• Non ci sono risultati.

Effetto delle sorgenti sulla misura di anisotropia CMB

N/A
N/A
Protected

Academic year: 2021

Condividi "Effetto delle sorgenti sulla misura di anisotropia CMB"

Copied!
25
0
0

Testo completo

(1)

Effetto delle sorgenti sulla misura di anisotropia CMB

b (deg) b (deg) b (deg)b (deg)

l (deg) 90GHz l (deg)

b (deg)

220GHz

WMAP 1st yrBOOMERanG 98

b (deg)

l (deg) 150GHz

41GHz l (deg) 60GHzl (deg) 94GHzl (deg)

b (deg) b (deg) b (deg)b (deg)

l (deg) 90GHz l (deg)

b (deg)

220GHz

b (deg)

l (deg) 150GHz

41GHz l (deg) 60GHzl (deg) 94GHzl (deg) PKS0537-441

BOOMERanG 98WMAP 1st yr b (deg) b (deg) b (deg)b (deg)

l (deg) 90GHz l (deg)

b (deg)

220GHz

b (deg)

l (deg) 150GHz

41GHz l (deg) 60GHzl (deg) 94GHzl (deg) PMNJ0519-4546

BOOMERanG 98WMAP 1st yr

b (deg) b (deg) b (deg)b (deg)

l (deg) 90GHz l (deg)

b (deg)

220GHz

b (deg)

l (deg) 150GHz

41GHz l (deg) 60GHzl (deg) 94GHzl (deg) PKS0454-46

WMAP 1st yrBOOMERanG 98

100 10

100 1000 10000

200 30

CMB rms

PKS0537-441 PMNJ0519-4546 PKS0454-46

μK

CMB

in a 20 ' bea m

frequency (GHz)

55 . 2 '

20

430100

/

⎟⎠

⎜ ⎞

= ⎛

⎟⎟⎠

⎜⎜ ⎞

⎛ Ω

GHz K

F

CMB

ν μ

(2)

• There are additional AGNs lost in the confusion of the CMB fluctuations.

• The WOMBAT catalogue and tools predict quite well the flux observed for the 3 detected AGN, and can be used to estimate the contamination due to unresolved AGNs.

• In the 3% of the sky mapped by B98 the contamination of the PS at 150 GHz is less than 0.3% at l=200, and less than 8% at l=600.

• This is reduced by 50% if the resolved sources (at 150 GHz) are removed, and by 80% if are removed those resolved at 41 GHz.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 1

10 100

Flux (Jy) @ 150 GHz

counts

WOMBAT catalog

http://astron.berkeley.edu/wombat/foregrounds/radio.html

0 200 400 600 800 1000 1200 1400 0

1000 2000 3000 4000 5000

6000

CMB

all sources

resolved @150GHz removed resolved @40GHz removed

l(l+1)cl/2

π

(

μ

K2 )

multipole l

150GHz

Ma quante altre sorgenti ci sono, con flussi piu’ deboli, e quindi confuse nella CMB e nel rumore

del rivelatore ?

Log S Log N(>S)

DIPENDE DALLA LOGN-LOGS DELLE SORGENTI CONSIDERATE Andam

ento Eucl ideo Evoluzione

Survey radio e X

• Survey radio e X di AGN permettono di misurare la logN vs. logS da usare (vedi astro-ph/0306206).

• Per calcolare la varianza del flusso totale I prodotto da tutte le sorgenti nelle diverse direzioni si deve calcolare

• dove

dS dS S dN I

S

S

=

Δ

max

min 2 2

) ( )

( N S

dS d dS dS dN

dS S dN N

S

>

=

=

> ∫

Dimensioni di N: 1/sr Dimensioni di S: W/m2/Hz o Jy quindi Jy2/sr (1 Jy=10-26W/m2/Hz )

Fluttuazioni di flusso

• Il risultato e’ (per frequenze da 40 a 100 GHz)

• A questo punto si tratta di trovare qual’e la fluttuazione di Temperatura CMB che produce lo stesso segnale sul rivelatore di questa

fluttuazione di flusso.

