Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Multiplicities
of
charged
pions
and
charged
hadrons
from
deep-inelastic
scattering
of
muons
off
an
isoscalar
target
C. Adolph
i, M. Aghasyan
z,
R. Akhunzyanov
h, G.D. Alexeev
h,
M.G. Alexeev
ab,
A. Amoroso
ab,
ac,
V. Andrieux
v, N.V. Anfimov
h,
V. Anosov
h, K. Augsten
h,
t,
W. Augustyniak
ae,
A. Austregesilo
q,
C.D.R. Azevedo
b, B. Badełek
af,
F. Balestra
ab,
ac,
J. Barth
e,
R. Beck
d, Y. Bedfer
v, J. Bernhard
n,
k,
K. Bicker
q,
k, E.R. Bielert
k,
R. Birsa
z,
J. Bisplinghoff
d,
M. Bodlak
s,
M. Boer
v,
P. Bordalo
m,
1,
F. Bradamante
y,
z,
C. Braun
i,
A. Bressan
y,
z,
M. Büchele
j, L. Capozza
v, W.-C. Chang
w,
C. Chatterjee
g, M. Chiosso
ab,
ac,
I. Choi
ad,
S.-U. Chung
q,
2,
A. Cicuttin
aa,
z,
M.L. Crespo
aa,
z,
Q. Curiel
v, S. Dalla Torre
z,
S.S. Dasgupta
g,
S. Dasgupta
y,
z,
O.Yu. Denisov
ac,
∗
, L. Dhara
g,
S.V. Donskov
u,
N. Doshita
ah,
V. Duic
y,
W. Dünnweber
3,
M. Dziewiecki
ag,
A. Efremov
h, P.D. Eversheim
d,
W. Eyrich
i,
M. Faessler
3, A. Ferrero
v,
M. Finger
s,
M. Finger jr.
s,
H. Fischer
j,
C. Franco
m,
N. du Fresne von Hohenesche
n, J.M. Friedrich
q, V. Frolov
h,
k,
E. Fuchey
v,
F. Gautheron
c,
O.P. Gavrichtchouk
h,
S. Gerassimov
p,
q,
F. Giordano
ad,
I. Gnesi
ab,
ac,
M. Gorzellik
j,
S. Grabmüller
q,
A. Grasso
ab,
ac,
M. Grosse Perdekamp
ad,
B. Grube
q, T. Grussenmeyer
j,
A. Guskov
h,
F. Haas
q, D. Hahne
e,
D. von Harrach
n,
R. Hashimoto
ah,
F.H. Heinsius
j,
R. Heitz
ad,
F. Herrmann
j,
F. Hinterberger
d,
N. Horikawa
r,
4,
19, N. d’Hose
v,
C.-Y. Hsieh
w,
5,
S. Huber
q,
S. Ishimoto
ah,
6,
A. Ivanov
ab,
ac,
Yu. Ivanshin
h,
T. Iwata
ah,
R. Jahn
d,
V. Jary
t,
R. Joosten
d, P. Jörg
j,
E. Kabuß
n,
B. Ketzer
d,
G.V. Khaustov
u,
Yu.A. Khokhlov
u,
7,
8,
Yu. Kisselev
h,
F. Klein
e, K. Klimaszewski
ae,
J.H. Koivuniemi
c,
V.N. Kolosov
u, K. Kondo
ah,
K. Königsmann
j,
I. Konorov
p,
q,
V.F. Konstantinov
u, A.M. Kotzinian
ab,
ac,
O.M. Kouznetsov
h,
M. Krämer
q, P. Kremser
j,
F. Krinner
q,
Z.V. Kroumchtein
h,
R. Kuhn
q,
Y. Kulinich
ad,
F. Kunne
v, K. Kurek
ae,
R.P. Kurjata
ag,
A.A. Lednev
u,
A. Lehmann
i,
M. Levillain
v,
S. Levorato
z,
Y.-S. Lian
w,
9,
J. Lichtenstadt
x,
R. Longo
ab,
ac,
A. Maggiora
ac,
A. Magnon
v,
N. Makins
ad,
N. Makke
y,
z,
G.K. Mallot
k,
∗
,
C. Marchand
v,
B. Marianski
ae,
A. Martin
y,
z,
J. Marzec
ag,
J. Matoušek
s,
z, H. Matsuda
ah,
T. Matsuda
o,
G.V. Meshcheryakov
h,
M. Meyer
ad,
v,
W. Meyer
c,
T. Michigami
ah,
Yu.V. Mikhailov
u, M. Mikhasenko
d,
E. Mitrofanov
h,
N. Mitrofanov
h, Y. Miyachi
ah,
P. Montuenga
ad,
A. Nagaytsev
h,
F. Nerling
n,
D. Neyret
v, V.I. Nikolaenko
u,
J. Nový
t,
k,
W.-D. Nowak
n,
G. Nukazuka
ah,
A.S. Nunes
m,
A.G. Olshevsky
h,
I. Orlov
h,
M. Ostrick
n,
D. Panzieri
a,
ac,
B. Parsamyan
ab,
ac,
S. Paul
q,
J.-C. Peng
ad, F. Pereira
b,
M. Pešek
s, D.V. Peshekhonov
h,
N. Pierre
n,
v, S. Platchkov
v,
J. Pochodzalla
n,
V.A. Polyakov
u, J. Pretz
e,
10,
M. Quaresma
m,
C. Quintans
m, S. Ramos
m,
1,
C. Regali
j,
G. Reicherz
c,
C. Riedl
ad,
M. Roskot
s, N.S. Rossiyskaya
h,
D.I. Ryabchikov
u,
8,
A. Rybnikov
h,
A. Rychter
ag, R. Salac
t,
V.D. Samoylenko
u,
A. Sandacz
ae,
C. Santos
z,
S. Sarkar
g,
I.A. Savin
h,
T. Sawada
w,
G. Sbrizzai
y,
z,
P. Schiavon
y,
z,
K. Schmidt
j,
11,
H. Schmieden
e,
K. Schönning
k,
12,
S. Schopferer
j,
E. Seder
v,
∗
,
A. Selyunin
h,
O.Yu. Shevchenko
h,
22,
L. Silva
m,
L. Sinha
g,
S. Sirtl
j, M. Slunecka
h,
J. Smolik
h,
F. Sozzi
z,
*
Correspondingauthors.E-mailaddresses:[email protected](O.Yu. Denisov),[email protected](G.K. Mallot),[email protected](E. Seder).
