B. Ziaie, Low frequency wireless powering of microsystrems using piezoelectric-magnetostrictive laminate composites, 2004, Sensors Actuators A 114 244-9.

[25] M. Marzencki, S. Basrour, B. Charlot, A. Grasso, M. Colin and L. Valbin, Design and fabrication of piezoelectric micro power generators for auto- nomous microsystems, 2005, Proc. Symp. on Design, Test, Integration and Packaging of MEMS/MOEMS DTIP05 (Montreux, Switzerland), pp 299-302.

[26] Y. B. Jeon, R. Sood, J-h Jeong and S. G. Kim, MEMS power generator with transverse mode thin film PZT, 2005, Sensors Actuators A 122 16-22.

[27] Y. K. Hong and K. S. Moon, Single crystal piezoelectric transducers to harvest vibration energy, 2005, Proc. SPIE 6048 60480E-1.

[28] C. B. Williams, C. Shearwood, M. A. Harradine, P. H. Mellor, T. S. Birch and R. B. Yates, Development of an electromagnetic micro-generator, 2001, IEE Proc. Circuits Devices Syst. 148 337-42.

[29] C. Shearwood and R. B. Yates, Development of an electromagnetic micro- generator, 1997, Electron. Lett. 33 1883-4.

[30] R. Amirtharajah and A. P. Chandrakasan, Self-powered signal processing using vibration-based power generation, 1998, IEEE J. Solid-State Circuits 33 687-95.

[31] M. El-Hami, P. Glynne-Jones, E. James, S. P. Beeby, N. M. White, A. D. Brown, J. N. Ross and M. Hill, Design and fabrication of a new vibration-based electromechanical power generator, 2001, Sensors Actuators A 92 335-42.

[32] M. Mizuno and D. Chetwynd, Investigation of a resonance microgenera- tor, 2003, J. Micromech. Microeng. 13 209-16.

(4)

[33] P. Glynne-Jones, M. J. Tudor, S. P. Beeby and N. M. White, An electromagnetic, vibration-powered generator for intelligent sensor systems, 2004, Sensors Actuators A 110 344-9.

[34] www.perpetuum.co.uk.

[35] H. Kulah and K. Najafi, An electromagnetic micro power generator for low-frequency environmental vibrations, 2004, Micro Electro Mechanical Systems-17th IEEE Conf. on MEMS (Maastricht), pp 237-40.

[36] W. S. Huang, K. E. Tzeng, M. C. Cheng and R. S. Huang, Design and fabrication of a vibrational micro-generator for wearable MEMS, 2003, Proc. Eurosensors XVII (Guimaraes, Portugal), pp 695-7.

[37] A. P´erez-Rodr´ıguez, C. Serre, N. Fondevilla, C. Cereceda, J. R. Morante, J. Esteve and J. Montserrat, Design of electromagnetic inertial gene- rators for energy scavenging applications, 2005, Proc. Eurosensors XIX (Barcelona, Spain) paper MC5.

[38] S. P. Beeby, M. J. Tudor, E. Koukharenko, N. M. White, T. O’Donnell, C. Saha, S. Kulkarni and S. Roy, Micromachined silicon generator for harvesting power from vibration, 2005, Proc. Transducers 2005 (Seoul, Korea), pp 780-3.

[39] W. J. Li, Z. Wen, P. K. Wong, G. M. H. Chan and P. H. W. Leong, A micromachined vibration-induced power generator for low power sensors of robotic systems, 2000, World Automation Congress: 8th Int. Symp. on Robotics with Applications (Hawaii).

[40] N. N. H. Ching, H. Y. Wong , W. J. Li, P. H. W. Leong and Z. Wen, A laser-micromachined vibrational to electrical power transducer for wireless sensing systems, 2002, Sensors Actuators A 97-98 685-90.

[41] S. Scherrer, D. G. Plumlee and A. J. Moll, Energy scavenging device in LTCC materials, 2005, IEEE Workshop on Microelectronics and Electron Devices, WMED 2005, pp 77-8.

[42] S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O’Donnell, C. R. Saha and S. Roy, A micro electromagnetic generator for vibration energy harvesting, 2007, J. Micromech. Microeng. 17 1257-265.

[43] Sunderarajan S. Mohan, Maria del Mar Hershenson, Stephen P. Boyd, Thomas H. Lee, Simple accurate espressions for planar spiral inductances, 1999, IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol.34, no.10.

[44] W. C. Young, R. G. Budynas, Roark’s Formulas for Stress and Strain, 2002, McGraw-Hill.

(5)

[45] G. Barillaro, A. Molfese, A. Nannini, F. Pieri, Analysis, simulation and re- lative performance of two kinds of serpentine springs, 2005, J. Micromech.

Microeng. 15 736-746.

Riferimenti

Documenti correlati

Both the BB and the APEC components are significant at the 99% confidence level in both spectra, but their behaviour is very di fferent: on the one hand, the APEC flux is

The plate is then put for 10 minutes in the pressure machine shown in Figure 4.19(b) to make flat the glue film. Then the slides are placed above this film and another clean

Experimental results from RF devices implemented in a complicated Si/poly-Si/poly- SiC substrate [16], show that the negative-resistance effect of self-heating (whereby

between plasma protein CO levels and clinical involvement, thus suggesting that in MFS the intensity of oxidative stress may be a marker of the clinical severity and of the number

With the only exception of Italy (-0.3% mom), in August industrial production grew in all major Eurozone economies after a negative start for the third quarter: Germany recorded

Based on the preliminary analysis performed in Chapter 5, we claimed that using functors would improve the performance of the implementation of Casanova in Metacasanova given in

In fact, for smaller states and developing countries in general, the new international institution of cross regionalism is an specially appealing strategy as it can

Funzionamento Art. Il Consiglio d’amministrazione stabilisce l’ordine del giorno delle sessioni della Conferenza dopo avere esaminato tutte le proposte concernenti gli oggetti