• La fluttuazione di potenza dovuta a Δ I e’

• La stessa fluttuazione potrebbe derivare da Δ T tale che

sr / Jy 30

2

2

ΔI

2 2

2

A I

W = Ω Δ Δ

2 2 2

2

A B

W = Ω Δ

Δ

(3)

Fluttuazioni di flusso

• Dove

2 2 2

2

2 2

2 2 2 2

2 2 2

⎟ ⎠

⎜ ⎞

∂ Δ ∂ Ω

= Δ Ω

= Δ

Δ Ω

= Δ

⎪⎩ ⇒

⎪ ⎨

Δ Ω

= Δ

Δ Ω

= Δ

T T B B

I

B B I

A W

I A W

kT x hc e

xe T

T B hc e

T T B

x x x

σ

σ =

= −

⎥ ⎦

⎢ ⎤

= ∂

⎟ ⎠

⎜ ⎞

∂ ;

1 ) ( 2 1

3 2

sr

Jy2/sr K2 Jy2/(sr2K2)

Fluttuazioni di flusso

• Quindi

• E per i coefficienti dello spettro di potenza

• E quindi

2 2

2 2

1 )

( ⎟⎟

⎜⎜ ⎞

⎛ Δ − Ω

= Δ Ω

=

Δ

x x

e xe T

T T B B

I

2 ,

,

1

) ( ⎟⎟ ⎠

⎜⎜ ⎝

⎛ Ω −

=

T x x

I

e

xe T

T c B c

l l

2 , ,

1 )

( ⎟⎟

⎜⎜ ⎞

⎛ Ω −

=

x x I T

e xe T

T B

c

l

c

l

Jy2/sr

Jy2/(sr2K2) sr

K2

Fluttuazioni di flusso

• Possiamo valutare c

l,I

sapendo che le fluttuazioni possoniane producono fluttuazioni uguali a tutti i multipoli. Quindi deve essere

• Dove e’ la trasformata in armoniche sferiche della risposta angolare: nel caso Gaussiano

• E quindi

• Si ottiene quindi

( )

, 2 ,

( )

2

2

2 1

1 4 4 2

1

l l

l l l l

l

l c B

B c

I =+

I

=

I

+

Δ π π

2

B

l

) 2 1 (

2

e

b

B

l

=

ll+ σ

( ) ( )

2

0 ) 1 (

2

2 1 2 1

1

2

2 2 2

b

x

dx

e x e

B

b b

σ

σ

σ

≈ =

+

=

+

∞ +

ll

l l l

l l

2 2

,

4 I

c

lI

= πσ

b

Δ

Fluttuazioni di flusso

• Inoltre

• E quindi

2 0

2

0 2 0

2 2

) (

2 2

2 2

d b

e

d d sen e d RA

b

b

πσ θ θ π

ϕ θ θ θ

σ θ

σ θ

=

= Ω

= Ω

2 2

,

2 2

2 2 2

, ,

1 ) / ( 2

1 ) 2 (

4

1 ) (

⎟⎟ ⎠

⎜⎜ ⎞

⎛ Δ −

=

⎟⎟ ⎠

⎜⎜ ⎞

= Δ

⎟⎟ ⎠

⎜⎜ ⎞

⎛ Ω −

=

x x T

x x b

b

x x I T

e xe T

T I B c

e xe T

T B

I

e xe T

T B c c

l

l l

πσ πσ

• 1 Jy/sr=10-26W/m2/sr/Hz

• B(ν,T)[Jy/sr] = B(ν,T)[W/cm2/sr/cm-1] / 3x10-20

• Inserendo nella , 2 2 si ottiene:

1 ) / (

2 ⎟⎟⎠

⎜⎜ ⎞

⎛ Δ −

= x x

T e

xe T

T I B cl

10 100 1000

10

1

10

2

10

3

10

4

41 GHz 60 GHz 94 GHz 143 GHz 217 GHz 340 GHz 540 GHz CMB

l(l+1)Cl/2π (μK2)

multipole l

What is the CMB:

An abundant background of  photons filling the Universe.