http://dx.doi.org/10.1016/j.physletb.2016.09.042
A. Srnka
f, D. Steffen
k,
q,
M. Stolarski
m,
M. Sulc
l,
H. Suzuki
ah,
4,
19,
A. Szabelski
ae,
T. Szameitat
j,
11,
P. Sznajder
ae,
S. Takekawa
ab,
ac,
M. Tasevsky
h, S. Tessaro
z,
F. Tessarotto
z,
F. Thibaud
v,
F. Tosello
ac,
V. Tskhay
p,
S. Uhl
q,
J. Veloso
b,
M. Virius
t, J. Vondra
t,
T. Weisrock
n,
M. Wilfert
n,
R. Windmolders
e, J. ter Wolbeek
j,
11, K. Zaremba
ag, P. Zavada
h,
M. Zavertyaev
p, E. Zemlyanichkina
h,
N. Zhuravlev
h,
M. Ziembicki
ag, A. Zink
iaUniversityofEasternPiedmont,15100Alessandria,Italy
bUniversityofAveiro,DepartmentofPhysics,3810-193Aveiro,Portugal
cUniversitätBochum,InstitutfürExperimentalphysik,44780Bochum,Germany13,14
dUniversitätBonn,Helmholtz-InstitutfürStrahlen- undKernphysik,53115Bonn,Germany13
eUniversitätBonn,PhysikalischesInstitut,53115Bonn,Germany13
fInstituteofScientificInstruments,ASCR,61264Brno,CzechRepublic15
gMatrivaniInstituteofExperimentalResearch&Education,Calcutta-700030,India16
hJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia17
iUniversitätErlangen–Nürnberg,PhysikalischesInstitut,91054Erlangen,Germany13
jUniversitätFreiburg,PhysikalischesInstitut,79104Freiburg,Germany13,14
kCERN,1211Geneva23,Switzerland
lTechnicalUniversityinLiberec,46117Liberec,CzechRepublic15
mLIP,1000-149Lisbon,Portugal18
nUniversitätMainz,InstitutfürKernphysik,55099Mainz,Germany13
oUniversityofMiyazaki,Miyazaki889-2192,Japan19
pLebedevPhysicalInstitute,119991Moscow,Russia
qTechnischeUniversitätMünchen,PhysikDepartment,85748Garching,Germany13,3
rNagoyaUniversity,464Nagoya,Japan19
sCharlesUniversityinPrague,FacultyofMathematicsandPhysics,18000Prague,CzechRepublic15
tCzechTechnicalUniversityinPrague,16636Prague,CzechRepublic15
uStateScientificCenterInstituteforHighEnergyPhysicsofNationalResearchCenter‘KurchatovInstitute’,142281Protvino,Russia vCEAIRFU/SPhNSaclay,91191Gif-sur-Yvette,France14
wAcademiaSinica,InstituteofPhysics,Taipei11529,Taiwan
xTelAvivUniversity,SchoolofPhysicsandAstronomy,69978TelAviv,Israel20
yUniversityofTrieste,DepartmentofPhysics,34127Trieste,Italy zTriesteSectionofINFN,34127Trieste,Italy
aaAbdusSalamICTP,34151Trieste,Italy
abUniversityofTurin,DepartmentofPhysics,10125Turin,Italy acTorinoSectionofINFN,10125Turin,Italy
ad
UniversityofIllinoisatUrbana-Champaign,DepartmentofPhysics,Urbana,IL61801-3080,USA aeNationalCentreforNuclearResearch,00-681Warsaw,Poland21
afUniversityofWarsaw,FacultyofPhysics,02-093Warsaw,Poland21
agWarsawUniversityofTechnology,InstituteofRadioelectronics,00-665Warsaw,Poland21
ahYamagataUniversity,Yamagata992-8510,Japan19
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory: Received15April2016
Receivedinrevisedform17September 2016
Accepted23September2016 Availableonline28September2016 Editor:M.Doser
Keywords:
Deepinelasticscattering Pionmultiplicities Fragmentationfunctions
Multiplicitiesofchargedpionsandchargedhadronsproducedindeep-inelasticscatteringweremeasured in three-dimensionalbins ofthe Bjorken scaling variable x,the relative virtual-photonenergy y and
therelativehadronenergyz.DatawereobtainedbytheCOMPASSCollaborationusinga160GeV muon beamand an isoscalartarget (6LiD).They coverthekinematic domaininthe photon virtuality Q2>
1(GeV/c)2,0.004<x<0.4,0.2<z<0.85 and0.1<y<0.7.Inaddition,aleading-orderpQCDanalysis
wasperformedusingthepionmultiplicityresultstoextractquarkfragmentationfunctions.
©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1 AlsoatInstitutoSuperiorTécnico,UniversidadedeLisboa,Lisbon,Portugal.
2 AlsoatDepartmentofPhysics,PusanNationalUniversity,Busan609-735,RepublicofKoreaandatPhysicsDepartment,BrookhavenNationalLaboratory,Upton,NY11973,
USA.
3 SupportedbytheDFGclusterofexcellence‘OriginandStructureoftheUniverse’(www.universe-cluster.de). 4 AlsoatChubuUniversity,Kasugai,Aichi487-8501,Japan.
5 AlsoatDepartmentofPhysics,NationalCentralUniversity,300JhongdaRoad,Jhongli32001,Taiwan. 6 AlsoatKEK,1-1Oho,Tsukuba,Ibaraki305-0801,Japan.
7 AlsoatMoscowInstituteofPhysicsandTechnology,MoscowRegion,141700,Russia. 8 SupportedbyPresidentialgrantNSh-999.2014.2.
9 AlsoatDepartmentofPhysics,NationalKaohsiungNormalUniversity,KaohsiungCounty824,Taiwan. 10 Presentaddress:RWTHAachenUniversity,III.PhysikalischesInstitut,52056Aachen,Germany. 11 SupportedbytheDFGResearchTrainingGroupProgramme1102“PhysicsatHadronAccelerators”. 12 Presentaddress:UppsalaUniversity,Box516,75120Uppsala,Sweden.
