• Non ci sono risultati.

Detectors for High Energy γ-rays

N/A
N/A
Protected

Academic year: 2021

Condividi "Detectors for High Energy γ-rays"

Copied!
30
0
0

Testo completo

(1)

Detectors for High Energy γ-rays

§  Scintillator Detectors

§  Arrays for Heavy Ion physics:

- HECTOR (Low energy HI)

- MEDEA (Intermediate Energy HI)

- TAPS (Relativistic HI)

References

Hector: A. Maj et al., NPA571(1994)185

Hector: M. Mattiuzzi et al., NA612(1997)262

Multiplicity filter: M. Jaaskelainen et al. NIMA204(1983)385 Medea: E. Migneco et al., NIMA314(1992)31

Medea: D. Santonocito & Y. Blumenfeld, Eur. Phys. J. A30(2006)183 Taps: R. Novotny, IEEE38(1991)379

Taps: A.R. Gabler et al., NIMA346(194)168

Taps: N. Kalantar-Nayestanaki, NPA631(1998)242c Taps: J.G. Messchendorp et al., PRL82(1999)2649

(2)

Detection of high-energy γ-rays E γ >10 MeV

HOT Giant Dipole Resonance

§ 

Eγ ~ 15 MeV

§  FWHM ~ 5-7 MeV

§  Pγ/Ppart≈ 10-3

GDR

64Ni (@300MeV) + 68Zn → 132Ce

Experimental requests:

High efficiency;

n-γ discrimination;

energy resolution

(not crucial)

at present this can only be achieved with

large volume scintillators

(3)

comparable wih scintillators arrays

Ω ε

absolute efficiency

AGATA/GRETA

Ge Arrays (present status)

§  TOF measurement: useless

NO γ-n discrimination

large photopeak efficiency for high-energy γ-rays

§  tracking ? under study

γ and n should produce different cluster of events

§  Pulse Shape Analysis: useless

γ and n interactions in Ge

produce electric signals with similar shapes

A. Atac et al., NIMA607(2009)554

(4)

BaF 2 : the most advantageous scintillator detector

- 80% light emission in visible - Largest size:

14cm × 18 cm

(Merk Factory, Darmstadt)

-   Not fragile -   Not igroscopic

-   Not damaged by neutrons -   two components time signal:

fast

(λ ~ 220 nm)

τ <

1 ns

slow

(λ ~ 310 nm)

τ

~ 700 ns Fast signal ⇒ time measurement Fast+Slow signal ⇒ energy

fast τ < 1 ns

slow

τ ~ 700 ns

ΔEγ/Eγ (60Co) ≈ 11%

ΔT < 1 ns εph (15 MeV) ≈ 10%

(5)

- excellent n-γ discrimination by TOF

10 ns

n energy delay

(after 30 cm)

very good timing (τ < ns) gives the possibility of using the detectors closer to the target

( ⇒ larger Ω ⇒ larger ε)

-  low efficiency for neutron capture

(Eneutron ~ 2-5 MeV)

neutrons CN

n-capture cross sections

) (

10 )

( NaI

n

BaF

2

n

σ

σ ≈ ×

⇒ cleaner spectra with BaF2

(%)

(6)

-  particle identification:

pulse shape of

fast

and

slow

components depends on the type of interacting particles

Slow

Fast

-   internal radioactivity:

BaF2 contains small % of Ra

(typically 600cts/l)

it can be used for calibration (Energy < 8 MeV)

when operating in air, charge particles contribution is modest and

pulse-shape discrimination is used for pile-up rejection

-  pile-up rejection:

piled-up events have a different ratio of intensity Fast/Total

internal radioactvity spectrum AFTER PSA

β & γ α

(7)

-  efficiency & response function:

the

γ-ray interactions in the BaF2 detector can be simulated by the MonteCarlo code GEANT based on

§  type of crystal (Z, A, ρ, … of BaF2)