• Generated in the very early universe, less than 4 μs after the  Big Bang from a small asymmetry (resulting in 109γ for each baryon and no antibaryons) 

• Thermalized in the primeval fireball by repeated scattering  against free electrons, and  released when the universe cooled down enough to produce atoms and become transparent (380000 yrs after the big bang) . 

• Redshifted to microwave frequencies (zCMB=1100) and  diluted in the subsequent 13.7  Gyrs of expansion of the Universe

γ

→ 2 b + b

t

10−6s

1013s

1017s

visible NIR MW

visible NIR MW T=3000K

T=3K

em now em now

r z

= =

r

+ λ

1 λ

T >1GeV B(ν)

B(ν)

Today: 410 γ/cm3

b b

(4)

The spectrum: a proof of the primeval fireball

wavenumber

σ (

cm-1

)

Mather et al. 1994

0 5

brightness temperature of the sky (K) at 150 GHz

• The CMB dominates the sky brightness at mm wavelengths

• And is very much isotropic: the early universe was very homogeneous

• The most boring picture of the sky ever !

The Cosmic Microwave Background: 

Observing directly the Early Universe

• Why

– A direct view of the primeval plasma  (380kyr after the big‐bang, and 13.7Gyr ago)

– An indirect view of the first split‐second – ultra‐high‐energy physics – A diffuse backlight illuminating the first structures

– A testbench for cosmology and fundamental physics

• How

– CMB observables and ultimate limits 

– Dry & cold sites; near‐space and deep‐space missions for the CMB  – Mm‐wave telescopes and ultrasensitive detector arrays – Polarimeters

– Spectrometers

• What has been achieved to‐date

– COBE‐FIRAS; BOOMERanG, DASI, et al.; WMAP; Planck – Large Telescopes for SZ and small scale anisotropy

• Much more to come – Planck

– SZ & CMB spectroscopy – Inflation & CMB Polarimetry

The anisotropy: an image of the primeval fireball

• We should be able to see causal horizons in the image of  the CMB. 

• 380000 yrs after the big bang, regions separated by more  than 380000 light years are not in causal contact yet. 

• We see these regions from a distance of approximately 13.7 Glyrs, and the universe expanded by a factor 1100  since then, so we expect a typical angular size of the  causal horizon of the order of 1°. 

• Regions which have never been in causal contact before have a very similar physical temperature. Why ? Paradox of horizons.

• Need deeper observations, enhancing the contrast of the  image.

1

o

13.7Gyrs 1100 kyrs

380 × ≅

θ =

The anisotropy: an image of the primeval fireball

• Different physical effects, all related to the small density  fluctuations δρ / ρ present 380000 yrs after the big bang  (recombination) produce CMB Temperature fluctuations:

• Scales larger than the horizon are basically frozen in the  pre‐recombination era. Flat power spectrum of δ T/T at  large scales.

• Scales smaller than the horizon undergo acoustic oscillations during the primeval fireball. Acoustic peaks in  the power spectrum of δ T/T at sub‐degree scales.

c n c

T

T

r r

− +

= v

4 1 3 1

2 γ

γ

ρ δϕ δρ δ

Sachs-Wolfe (gravitational redshift)

Photon density fluctuations

Doppler effect from velocity

fields

After recombination, density perturbationcangrowand create the hierarchy of structures we see in the nearby Universe.

Before recombination

After recombination T < 3000 K T > 3000 K overdensity

Due to gravity, Δρ/ρ increases, and so does T

Pressure of photons increases, resisting to the compression, and the perturbation bounces back

T is reduced enough that gravity wins again

Here photons are not tightly coupled to matter, and their pressure is not effective.