1. Introduction
Hadron production in semi-inclusive measurements of deep-inelasticlepton–nucleonscattering(SIDIS)isoneofthemost pow-erfultools toinvestigate thestructure andformation of hadrons. Withinthestandardframeworkofleading-twistperturbative QCD (pQCD), factorisation theorems [1] allow one to write the SIDIS cross section as a convolution of hard scattering cross sections, whichare calculable in pQCD, withnon-perturbative Parton Dis-tributionFunctions(PDFs)andFragmentationFunctions (FFs).The PDFsaccount forthe partonic structure ofhadrons in the initial state. The FFs encode the details aboutthe hadronisation mech-anism that describes the transition from final-state partons into colour-neutral hadrons. Both types of functions are believed to be universal, i.e. process independent, andcan be interpreted in leading-order (LO) as number densities. While PDFs have been studied in detail for severaldecades and are hence known with goodprecision,newaccuratemeasurementsarenecessaryto con-strain the FFs. In what follows, we will restrict ourselves to transverse-momentum-integratedPDFsandFFs.
Theuniversality ofFFs allows their determinationfrom differ-enthigh-energyprocesses,whichprovidecomplementary
informa-tion on the hadronisation mechanism and cover complementary
kinematicranges.Thestudyofhadronproductionintheelectron– positronannihilationprocessisparticularlywellsuitedbecauseits cross section has no dependence on parton densities and gives directaccesstoFFs.Measurementscoverawiderangeinthe char-acteristichard scale, from10GeV for recentdata fromBELLE [2]
and BaBar [3] to 100GeV at the Z boson mass at LEP [4] and
SLAC [5], at which only the singlet combination ofFFs is acces-sible. In spite of the high precision, these e+e− data cannot be usedto disentangle quarksfrom anti-quarks,as they onlyaccess thesum ofquark andantiquark FFs and hencedo not allow for afullflavourseparation.HadronmultiplicitydatafromSIDIS pro-videchargeandfullflavourseparationoffragmentationfunctions. TheSIDISdatafromfixed targetexperiments explore characteris-tichardscales downto1GeV.Thelargekinematicrangespanned bythe mentionedreactions allowsone tostudyQCD scaling vio-lations,whichalsoconstrainsthegluonFF. Thelatterisindirectly probed by hadron–hadron collisions, e.g. at RHIC [6], via single-inclusivehadronproductionathightransversemomentum[7].
Thepresentpaper reportsonCOMPASSmeasurements of mul-tiplicitiesofchargedpionsandchargedhadrons.The(x,Q2)range covered by the COMPASS dataextends to much higher valuesof Q2andisshiftedtolowervaluesofx whencomparedtotheone of HERMES [8], while the kinematic range is similar to the one coveredbyEMC[9].
The process lN
→
lhX is described by the negative square of the four-momentum transfer Q2= −
q2, the Bjorken variable x= −
q2/(
2P·
q)
and the fraction of the virtual-photon energy thatiscarriedby thefinal-statehadron, z= (
P·
ph)/(
P·
q)
.Here, q=
k−
k, P and phdenotethefour-momentaofthevirtual pho-ton,the nucleonN andthe observedhadron h respectively, with15 SupportedbyCzechRepublicMEYSGrantLG13031. 16 SupportedbySAIL(CSR),Govt.ofIndia.
17 SupportedbyCERN-RFBRGrant12-02-91500.
18 Supportedby the Portuguese FCT – Fundaçãopara a Ciênciae Tecnologia,
COMPETEandQREN,GrantsCERN/FP109323/2009,116376/2010,123600/2011and CERN/FIS-NUC/0017/2015.
19 Supported by the MEXT and the JSPS under the Grants No. 18002006,
No. 20540299andNo. 18540281;DaikoFoundationandYamadaFoundation.
20 SupportedbytheIsraelAcademyofSciencesandHumanities. 21 SupportedbythePolishNCNGrant2015/18/M/ST2/00550. 22 Deceased.
k (k) thefour momentumofthe incident (scattered)lepton. Ad-ditional variables used are the lepton energy fraction carried by the virtual photon, y
= (
P·
q)/(
P·
k)
,and the invariant mass of the final hadronicsystem, W=
(
P+
q)
2. Inorder tostudy the hadronisation mechanismin SIDIS, therelevant observable is the differential multiplicity forhadronsofa specific type h,which is definedasthedifferentialcrosssectionforhadronproduction nor-malisedtothedifferentialinclusiveDIScrosssection:dMh
(
x,
z,
Q2)
dz
=
d3
σ
h(
x,
z,
Q2)/
dxdQ2dzd2
σ
DIS(
x,
Q2)/
dxdQ2.
(1)InterpretedinpQCD,thecrosssectionsontheright-handsideare expressedintermsofPDFsandFFsandreadatleading-order(LO)
d2
σ
DIS dxdQ2=
C(
x,
Q 2)
q e2qq(
x,
Q2),
d3σ
h dxdQ2dz=
C(
x,
Q 2)
q e2qq(
x,
Q2)
Dhq(
z,
Q2).
(2)Here,C
(
x,
Q2)
=
2π α
2(
1+ (
1−
y)
2)/
Q4withα
thefinestructure constant,q(
x,
Q2)
isthequarkPDFfortheflavourq andDhq
(
z,
Q2)
thequark-to-hadronFF. InLO, Dh
q denotesthenumberdensityof hadronshproducedinthehadronisationofpartonsofspeciesq.
2. TheCOMPASSexperiment
In this Section a short description of the experimental set-up is given, while a more detailed description can be found in Ref.[10].Themeasurementwasperformedin2006withthe natu-rallypolarisedmuon beamoftheCERNSPSusingpositivemuons of160GeV
/
c.Thebeammomentumhadaspreadof5%.The inten-sitywas4×
107s−1withspillsof4.
8s andacycletimeof16.
8s.Themomentumofeachincomingmuonwasmeasuredbeforethe
COMPASS experimentwith a precision of0.3%. Before the target, thetrajectoryofeachincomingmuonwasmeasuredinasetof sil-icon andscintillating fibredetectorswithaprecision of0
.