§  detector geometry: Ø= 14.5 cm, L = 17.5 cm

§  surroundings materials:

housing: C&H 2mm, r~1 g/cm3 absorbers: Pb, 6mmthick

§  source distance: 30 cm

§  energy resolution: ~ 1/√Eγ

(extrapolated from meaured values)

εph (15 MeV) ≈ 10%

Eγ (MeV)

ε

ph

full energy peak +

1. escape & 2. escape

(8)

-  energy gain fluctuations:

fluctuations in temperature and count rate are sources of instability in the energy gain

temperature:

change of chemical/physical properties

of BaF2 (transparency) and photocatods + dinodes (amplification factor)

opposite phase

gain monitor

[count rate fluctuations]

LED source

ν  ~ 1 Hz - 10 kHz λ ~ 568 nm Eγ ~ 25-30 MeV

calibration spectrum

11B + 2D → 12C* + n

γ-decay of 12C:

•  15.1 MeV (M1, 90%)

17.1 & 4.4 MeV (2%)

11 am 11 am 11 am 11 am 20 pm 20 pm 20 pm 20 pm

4%

count rates:

plasma formation among last dinodes (⇒ E decrease)

(9)

0 50 100 150 200 250 -10

-5 0 5 10

Devi at io ns

Sections

det. num. 7 det. num. 3

bad BaF2

good BaF2

LED gain monitor

time

(10)

Large Volume Scintillators can be used as:

§  Dedicated arrays:

- HECTOR

(Low-energy Heavy-Ions : Ebeam ∼ 5 MeV/A)

- MEDEA

(Intermediate Energy Heavy-Ions: Ebeam ∼ 20-40 MeV/A)

è evolution of collective motion (GDR) with excitation energy - TAPS

(Relativistic Energy Heavy-Ions: Ebeam up to 1 GeV/A)

 reaction dynamics with relativistic heavy ions

§  Ancillary detectors:

- Large BaF

2

in EUROBALL/AGATA

 Hot GDR built on specific residues

(i.e. superdeformed nuclei)

(11)

176

W

106

Sn

Dedicated Arrays: HECTOR

GDR studies (E

γ

= 10-25 MeV) Moderately excited CN

E*~ 30-100 MeV, T ≤ 4 MeV

low energy region

Ebeam ∼ 5 MeV/A

complete fusion reactions

- small variety of emitted particles

γ-rays, n, p, α

- small energy range  ∼ 1- 25 MeV

58Ni (@260MeV) + 48Ti

106Sn (E*=80MeV, T~1.8MeV)

<I>=24 <I>=36

<I>=24 <I>=36

Angular Momentum Dependence of GDR width

small ℑ:

large increase

in deformation with I large ℑ:

weak increase

in deformation with I

FWHM FWHM

(12)

HECTOR

High Energy Detector (NBI-LNL)

low-energy γ-rays

Helena:

38 small BaF2

Ø= 5.06 cm, L = 7.62 cm

Ωtotal > 90%

high-energy γ-rays

Hector:

8 Big BaF2

Ø= 14.5 cm, L = 17.5 cm

Ωtotal ~ 10%

LED gain monitor

heavy charged fragments

PPAC: gas counter

position sensitive parallel plate avalanche counters

Master Gate

main trigger

accepted events:

≥ 1γ in Hector (GDR) .AND.

≥ nγ in Helena

(rotational cascade)

Δt~350 ps

Δt~600 ps exagnal base

(13)

n-γ separation via TOF

n peak:

-30% of total events -  FWHM

⇒ ns velocity distribution -  angular distribution

⇒ kinematic effect

HECTOR: detection of high-energy γ-rays

measurements of γ-ray spectra

at different angles allows to deduce - nuclear shape

- nuclear orientation

(collective or non collective rotation)

0 2 4 6 8 10 12 14 16 18 20

1 10 100 1000 10000 100000

b)

n gate

total

counts [arb. units]

Eγ [MeV]

