• Non ci sono risultati.

Appendix 1

N/A
N/A
Protected

Academic year: 2022

Condividi "Appendix 1"

Copied!
6
0
0

Testo completo

(1)

Appendix 1

Table S1

Estimated Westland Petrel burrow densities from the selected generalized additive mixed model (GAMM)

Year Burrow density SE

2007 0.070 0.021

2008 0.056 0.015

2011 0.074 0.015

2014 0.096 0.027

2016 0.165 0.016

2017 0.131 0.016

2019 0.084 0.012

(2)

Waugh et al.: Burrow characteristics of Westland Petrels in New Zealand

Marine Ornithology 48: 273–281 (2020) Page 2/6

Table S2

Baker et al. (2011) estimates of burrow density and colony area

Colony ID

Breeding area Year Area (m2) 2011

Burrow density 2011

No transects

No.

burrows estimated

2011

1 Middle Bluff 2011 600 not calculated 20

2 BeesNest 2008 6 364 0.047 12 303

4 Dougies Bluff 2008 761 0.058 6 44

2008 2 102 0.031 7 66

5 Three Bluffs 2011 1 500 0.038 5 57

7

Soloman and

Reubs colony 2007 4 318.19 0.030 4 132

2007 1 290 0.074 1 97

2007 2 732.9 0.192 2 526

9 Power Barrow 2011 1 146 0.035 4 41

10 Study 2007 18 905 0.121 12 2 298

11 Track in

12 Robs 2011 4 995 0.052 9 260

13 Noisy Knob 2011 3 026 0.107 9 325

14 Middle Colony 2008 1 491 0.028 7 43

2008 5 945 0.048 10 288

18 Rowe 2007 12 346 0.065 7 809

19 Liddys 2008 3 559 0.052 4 186

2008 6 907 0.069 4 482

2008 5 996 0.041 8 247

20 Studio 2008 56 205 0.005 10 284

21 Liddy’s Top 2008 1 806 0.058 7 105

2008 476 0.067 4 32

24 Lawson's 2011 100 not calculated 10

25 2011 200 not calculated 2 10

26 2011 5 000 0.015 7 78

(3)

Figure S1. Residuals on modelled Westland Petrel burrow density estimates

(4)

Waugh et al.: Burrow characteristics of Westland Petrels in New Zealand

Marine Ornithology 48: 273–281 (2020) Page 4/6

Figure S2. Residuals as a function of linear predictor for Westland Petrel burrow density

estimates

(5)

Figure S3. Residuals of Westland Petrel burrow density estimates

(6)

Waugh et al.: Burrow characteristics of Westland Petrels in New Zealand

Marine Ornithology 48: 273–281 (2020) Page 6/6

Figure S4. Response variables and fitted values for Westland Petrel burrow density estimates

Riferimenti

Documenti correlati

In this paper linear unbiased estimates of the parameters of a power function distribu- tion based on k-th record values have

The columns are: parameter, trace plot of MCMC sample, plot of sample against 1-lagged sample, sample autocorrelation function, kernel estimates posterior density and basic

Abstract— This article presents a construction of a new distribution by using linear spline mapping based on probability density function of normal distribution where two end

In summary, relative J /ψ yields are measured for the first time in pp collisions as a function of the charged particle multiplic- ity density dN ch / dη. An approximately linear

DiBenedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ.. Friedman, H¨ older estimates for non-linear degenerate parabolic

In the general case, the energy density of the radiative fields relevant for the Comp- ton emission has been evaluated as a function of the distance from the central black hole.

Directly Riemann Integrable Function, Renewal Theory, Renewal Density Theorem, Local Limit Theorem,

Simulated REM density estimates did not differ significantly between models using in- situ measured and ex-situ estimated input parameters over sample sizes of 10, 20 and