2mrad. The muons were impinging on a longitudinally polarised solid-statetarget positionedinsidealargeaperturesolenoid.Thetarget consistedof three cells, whichwere located along the beamone aftertheother andfilledwith6LiDimmersedinaliquid3He/4He mixture.The admixturesof H, 3Heand7Liintheisoscalartarget leadtoaneffectiveexcessofneutronsofabout0.2%.Thedirection ofthepolarisation inthe60cm longmiddle cellwas oppositeto thatinthetwo 30cm longouter cellsandwasreversedonceper day.Intheanalysis,thedataareaveragedoverthetarget polarisa-tionforthedeterminationofmultiplicities.Fig. 1. (x, Q2) range of the selected DIS sample.
based on pairs of hodoscopes, selected scatteredmuons above a minimumscatteringangle.
3. Dataanalysis
The data analysis includes eventselection, particle identifica-tion(PID),acceptancecorrectionaswellascorrectionsforradiative effectsanddiffractivevectormesonproduction.Differential multi-plicities are determined in 3-dimensional(x, y, z) bins fromthe acceptance-correctedhadronyields Nhnormalisedbythenumber ofDISevents,NDIS:
dMh
(
x,
y,
z)
dz=
1 NDIS(
x,
y)
dNh(
x,
y,
z)
dz 1 A(
x,
y,
z)
.
(3)The acceptance correction factor A takes into account the lim-itedgeometric andkinematicacceptanceofthespectrometer and the efficiencyof eventreconstruction. The choice of the z and x variablesisnaturalbecausemultiplicitiesdependmostly onthese variables.Becauseof thestrongcorrelation betweenx and Q2 in theCOMPASSfixed-targetkinematics,itappearsmoreappropriate touse y insteadofQ2 asthethirdvariable.
3.1. Eventandhadronselection
The present analysis is based on events with inclusive trig-gers that use only informationon the scattered muons. Selected eventsarerequiredtohavea reconstructedinteractionvertex as-sociatedtoanincidentandascatteredmuontrack.Thisvertexhas tolieinsidethefiducialtarget volume.Theincident muonenergy isconstrained tothe interval
[
140,
180]
GeV. Events are accepted if Q2>
1(
GeV/
c)
2,0.
004<
x<
0.
4 and W>
5GeV/
c2.These re-quirementsselectthedeep-inelasticscatteringregimeandexclude the nucleon resonanceregion. The relative virtual-photon energy is constrained to the range 0.
1<
y<
0.
7 to exclude kinematic regions where the momentum resolution degradesand radiative effectsare mostpronounced. Thenumberof inclusiveDISevents selected forthis analysisis 13×
106,corresponding to an inte-gratedluminosityof0.54 fb−1 (forthecovered(x, Q2)range,seeFig. 1).
For a selected DIS event, all reconstructed tracks are consid-ered.Hadrontracksmustbedetectedintrackingdetectorsplaced before and after the magnet in the first stage of the spectrom-eter. The fraction of the virtual-photon energy transferred to a final-statehadronisconstrainedto0
.
2≤
z≤
0.
85,wherebyforan unidentifiedchargedhadronthepionmassisassumed.Thelower limit avoids the contamination from target remnant fragmenta-tion, while the upper one excludesmuons wrongly identified ashadrons,anditalsoexcludestheregionwithlargediffractive con-tributions. Further constraints on momentum andpolar angle of thehadronsaswellason y arediscussedbelow.
The correctionsforhigher-orderQEDeffectsareappliedonan event-by-event basis taking into account the target composition. For NDIS
(
x,
y)
they are computed according to the scheme de-scribed in Ref. [12]. For dNh(
x,
y,
z)
the elastic and quasielastic radiativetailsaresubtractedfromthecorrection.The z-integrated radiativecorrectionfactorforthemultiplicitiesisalwaysbelow5%. A possible z dependenceofradiativecorrectionsisneglected. 3.2. HadronidentificationusingtheRICHdetectorParticleidentification(PID)isperformedusingtheRICH detec-tor [13]. The identificationprocedure relies ona likelihood func-tion,whichisbaseduponthenumberanddistributionofphotons thataredetectedintheRICHdetectorandassociatedtoacharged particletrajectory.Thelikelihoodvaluesarecalculatedby compar-ingthemeasuredphoto-electronpatternwiththeoneexpectedfor differentmasshypotheses(
π
,K,p),takingthedistributionof back-groundphotonsintoaccount.Themassisassignedtothedetected hadron choosingthehypothesis withthemaximumlikelihood.In order to improve the separation between the different mass hy-potheses andthusthe sample purity, constraintsare imposed on theratiosofthemaximumovertheotherlikelihoodvalues.The purity of the identified hadron samples depends on the probabilities of correct identification and misidentification. The truehadronyieldsNtrue areobtainedbyapplyinganunfolding al-gorithmtothemeasuredhadronyieldsNmeas:
Ntruei
=
j(
P−1)
i j·
Nmeasj.
(4)The RICH PID matrix P contains as diagonal elements the
effi-ciencies andas off-diagonalelements the misidentification prob-abilities. The elements of this 3
×
3 matrix are constrained byjPi j
≤
1, wherei,
j= {
π
,
K,
p}
.They aredetermined fromrealdatausingsamplesof
π
,KorporiginatingfromthedecayofK0S,φ
orinto two charged particles. The dependence of the RICH performance on theparticle momentum ph andpolarangle
θ
at the RICHentranceistakenintoaccount bydeterminingthe RICH PID matrix in2-dimensional bins of thesevariables. The ph de-pendence accountsforeffectsarising frommomentum thresholds forparticleidentificationandfromsaturationathighmomentum. Theθ
dependenceaccountsforvaryingoccupancyandbackground level in the RICH photon detectors. The polar angle is selected in the range 10mrad< θ <
120mrad, where the efficiencies are highandpreciselymeasured.Theθ
dependenceofPi j isrelativelyweak, so that two binsare sufficientin the analysis. In order to achievegoodpion–kaonseparationandhighparticleidentification probabilitiesforkaonsandpions,momentabetween12GeV
/
c and 40GeV/
c are used. In this range,the momentum dependence of theprobabilitiesofπ
+,K+andptobeidentifiedasπ
+isshown in Fig. 2 for the lowerθ
bin in 10 momentum bins. Pions are identifiedwith98%efficiencyupto30GeV/
c,wheretheefficiency starts to decrease.The probability to misidentify kaons and pro-tonsaspionsisbelow2%and6%,respectively,overalltheselected momentum range.Similar valuesare obtainedforπ
−. The num-ber Nπtrue± ofidentifiedpionsavailable fortheanalysisafterallPID cutsis3.4×
106.Withoutlikelihoodcuts,thenumberofcharged hadronsis4.6×
106.3.3. Acceptancecorrection
Fig. 2. ProbabilitiesofRICHidentificationofπ+,K+andpasaπ+versus momen-tumforthesmallerθbin10mrad< θ <40mrad.Statisticaluncertaintiesarelower thanthesizeofthesymbols.