1 10 100 1000 10000 100000

a)

total

γ gate

Counts [arb. unit]

0 2 4 6 8 10 12 14 16 18 20

1 10 100 1000 10000 100000

b)

n gate

total

counts [arb. units]

Eγ [MeV]

1 10 100 1000 10000 100000

a)

total

γ gate

Counts [arb. unit]

126

Ba

Eγ [MeV]

GDR

Line-shape analysis

: EGDR, ΓGDR

angular distribution

: a2(Eγ) )]

(cos )

( 1

[ )

(Eγ W0 a2 Eγ P2 θ

W = +

(14)

4π geometry

crucial to avoid selection of γ-rays

with specific oriented angular momentum

HELENA: detection of low-energy γ-rays multiplicity filter

2 hemispheres of

3 rings of 1, 6, 12 detectors

38 detectors honeycomg geometry

Fold F

γ

(# of γ detected)

Multiplicity M

γ

(# of γ emitted)

Spin I

C M

I = 2 ×

γ

+

particle contribution

Probability for Fγ = Mγ

Mγ

P (log scale)

1 10-1 10-2 10-3 10-4 10-5 10-6

0 5 10 15 20 25 30 35

P (log scale)

Fγ

 detailed study of Fγ vs. Mγ is needed

(15)

HELENA: multiplicity filter response

38 detectors (4π geometry)

multiplicity distribution

60Co calibration

high-M

γ

tail

Fγ< Mγ

since P(Fγ=Mγ) < 1 - Ω < 4π

-  εph < 100%

-  Eγ < electronic threshold

-multiple hits in 1 detector

low-M

γ

tail

Fγ>Mγ

- spurius signals (i.e. evaporated ns, …)

-  multiple

Compton scattering

Pdouble ph N1

4

2

⎟⎟⎠

⎞

⎜⎜⎝

⎛ Ω

= π

ε Fγ

M γ

saturation due to limited

number of detectors

(16)

HELENA: multiplicity filter response

14 detectors (4π geometry) 38 detectors (4π geometry)

# det

38 14

Low-efficiency ⇒ large uncertainty in Mγ

multiplicity distribution

60Co calibration

(17)

Calibration of the multiplicity filter:

determination of

response function matrix R(M

γ

,F

γ

)

[probability that an event of multiplicity Mγ gives a signal in Fγ detectors]

Jaaskelainen et al., NIMA204 (1983)385 M. Mattiuzzi, PhD Thesis

§  Source (60Co): 2 coincident γ-rays 100% branching

§  Mγ = 1 : coincident

measurement

trigger detector & filter

§  Mγ > 1 :

simulation

of the event

random selection of N events of Mγ = 1 gives events of Mγ = N

§  corrections for:

- background radiation

(filter response in coincidence with background event in trigger detector)

- multiple hit

(MonteCarlo simulation)

=

=

=

=

N n

M F N

M F

1

) 1 (

)

( γ γ γ

γ

60

Co

(18)

Formation of coincidence (fold F

γ

) signal

constant fraction technique

Tg ~ 20 ns

- must be ~1/10 single rate (between 1-10 kHz) - must be > delay rotational cascade (~ ns)

Energy threshold ~ 250 keV

To reduce low intensity events from - noise

- Coulomb excitation projectile and target each anode signal (38 detectors)

is sent to a CFD (8 channels input)

⇒ infos on arrival time

input

input logic output

logic output

common CFD output

1 2 3 4 5

Fγ = 4

V

m

∝ F

γ

T

g

t0+Tg t0

OR OR OR

OR

tγ×8 tγ×8 tγ×8 tγ×8 tγ×8

(19)

EUROBALL multiplicity filter BGO InnerBall

Full Ball

Ge + InnerBall ≈ 4π

40% 60%

[210 elements of different shapes]

Response function

3/4 InnerBall + Ge detectors

To take into account the different detector efficiency and solid angles the concept of equivalent detectors is used:

1 BGO ~ 1 Ge Clover 1 BGO ~ 1.5 Ge Cluster

Mγ

F

γ

Mγ

Probability

comparable with HELENA

but

NO saturation (more detectors!!!)