Perturbations can grow and form Galaxies.

t t

Density perturbations(Δρ/ρ) wereoscillatingin the primeval plasma (as a result of the  opposite effects of gravity and photon pressure). 

(5)

Size of sound horizon

time

Big-bang recombination Power Spectrum

multipole220450

1st peak 2nd peak LSS

300000 ly

In the primeval plasma, photons/baryons density perturbations start to oscillate only when the sound horizon becomes larger than their linear size . Small wavelength perturbations oscillate faster than large ones.

R

R C

C

C

C

1st dip 2nd dip

The angle subtendeddependson the geometryof space

size of perturbation (wavelength/2)

300000 y 0 y

v v

v

v v

v v

v

Typical size of causal horizon : 

1

o

13.7Gyrs 1100 kyrs

380 × ≅

θ =

• We cannot predict the exact pattern of the temperature  fluctuations, because our theory is statistical. 

• However we can predict quite accurately the correlation properties of the image. 

• Gaussian fluctuations: all the  information is encoded in the  power spectrum.  

Critical density universe

Ω>1

Ω<1 High density universe

Low density universe 1o

2o

0.5o

Horizon

Ω=1 14 Gly

LSS

HorizonHorizon

The power spectrum depends on the global geometry of the universe

Ω>1 Ω=1 Ω<1

2o 1o

0.5o High density Universe l Critical density Universe Low density Universe PS

l PS

l PS

200 200 200

0 0 0

Normal Matter 4%

Dark Matter

22%

Dark Energy

74%

Radiation

< 0.3%

The power spectrum depends on the composition of the universe through the physics of the oscillations and the evolution of the bkg.

=1-ΩΛb

WMAP Bennett et al. 2003 Hinshaw et al. 2006

BOOMERanG de Bernardis et al. 2000 Masi et al. 2005

1o

Detailed Views of the

Recombination Epoch

(z=1088, 13.7 Gyrs ago)

(6)

Keisler et al. 2011, astro-ph/1105.3182

The Cosmic Microwave Background: 

Observing directly the Early Universe

• Why

– A direct view of the primeval plasma –

sensitive to the geometry and composition of the universe An indirect view of the first split‐second – ultra‐high‐energy physics – A diffuse backlight illuminating the first structures

– A testbench for cosmology and fundamental physics

• How

– CMB observables and ultimate limits 

– Dry & cold sites; near‐space and deep‐space missions for the CMB  – Mm‐wave telescopes and ultrasensitive detector arrays – Polarimeters

– Spectrometers

• What has been achieved to‐date – COBE‐FIRAS; BOOMERanG, DASI, et al.; WMAP; 

Large Telescopes for SZ and small scale anisotropy

• Much more to come – Planck

– SZ & CMB spectroscopy – Inflation & CMB Polarimetry

The linear polarization: testing physics of the  primeval fireball and near the big bang

• CMB photons were last scattered 380000 yrs after  the big bang. 

• It was a Thomson scattering.

• For a given scattering center, any quadrupole anisotropy in the incoming photons produces linear polarization in the scattered photons. 

• Two possible origins for quadrupole anisotropy:

– Density perturbations present at recombination – Gravitational waves produced during the inflation process, 

a split‐second after the big‐bang (E=1016GeV?)

• Different symmetry properties

-

-

+

-

+

x

y

-

-

+

-

+

x y

- x

y

-10ppm +10ppm

= e-at last scattering

Komatsu et al. 2010 – astro-ph/1001.4538

+ +

- - +

- -

+

Velocity field near density fluctuation

Resulting anisotropy seen by e-

Resulting polarization pattern

WMAP7 measured data (stacked)

E-modes : 3 μK (2002…) Cosmic Inflation :

An exponential, superluminal expansion of space,  happening a split‐second after the big bang, 

due to a phase transition of the universe,  at Energies of the order of 1016GeV (!)

(7)

Expansion vs Horizon

time size of the horizon size of

the considered region According to the inflation

theory ….