detectorinefficiencies,resolutionsandbinmigration.Thefull cor-rectionis evaluated using a Monte Carlo(MC) simulation of the muon–nucleondeep-inelasticscatteringprocess.Eventsare gener-atedwiththeLEPTO
[14]
generator,where theparton hadronisa-tionmechanismis simulatedusing theJETSETpackage[15]
with thetuningfromRef.[16].Thespectrometerissimulatedusingthe GEANT3toolkits[17],andtheMCdataarereconstructedwiththe same software as the experimental data [10]. Secondary hadron interactionsaresimulatedusingtheFLUKApackage[18].The kine-maticdistributionsoftheexperimentaldataarereproducedwithin 5%by theMCsimulationwithdifferencesgoingup to10%atthe edges.Inordernot to introducea strongdependence onthe physics generatorusedinthe simulation,theextractionof hadron multi-plicities isperformedin narrow kinematicbins of x, y and z.In each(x,y,z)bin,theacceptancecorrectioniscalculatedfromthe ratioofreconstructedandgeneratedmultiplicitiesaccordingto
A
(
x,
y,
z)
=
dNh
rec
(
x,
y,
z)/
NrecDIS(
x,
y)
dNhgen
(
x,
y,
z)/
NDISgen(
x,
y)
.
(5)Thegeneratedkinematicvariablesareusedforthegenerated par-ticles,whilethereconstructedkinematicvariablesareusedforthe reconstructedparticles.Afterreconstruction, all particlesare sub-jecttothesamekinematicandgeometricselectioncriteriaasthe data,while the generated onesare subject to kinematic require-mentsonly.Atthisplace,thecorrectionforpossible misidentifica-tionofelectronsaspionsisincludedintheacceptancecorrection. The average value of the acceptance correction is about 70% for y
<
0.
3 andabout50%fory>
0.
3.Theacceptancecorrectionis al-mostflatinz andx,exceptathighy andlowx,andalwayslarger than40%. Generatedhadrons arelost mainly by secondary inter-actions inthe long solid-statetarget, due totrack reconstruction inefficiency andbecauseof constraintsrequired forRICH particle identification.Withthehadron momentumcut, the y rangeismorelimited forthehadronsample thanfortheDISsample.Thusforeachbin in z,the y range isrestricted to the kinematicregion accessible withhadronmomentabetween12GeV
/
c and40GeV/
c.3.4.Vectormesoncorrection
A fraction of the mesons measured in SIDIS originates from diffractive production of vector mesons, which subsequently de-cay into lighter hadrons. This fraction can be considered as a higher-twistcontribution tothe SIDIScross section [8]. It cannot
be described by the QCD parton model with the
independent-fragmentationmechanism,whichisencodedintheFFs.Moreover,
Fig. 3. Correctionduetodiffractiveρ0contamination,shownfornegative-pion
mul-tiplicitiesasafunctionofz forthreeQ2bins.
fragmentationfunctionsextractedfromdataincludingthisfraction wouldbebiased,whichviolatesinparticulartheuniversality prin-ciple of the model. Therefore, the fraction of final-state hadrons originatingfromdiffractive
ρ
0 decayisestimated. Ourevaluation isbasedontwo MCsimulations, oneusingtheLEPTOevent gen-erator simulating SIDIS free of diffractive contributions (see Sec-tion 3.3), and the other one using the HEPGEN [19] generator simulatingdiffractiveρ
0 production.Further channels, whichare characterisedbysmallercrosssections,arenottakenintoaccount. Events with diffractive dissociation of the target nucleon are alsosimulatedandrepresentabout25%ofthosewiththenucleon staying intact.Thesimulationoftheseeventsincludesnuclear ef-fects,i.e.coherentproductionandnuclearabsorptionasdescribed inRef. [19].A correction factorforthemultiplicitiesis calculated taking into account the diffractive contribution to pion (hadron) andDISyields.Asanexample,thez dependenceofthecorrection factor f πρ0 for
π
+ multiplicities is shown in Fig. 3 forthree Q2bins.The correctionvariesbetween1.02 and0.55forpions,with thelargestvalue appearing atsmall Q2 andhighz,whereby the latterregionischaracterisedbyverysmallmultiplicities.
3.5. Systematicuncertainties
The main contributions to the systematic uncertainties arise fromtheuncertaintiesonthedeterminationoftheacceptance,of theRICH performance andofthe diffractive
ρ
0 contribution.The uncertaintyonthe acceptancecorrectionisevaluated bytwo dif-ferentmethods: first,byvarying intheMC thePDF setusedand the JETSET parameters related to the hadronisation mechanism; secondly,by determining theacceptance correction ina different dimensionalspaceaddingadditionalvariables.The validityofthe correction for electron contamination is confirmedby comparing the simulated and measured electron distributions for momenta below8GeV/
c,whereelectrons areidentifiedusing theRICH de-tector.Anuncertaintyof4%isfoundthatincludestheuncertainty oftheelectroncontamination.Withthethreedifferenttargetcells threeindependentmeasurementsofthemultiplicitiescanbe per-formed.Themultiplicitiesfromtheupstreamandthedownstream target cellsarefound toagreewithintwo tothreepercent,while theagreementisbetterwiththemiddlecell.Thesedifferencesare wellcoveredbytheacceptancecorrectionuncertainty.ob-Table 1
Binlimitsforthethree-dimensionalbinninginx,y andz. Bin limits
x 0.004 0.01 0.02 0.03 0.04 0.06 0.1 0.14 0.18 0.4 y 0.1 0.15 0.2 0.3 0.5 0.7
z 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.85
Fig. 4. Positivepionmultiplicitiesversusz forninex binsandfivey bins(forclaritystaggeredverticallybyα).Thebandscorrespondtothetotalsystematicuncertainties fortherange0.30<y<0.50.ThecurvescorrespondtotheCOMPASSLOfit(seeSection5).(Colouredversiononline.)
servedwhen comparingtheresults obtainedfromthe datataken insixdifferentweeks.