F

eq

= F

IB

+ F

clo

+ 1.5*F

clu

(20)

InnerBall can also be used as calorimeter

⇒ focus on specific regions of phase space (E

exc

vs. I)

γ-multiplicity

Mγ → I

Reaction channel selection

N.B. InnerBall detectors need to be -  energy calibrated

-  gain matched

ΣE γ→ E*(MeV)

Mγ → I() γ-sum energy

ΣEγ → E*

18O (@87MeV) + 150Nd → 168Er*

(21)

Master trigger

2 clean Ge

.AND.

(1 big BaF .AND. 1 small BaF) .OR.

(1 big BaF AND. IB fold >11 )

HECTOR (8 Big BaF

2

+ 4 small BaF

2

) as EUROBALL ancillary

§  Energy threshold for BaF2: ~ 3-5 MeV

to reduce low-energy events of higher-multiplicity (~103)

§  Lead absorbers in front of BaF2:

pile-up reduction of low-energy, high-rate signals

§  Monitor of energy gain by LED at 10-15 MeV

ε

a = 8 ×

ε

ph

Ω

~ 8×0.1×0.01 ~ 1%

EUROBALL IV:

Ge: 26 Clover + 15 Cluster 75%IB (BGO)

small BaF2

Big BaF2

IB (BGO)

for high-spin selection

Big BaF2 Ge

Rates

1 Ge ≤ 10 kHz 1 BaF2 ~ 2-3 kHz Trigger ∼ 5 kHz

(22)

0 2 4 6 8 10 12 14 16 18 20 1

10 100 1000 10000 100000

b) n gate

total

counts [arb. units]

Eγ [MeV]

1 10 100 1000 10000 100000

a) total

γ gate

Counts [arb. unit]

0 2 4 6 8 10 12 14 16 18 20

1 10 100 1000 10000 100000

b) n gate

total

counts [arb. units]

Eγ [MeV]

1 10 100 1000 10000 100000

a) total

γ gate

Counts [arb. unit]

GDR

126

Ba

Eγ [MeV]

64

Ni +

64

Ni –2n =>

126

Ba, @ 255 MeV, L

max

= 76 ħ

Search for GDR built on highly-elongated nuclei

120Cd

0 1 2 3 4 5 6

0 5 10 15 20 25 30 35 40

E [MeV]

I = 66 I = 72 I = 92

GDR

Eγ [MeV]

I=66 I=72

I=92 TOF spectrum

Δt~35ns

§  4 small BaF2 : Reaction time definition (TOF)

§  BGO InnerBall: Multiplicity selection

Yield [arb.un.]

β~0.5

(23)

How to detect a Hyperdeformation

I=70 

0.00 0.04 0.08 0.12 0.16

0 5 10 15 20 25 30 35

E [MeV]

I=74 

0.00 0.04 0.08 0.12 0.16

0 5 10 15 20 25 30 35

E [MeV]

I=66 

0.00 0.04 0.08 0.12 0.16

0 5 10 15 20 25 30 35

E [MeV]

I=54 

0.00 0.04 0.08 0.12 0.16

0 5 10 15 20 25 30 35

E [MeV]

I=58 

0.00 0.04 0.08 0.12 0.16

0 5 10 15 20 25 30 35

E [MeV]

I=62 

0.00 0.04 0.08 0.12 0.16

0 5 10 15 20 25 30 35

E [MeV]

Evolution of GDR shape with angular momentum (Jacobi transition)

fGDR =

Σ

fGDR (x,y) * exp[(E-Eyrast)/T]

Courtesy of M. Kmiecik & A. Maj

x,y

I = 64  I = 66  I = 68 

I = 70  I = 72  I = 74 

(24)

Accoppiamento alla

forma del nucleo

(25)

Macroscopically:  

vibra&ons  of  the  various  nuclear  fluids  (protons/

neutrons  or  spin-­‐up/down).  