…had been causally connected to the surrounding regions before inflation

380000 y

A region as large as the horizon when the CMB is released ….

time size of the horizon size of

the considered region

10-36s

normal evolution

In

flation: exponential expansion

time size of the horizon size of

the considered region

10-36s

Here the horizon contains all of the universe observable today In

flation: exponential expansion

normal evolution

Quantum fluctuations (pre‐inflation)

Density  fluctuations (in the primeval fireball) Inflation provides an explanation for the origin of the density fluctuations producing CMB anisotropy

• If inflation really happened:

9 It stretched geometry of space to nearly Euclidean

9 It produced a nearly scale invariant spectrum of gaussian density fluctuations

9 It produced a stochastic background of gravitational waves: Primordial G.W.

The background is so faint that even LISA will not be able to measure it.

• Tensor perturbations also produce quadrupole anisotropy. They generate irrotational (E-modes) and rotational (B-modes) components in the CMB polarization field.

• Since B-modes are not produced by scalar fluctuations, they represent a signature of inflation.

Quadrupole from P.G.W.

E-modes

B-modes

E-modes & B-modes

• From the measurements of the Stokes Parameters

Q

and

U

of the linear polarization field we can recover both irrotational and rotational

a

lmby means of modified Legendre transforms:

( ) n ( a ia ) Y ( ) n

iU

Q

m

m

B m E

m

r r

l

l l l 2

,

)

( ± =±

±

( ) [ ( ) ( ) ( ) ( ) ] ( ) [ ( ) ( ) ( ) ( ) ]

+

+

− +

Ω

=

− + +

Ω

=

n Y n iU Q n Y n iU Q n W i d a

n Y n iU Q n Y n iU Q n W d a

m m

B m

m m

E m

r r r

r r

r r r

r r

l l

l

l l

l

2 2

2 2

) ( )

2 ( 1

) ( )

2 ( 1

E-modes produced by scalar and tensor perturbations

B-modes produced only by tensor perturbations

Spin-2 quantity Spin-2 basis

(8)

• The amplitude of this effect is very small, but depends on  the Energy scale of inflation. In fact the amplitude of  tensor modes normalized to the scalar ones is:

• and

• There are theoretical arguments to expect that the  energy scale of inflation is close to the scale of GUT i.e. 

around 10

16

GeV.

• The current upper limit on anisotropy at large scales gives T/S<0.5 (at 2σ)

• A competing effect is lensing of E‐modes, which is important at large multipoles.

GeV 10 7 .

3

16

4 / 4 1 / 1

2 2 4 / 1

≅ ×

⎟⎟ ⎠

⎜⎜ ⎞

≡ ⎛

⎟ ⎠

⎜ ⎞

V

C C S T

Scalar

GW Inflation potential

B-modes from P.G.W.

⎥ ⎥

⎢ ⎢

≅ × +

GeV 10 1 2 . 2 0

) 1 (

16 4 / 1 max

K V

c

B

μ

π

l

l l

The Cosmic Microwave Background: 

Observing directly the Early Universe

• Why

– A direct view of the primeval plasma  (380kyr after the big‐bang,13.7Gyr ago)

– An indirect view of the first split‐second – ultra‐high‐energy physics – A diffuse backlight illuminating the first structures

– A testbench for cosmology and fundamental physics

• How

– CMB observables and ultimate limits 

– Dry & cold sites; near‐space and deep‐space missions for the CMB  – Mm‐wave telescopes and ultrasensitive detector arrays – Polarimeters

– Spectrometers

• What has been achieved to‐date – COBE‐FIRAS; BOOMERanG, DASI, et al.; WMAP; 

Large Telescopes for SZ and small scale anisotropy

• Much more to come – Planck

– SZ & CMB spectroscopy – Inflation & CMB Polarimetry

S-Z

cluster

01 . 500 0

5

2

≈ =

Δ =

keV keV c m

kT

e

ν

e

ν

10

4

01 . 0 01 .