The crosssection forexclusive productionof
ρ
0 calculated in HEPGENisnormalisedtothephenomenologicalmodelofRef.[20]. Thetheoreticaluncertaintyonthepredictedcrosssectioncloseto COMPASSkinematicsamountstoabout30%.Thisresultsinan un-certaintyonthediffractiveρ
0 correctionfactor,whichamountsto atmost30%anddependsonthekinematicrange.Nucleareffectsmaybecausedbythepresenceof3He/4Heand 6Liin thetarget. A detailedstudyof such effects was previously performedbytheEMC[9]inasimilarkinematicrangeforcarbon, copper and tin. A z-dependent decrease of5% was observed for the multiplicities of copper compared to the ones of deuterium. While theeffect was larger fortin, nosuch effect was found for carbon,so thatpossiblenucleareffectsinthepresentexperiment areexpectedtobeverysmallandarehenceneglected.
All contributions to the systematicuncertainties are addedin quadrature and yield the total systematic uncertainty shown as bandsin Figs. 6 and7,which variesbetween5% and10% ofthe measuredmultiplicities.Notethatnot allsystematicuncertainties arecorrelatedfrombintobin.Itwasestimatedthat,when consid-eringquadratic summation,about0
.
8σ
syst is correlatedfrom bin to bin.Inthiscase√
1−
0.
82σ
syst=
0.
6σ
syst is uncorrelatedand istreatedtogether withthestatisticaluncertaintiesinthefits dis-cussedinSection5.4. Resultsforchargedpionandchargedhadronmultiplicities
Themultiplicitiespresentedinthefollowingfiguresareall cor-rected for the diffractive
ρ
0 contribution. The numerical values areavailable onHepData[21]
formultiplicities withandwithout this correction. The separate correction factors for DIS and pion (hadron) yields are provided aswell. The presentresults feature alarger datasample, an extendedkinematic domain,andanim-provedtreatmentoftheparticleidentification,whencomparedto the resultsofRef. [22].The x, y and z binning usedinthe anal-ysis is given in Table 1. The Q2 values range from 1
(
GeV/
c)
2at the smallest x to about 60
(
GeV/
c)
2 at the highest x, with Q2=
3(
GeV/
c)
2.In Figs. 4 and 5, the results for the z and y dependences of the
π
+andπ
− multiplicitiesarepresentedintheninebinsof x. Statistical uncertainties are shownforall points, whilea band at thebottomofthepanelsillustratesthesizeofthetotalsystematic uncertaintyfora typical y bin (0.
30<
y<
0.
50). Fortheother y bins,thesystematicuncertaintiesaresimilarorsmallerinsize.The curvescorrespondtotheLOpQCDfitasdiscussedinSection5.In Fig. 6, multiplicities ofpositively (closed circles) and nega-tively (opencircles)chargedpions areshownversus z,separately fortheninex binsbutaveragedover y.Theerrorbarscorrespond tothestatisticaluncertaintiesandthebandstothetotalsystematic ones.
Fig. 7
showstheresultsforthechargedhadronmultiplicities. Bothfiguresexhibitastrongdependenceon z,asalreadyobserved in previous measurements, and a weak one on x. Multiplicities are higher forpositively than fornegatively chargedhadrons be-cause ofu-quarkdominance. Thisdifference is morepronounced forallhadronsthanforpionssincenegativekaonsandantiprotons, whichareincludedinthehadronsample, donot containnucleon valencequarks.In the next section, we demonstrate that the multiplicities in
the COMPASS kinematic domain are well described at LO pQCD.
In thisapproximation, the sumofmultiplicities ofpositively and negatively chargedhadrons produced onan isoscalartarget is of specialinterestasseveraltermsintheLOcrosssectionexpression cancel.ThisquantityforchargedkaonswasusedbyHERMES[23]
Fig. 5. Same asFig. 4for negative pions. (Coloured version online.)
Fig. 6. Positive (closed) and negative (open) pion multiplicities versus z for nine x bins. The bands correspond to the total systematic uncertainties.
Fig. 8. Left:SumofMπ+andMπ−versusx.TheCOMPASSdata(160 GeV,closedcircles)arecomparedtoHERMESresults(27.5 GeV,opencircles);Right:SumofMh+
andMh−versusx.TheCOMPASSdata(160 GeV,closedcircles)arecomparedtoEMCresults(100 GeVto280 GeV,opencircles).Thesystematicuncertaintiesareshownas
bandsatthebottom.
Fig. 9. Left:RatioMπ+/Mπ−versusx fromCOMPASS(160 GeV,closedpoints),HERMES(27.5 GeV,opencircles)andJLab(5.5 GeV,opensquares).Right:RatioMh+/Mh−
versusx forCOMPASS(160 GeV,closedcircles)andEMC(100 GeVto280 GeV,opencircles)results.Thesystematicuncertaintiesareshownasbandsatthebottom. Foranisoscalartarget andtakingintoaccountonly two
inde-pendentquark FFs Dπfav andDπunf (see Section5), thesumof
π
+and
π
− multiplicitiesintegratedoverz canbewrittenatLOasM
π++
M
π−=
D
π fav+
D
unfπ−
2S 5U+
2S(
D
π fav−
D
unfπ),
(6) withM
π±=
Mπ±(
x,
y,
z)
ydz. Thecombinationsof PDFsU=
u+ ¯
u+
d+ ¯
d and S=
s+ ¯
s dependonx and Q2,andD
favπ(
Q2)
=
Dπfav
(
z,
Q2)
dz andD
unfπ(
Q2)
=
Dπunf(
z,
Q2)
dz are integratedover the measured z range and depend on Q2 only. The pion
multiplicity sumis expected to be almost flat in x, as the term 2S
/(
5U+
2S)
is smallandthe Q2 dependenceofD
πfav
+
D
unfπ is ratherweak(oftheorderof3%)atCOMPASSkinematics[7].Fig. 8(left) showstheresultforthesum
M
π++
M
π− ofπ
+and
π
−multiplicities,integratedoverz from0.2to0.85and aver-agedover y between0.1and0.7,asafunctionof x.Theexpected weak x dependence isindeed observed inthe data. In thesame figure, the results of HERMES [8] integrated over z from 0.2 to 0.8are shownusing the so-calledx representation. The HERMES multiplicities are larger and show a different dependence on x.Note however that the HERMES data were measured at a lower
energy and correspond to different kinematics, in particular ac-ceptinglower W values.InordertocomparetheCOMPASSresults alsowiththeEMCones[9],thesumofchargedhadron multiplici-tiesisshownin
Fig. 8
(right).TheresultsfromCOMPASSandEMC, whichcorrespondtocomparablekinematics,arefoundinexcellent agreement.Anotherquantity of interest is the x dependence of the ratio
M
π+/M
π−,where mostexperimental systematic effects cancel. Theresultsare showninFig. 9
(left) asafunction ofx.Theyare inreasonableagreementwiththeHERMESvaluesinthemeasured range.ThevaluesobtainedfromtheJLabE00-108experiment[27]for z
>
0.