 

Microscopicamente:  

le   risonanze   gigan&   sono   interpretate   come   eccitazioni   coeren&   di   par&cella-­‐buco   (1p-­‐1n),   determinate  della  interazione  efficace  nucleone-­‐

nucleone.    

(26)

Oscillazione dipolare

Si vede nel fotoassorbimento corrisponde a una frequenza la cui energia associata emaggiore dellenergia di legame.

Stato nel continuo Collettivo

(partecipano quasi tutti i nucleoni):

Risonanza gigante di dipolo

Pb

Sn

(27)

Fold distribution in EUROBALL & HECTOR detectors

Euroball IV array

Low-energy γ-rays Eγ < 4 MeV

HECTOR array (8 BaF

2

)

High-energy γ-rays (GDR) Eγ > 10 MeV

~ 95% Fγ = 1 ~ 5% Fγ = 2

0 20000 40000 60000 80000

condizione di trigger:

>= 3 rivelatori IB colpiti

Molteplicita' InnerBall

Counts [a.u.]

Channel

30Si + 170Er → 200Pb*, Ebeam = 150 MeV β ≈ 1.45 %

0.6 mg/cm2 target di 170Er

20000 40000 60000 80000 100000 120000 140000 160000

condizione di trigger:

>= 2 Ge colpiti

Molteplicita' rivelatori a Ge

6 γ 5 γ 4 γ

3 γ 2 γ

Counts [a.u.]

Channel

(28)

Precursors of Modern γ-Multi-detector Arrays:

- 

The Spin Spectrometer (Oak-Ridge, USA) -   The Crystal Ball (GSI, Germany)

-   …

(29)

The Spin Spectrometer (mid 80s)

Nuclear Structure at high-angular momentum following Heavy Ions induced reactions

72 NaI(Tl) detectors in 4π geometry

Inner radius ∼ 32 cm

recorded signals for each detector:

- ID number -  pulse height - time of flight -  pulse width

⇒  Mγ, γ-ΣEγ, Mneutron

⇒  angular correlations

5 keV/ch gain

⇒ 10 MeV range

Oak Ridge

USA

(30)

The Crystal Ball (mid 80s)

162 NaI crystals

Sphere of inner radius of 25 cm and thickness of 20 cm.

Each crystal

covers the same solid angle of

77 msr

. Four different shapes of crystals:

regular hexagon (12 crystals), three kinds of irregular pentagons (60 + 60 + 30).

GSI Germany

Riferimenti

Documenti correlati

• se noi ci spostiamo, dall’alto verso il basso, in un gruppo, l’energia di ionizzazione va diminuendo; il motivo è il seguente: muovendoci dall’alto verso il basso, noi

As shown in Fig.5, we ob- served that a series connection of identical solar cells does not decrease the gain; then, increasing the number of series connected cells gives rise to

[r]

IL CONSUMO DI ENERGIA RAPPRESENTA UNA VOCE SEMPRE PIÙ RILEVANTE DEL BILANCIO DELLE IMPRESE ZOOTECNICHE, CHE SUPERA IL 6% DEL TOTALE DEI COSTI VARIABILI DI PRODUZIONE. LA SPESA

For the highest-energy cosmic rays the non-resonant regime on scales larger than the gyroradius of the dominant cosmic ray component is of importance in confining cos- mic rays as

Il dato da fonte Eurostat riferito al nostro Paese si discosta dalla produzione complessiva da fonte Ecocerved (vedi sezione 4.2), a causa dei differenti approcci metodologici

It is more interesting to evaluate the noise contribution to the intrinsic energy resolution of the pulser peak, in order to compare it with respect to the detector

Se per esempio sulla superfi cie vi fossero delle piante acquatiche noteremmo che il passaggio dell’onda provocata dal sasso non avrebbe l’effetto di spostare le piante