0 × =

Δ ≈ Δ ≈

ν τ ν T

T

Sunyaev R., Zeldovich Y.B., 1972, Comm. Astrophys. Space Phys., 4, 173 Birkinshaw M., 1999, Physics Reports, 310, 97-195

Incoming CMB photons

• Inverse Compton Effect for CMB photons against charged particles in the hot gas of clusters

• Cluster optical depth: τ=nσl l= a few Mpc = 1025cm n < 10-3cm-3 σ = 6.65x10-25cm2

• So τ = nσl< 0.01 : there is a 1% likelihood that a CMB photon crossing the cluster is scattered by an electron

• Eelectron>> Ephoton, so the electron transfers energy to the photon. To first order, the energy gain of the photon is

• The resulting CMB temperature anisotropy is

Scattered CMB photons Incoming CMB photons

Brightness All photons increase their

energy. The result is a distortion of the spectrum of the CMB in the direction of rich clusters

A decrement at low frequencies ( <217GHz )

An increment at high frequencies ( > 217GHz )

frequency

Sunyaev

Sunyaev- -Zeldovich Zeldovich Effect Effect

• Being produced by scatterings, the S‐Z signal amplitude does not depend on the distance (redshift) of the cluster

• Depends linearly on the density of the gas 

• The X‐ray brightness, instead, decreases significantly with distance and gas density (depends on the density  squared)

The Sunyaev‐Zeldovich Effect

X‐ray S‐Z

X‐ray S‐Z

X‐ray S‐Z

Atmospheric transmission, pwv=0.5mm

ISD Δ emission, 18K 6 kJy/sr @ 150 GHz

Thermal SZ

Non-Thermal SZ

Kinematic SZ

Thermal SZ

(9)

The Cosmic Microwave Background: 

Observing directly the Early Universe

• Why

– A direct view of the primeval plasma  (380kyr after the big‐bang,13.7Gyr ago)

– An indirect view of the first split‐second – ultra‐high‐energy physics – A diffuse backlight illuminating the first structures

– A testbench for cosmology and fundamental physics

• How

– CMB observables and ultimate limits 

– Dry & cold sites; near‐space and deep‐space missions for the CMB  – Mm‐wave telescopes and ultrasensitive detector arrays – Polarimeters

– Spectrometers

• What has been achieved to‐date – COBE‐FIRAS; BOOMERanG, DASI, et al.; WMAP; 

Large Telescopes for SZ and small scale anisotropy

• Much more to come – Planck

– SZ & CMB spectroscopy – Inflation & CMB Polarimetry

SZ Effect

How

Orders of magnitude :

• The CMB has a 2.725K blackbody spectrum

• Most common wavelength for a CMB photon: 2 mm

• Typical energy of a CMB photon: 0.6meV

• Density of CMB photons: 410 γ/cm

3

• Typical flux of photons: 10

12

γ/cm

2

/sr = 10

‐10 

W/cm

2

/sr

• Many photons, with very low energy. 

• Detection difficult : – Thermal Detectors : Bolometers

– Coherent detectors : antenna, (downconversion), amplifier

– Quantum detectors : KIDs where photons break Cooper pairs •Environment difficult :

–Ultra‐cold & dry sites on the earth,  or space –Cryogenics for detectors and optical systems

60 120 180Frequency (GHz)240 300 360 420

polarization

90μK 3μK

2 mm PWV

0.5 mm PWV

41 km

photon noise from atmosphere and the CMB

typical CMB anisotropy (90μK) and polarization (3μK) signals photon noise from mirrors (ε=0.005, ε x T !)

300K 40K

4K 1.5K

CMB

Left scale

Right scale Fluctuations of the background

90μK 3μK

2 mm PWV

0.5 mm PWV

41 km

photon noise from atmosphere and the CMB

typical CMB anisotropy (90μK) and polarization (3μK) signals photon noise from mirrors (ε=0.005, ε x T !)