3 at higher x and lower W values are also shown for completeness. In Fig. 9 (right), the ratioM
h+/
M
h− calculated forchargedhadronmultiplicitiesisshownforCOMPASSandEMC data.Theseresultsareinexcellentagreement.5. Extractionofquark-to-pionfragmentationfunctions
The present dataon charged pionandcharged hadron multi-plicitiescoverawidekinematicrangeinx andz andrepresentan important input for theextraction of quark-to-pion FFs in future NLOpQCD analysesoftheworlddata.Wepresentherean extrac-tion of quark-to-pion FFs, howeverrestrictedto the presentpion dataandlimitedtoLOpQCD. Belowitwillbeshownthatthe re-sultsofthisfitarecompatiblewiththoseofanindependentdirect extractionofthetwoquark-to-pionFFsinfixedkinematicbins.
The fragmentationof a quark of a given species into a final-state hadron is called favoured if the quark flavour corresponds to a valencequarkin thehadron, otherwisethe fragmentationis calledunfavoured.Accordingtoisospinandchargesymmetry,and assuminginadditionthatthestrangequarkFFisequaltotheother unfavouredFFs,onlytwoindependentquark-to-pionFFsremain:
Dπfav
=
Dπu+=
Dπ+ d=
D π− d=
Dπ − u Dunfπ=
Dπd+=
Duπ+=
Dπu−=
Dπ− d=
D π± s=
Dπ ± s.
(7)followingfunctionalformisassumedforthez dependence ofthe FFs: zDi
(
z)
=
Ni zαi(
1−
z)
βi 0.85 0.2 zαi(
1−
z)
βidz,
(8)wherethereferencescaleis Q02
=
1(
GeV/
c)
2 and i= {
fav, unf, g}
. Inordertofit simultaneously Mπ+ and Mπ−,aχ
2 minimisation procedureisapplied.Ittakesintoaccountthequadraticsumofthe statisticalanduncorrelatedsystematicuncertainties,2:
χ
2=
π+,π− N j=1⎡
⎣
⎛
⎝
qe2qq xj,
Q2j Dπq±zj,
Q2j qe2qq xj,
Q2j−
Mπexp± xj,
Q2j,
zj⎞
⎠ /
j⎤
⎦
2,
(9)whereN denotesthenumberofdatapoints.Themultiplicitiesare welldescribedbythefitasshownin
Figs. 4 and 5
.The results for the extracted favoured and unfavoured quark FFsandtheratio Dπunf
/
Dπfav are shownin Fig. 10asa functionof z evolvedto Q2=
3(
GeV/
c)
2. Theunfavoured FFis smallerthan thefavouredone, asexpected, andtheirratioisseen todecrease withz.Theshadedbandsdepictthetotaluncertainty.Thesebandsare determined using a MC sampling method (bootstrapmethod
in Ref. [30]). One hundred replicas of the original data set are builtby generatingstandard normaldeviatesasnoise factorsthat arethen multipliedby thedatapoint uncertainties andaddedto theoriginaldatapoint.Forthestatisticaluncertaintyand uncorre-latedsystematicuncertaintythenoisefactorisgeneratedforeach point separately, while for the correlated systematic uncertainty the noise factor is generated only once per replica. The bands widths are given by the root mean square of the corresponding distributions.Notethatfortheratio Dπfav
/
Dπunf mostofthe corre-latedsystematicuncertaintiescancel.In Fig. 10, also recent parametrisations of FFs obtained from NLOanalyses by theLSS [31],DSEHS [32]andHKNS [33] groups are compared to the COMPASS LOfit. While the presentfit dis-agreeswiththeHKNSparametrisationbasedonelectron–positron annihilationdataonly,qualitativeagreementisobtainedwiththe DSEHSandLSSparametrisationsthat include,inadditionto HER-MESdata,preliminary COMPASSdata basedononly afractionof the presently analysed data with a reduced kinematic coverage andlarger systematicuncertainties. Therefore, the impact of the present COMPASS results on the global fits will be considerably enhancedwhen comparingto theimpactofthe preliminarydata discussedinRef.[22].
Analternativemethodto extracttheFFs fromthepion multi-plicitydataistosolvethesystemoftwolinearequationsforMπ+ andMπ− ineach
(
x,
y,
z)
binforthevaluesofDπfav(
z,
Q2)
and Dπunf(
z,
Q2)
by usingEqs.(1) and(2). No functionalformhas to be assumed, and the DGLAP evolution for FFs is not needed. ThesamePDFsasmentionedaboveareused.Theresultsfromthis directextractionofFFsareingoodagreementwiththeresults ob-tainedfromtheLOfit.Thisisillustrated inFig. 11forone (x, y) bin.6. Summaryandconclusions
We have presented differential multiplicities of charge-sepa-rated pions and charge-separated hadrons measured in SIDIS of muonsoff an isoscalartarget. The results are given in 3-dimen-sional bins of x, y and z and cover the kinematic range Q2
>
Fig. 10. Favoured (top)and unfavoured(middle)quark-to-pionFFsand theratio Dπunf/Dπfav(bottom),asobtainedfromtheCOMPASSLOfit,comparedtotheDSEHS,
HKNSandLSSfitsatNLO.ThebandsrepresentthetotaluncertaintiesfortheFFs andthetotalstatisticaluncertaintyfortheratio(seetext).(Colouredversiononline.)
Fig. 11. Thez dependenceofthefavoured(closedsymbols)andunfavoured(open symbols)quark-to-pionfragmentationfunctions,zDπ
favandzDπunf,extracteddirectly
frompionmultiplicitiesatthemeasured Q2for one(x, y)bin(0.04<x<0.06,
0.3<y<0.5).Forcomparison,theresultfromthepresentLOQCDfittothepion multiplicitiesisshownatQ2=6
1
(
GeV/
c)
2,0.
004<
x<
0.
4 and0.
2<
z<
0.
85.Thenumerical val-uesareavailable inRef.[21] withandwithout thesubtractionof thecontributionofdiffractivevectormesonproductiontoSIDIS.In additiontheradiativecorrectionsfactorsareprovided.Thesehigh precision multi-dimensional data provide an important input for futureNLOQCDfitsoffragmentationfunctions.The sumofthe z-integrated positively andnegatively charged hadron and pion multiplicities shows a flat x behaviour, as ex-pectedinLOpQCD.Forchargedhadronsthissumisinagreement
with EMC results obtained at comparable kinematics, whereas
someinconsistencyisobservedwhencomparingtoHERMES pion data that were taken at different kinematics. The ratio of the z-integrated positive andnegative hadron and pionmultiplicities asafunctionofx nicelyconfirmsthepreviousmeasurementsfrom
HERMESandEMC.
The measured charged pionmultiplicities were used for a LO extraction of the favoured and unfavoured pion FFs. While both FFsaresignificantly differentfromthoseobtainedintheHKNSfit to only theelectron–positron annihilation data,they are ingood agreementwiththoseobtainedinrecentNLOfitsthatalsoinclude apreliminaryreleaseofthepresentdata.
Acknowledgements
We gratefully acknowledgethe support of the CERN manage-ment andstaff andthe skilland effort of thetechnicians ofour collaboratinginstitutes.Thisworkwasmadepossiblebythe finan-cialsupportofourfundingagencies.SpecialthanksgotoM. Hirai andS. KumanoforprovidinguswiththeDGLAPevolutioncodefor fragmentationfunctions.
References
[1]J.C.Collins,D.E.Soper,G.F.Sterman,Nucl.Phys.B261(1985)104. [2]BELLECollaboration,M.Leitgab,etal.,Phys.Rev.Lett.111(2013)062002. [3]BaBarCollaboration,J.P.Lees,etal.,Phys.Rev.D88(2013)032011. [4]ALEPHCollaboration,R.Barate,etal.,Phys.Rep.294(1998)1;
DELPHICollaboration,O.Abreu,etal.,Eur.Phys.J.C5(1998)585;
OPALCollaboration,R.Akers,etal.,Z.Phys.C63(1994)181. [5]SLDCollaboration,K.Abe,etal.,Phys.Rev.D69(2004)072003. [6]PHENIXCollaboration,S.S.Adler,etal.,Phys.Rev.Lett.91(2003)241803;
STARCollaboration,J.Adams,etal.,Phys.Rev.Lett.97(2006)152302; BRAHMSCollaboration,I.Arsene,etal.,Phys.Rev.Lett.98(2007)252001; STARCollaboration,B.I.Abelev,etal.,arXiv:nucl-ex/0607033.
[7]D.deFlorian,R.Sassot,M.Stratmann,Phys.Rev.D75(2007)114010. [8]HERMESCollaboration,A.Airapetian,etal.,Phys.Rev.D87(2013)074029. [9]EMC,J.Ashman,etal.,Z.Phys.C52(1991)361.
[10]COMPASSCollaboration,P.Abbon,etal.,Nucl.Instrum.MethodsA577(2007) 455.
[11]P.Abbon,etal.,Nucl.Instrum.MethodsA616(2010)21.
[12]A.A.Akhundov,D.Bardin,L.Kalinovskaya,T.Riemann,Fortschr.Phys.44(1996) 373.
[13]P.Abbon,etal.,Nucl.Instrum.MethodsA631(2011)26.
[14]G.Ingelman,A.Edin,J.Rathsman,Comput.Phys.Commun.101(1997)108. [15]T.Sjostrand,LU-TP-95-20,CERN-TH-7112-93-REV,arXiv:hep-ph/9508391. [16]COMPASSCollaboration,C.Adolph,etal.,Phys.Lett.B718(2013)922. [17] R.Brun,M.Caillat,M.Maire,G.N.Patrick,L.Urban,CERN-DD/85/1. [18]T.T.Bohlen,etal.,Nucl.DataSheets120(2014)211;
A.Ferrari,P.R.Sala,A.Fasso,J.Ranft,CERN-2005-10(2005),INFN/TC-05/11, SLAC-R-773.
[19]A.Sandacz,P.Sznajder,HEPGEN–generatorforhardexclusiveleptoproduction, arXiv:1207.0333.
[20]S.V.Goloskokov,P.Kroll,Eur.Phys.J.C53(2008)367. [21] TheDurhamHepDataProject,http://durpdg.dur.ac.uk/.
[22]N.Makke,FragmentationfunctionmeasurementatCOMPASS,in:Proceedings ofthe21stInt.WorkshoponDeep-InelasticScatteringandRelatedSubjects, DIS2013,Marseille,France,2013,in:PoSDIS2013,2013,p. 202.
[23]HERMESCollaboration,A.Airapetian,etal.,Phys.Lett.B666(2008)446. [24]E.Leader,A.V.Sidorov,D.B.Stamenov,Phys.Rev.D93(2016)074026. [25]M.Stolarski,Phys.Rev.D92(2015)098101.
[26]E.Aschenauer,etal.,Phys.Rev.D92(2015)098102.
[27]JLabE00-108,R.Asaturyan,etal.,Phys.Rev.C85(2012)015202. [28]M.Hirai,S.Kumano,Comput.Phys.Commun.183(2012)1002. [29]A.D.Martin,W.J.Stirling,R.S.Thorne,G.Watt,Eur.Phys.J.C63(2009). [30]W.H.Press,S.A.Teukolsky,W.T.Vetterling,B.P.Flannery,NumericalRecipesin
C:TheArtofScientificComputing,2nded.,1992.
[31]E. Leader, A.V. Sidorov, D. Stamenov, Importance of semi-inclusive DIS processes in determining fragmentation functions, in: Proceedings of the 15th Workshop on High Energy Physics, DSPIN-13, Dubna, Russia, 2013, arXiv:1312.5200.
[32]D.deFlorian,etal.,Phys.Rev.D91(2015)014035.