300K 40K

4K 1.5K

CMB

Left scale Right scale Fluctuations of the background

(10)

90μK 3μK

2 mm PWV 0.5 mm PWV

41 km

photon noise from atmosphere and the CMB

typical CMB anisotropy (90μK) and polarization (3μK) signals photon noise from mirrors (ε=0.005, ε x T !)

300K 40K

4K 1.5K

CMB

Left scale

Right scale Fluctuations of the background

K.Ka.Q-bands

90μK 3μK

2 mm PWV 0.5 mm PWV

41 km

photon noise from atmosphere and the CMB

typical CMB anisotropy (90μK) and polarization (3μK) signals photon noise from mirrors (ε=0.005, ε x T !)

300K 40K

4K 1.5K

CMB

Left scale Right scale Fluctuations of the background

V-band

90μK 3μK

2 mm PWV 0.5 mm PWV

41 km

photon noise from atmosphere and the CMB

typical CMB anisotropy (90μK) and polarization (3μK) signals photon noise from mirrors (ε=0.005, ε x T !)

300K 40K 4K 1.5K

CMB

Left scale

Right scale Fluctuations of the background

W-band

90μK 3μK

2 mm PWV 0.5 mm PWV

41 km

photon noise from atmosphere and the CMB

typical CMB anisotropy (90μK) and polarization (3μK) signals photon noise from mirrors (ε=0.005, ε x T !)

300K 40K 4K 1.5K

CMB

Left scale Right scale Fluctuations of the background

D-band

90μK 3μK

2 mm PWV

0.5 mm PWV

41 km

photon noise from atmosphere and the CMB

typical CMB anisotropy (90μK) and polarization (3μK) signals photon noise from mirrors (ε=0.005, ε x T !)

300K 40K

4K 1.5K

CMB

Left scale

Right scale Fluctuations of the background

Detectors for the CMB

• A 50‐years‐long struggle to get to photon noise limited performance…

• … and then to increase the mapping speed, 

replicating single pixels in large arrays.

(11)

1900 1920 1940 1960 1980 2000 2020 2040 2060

10

2

10

7

10

12

10

17

Langley's bolometer Golay Cell

Golay Cell

Boyle and Rodgers bolometer F.J.Low's cryogenic bolometer

Composite bolometer Composite bolometer at 0.3K

Spider web bolometer at 0.3KSpider web bolometer at 0.1K 1year

1day 1 hour

1 second

Development of thermal detectors for far IR and mm-waves

time required to make a measurement (seconds)

year

Photon noise limit for the CMB

Spider-Web Bolometers

Absorber

Thermistor

Built by JPL Signal wire

2 mm

•The absorber is micro machined as a web of metallized Si3N4wires, 2 μm thick, with 0.1 mm pitch.

•This is a good absorber for mm-wave photons and features a very low cross section for cosmic rays.

Also, the heat capacity is reduced by a large factor with respect to the solid absorber.

•NEP ~ 2 10-17W/Hz0.5is achieved @0.3K

•150μKCMBin 1 s

•Mauskopf et al. Appl.Opt.

36, 765-771, (1997)

Measured performance of Planck HFI bolometers (0.1K) (Holmes et al., Appl. Optics, 47, 5997, 2008)

= Photon noise limit

Multi-moded

What has been achieved to‐date

MAT Atacama

CBI Atacama

DASI South Pole

Mainly coherent detectors ground- based in high-cold-dry sites

VSA Tenerife ACBAR South Pole

BOOMERanG : launched from McMurdo (Antarctica) 1998, 2003

(12)

<<3x10-6 7x10-8 srad 1’

<<3x10-4 7x10-6srad 10’

<<0.01 2x10-4srad 1o

<<1 2x10-2srad 10o

<RAsidelobes>

Ωmainlobe FWHM

Going to L2 reduces the solid angle occupied by the Earth by a factor 2π/2x10-4=31000, thus relaxing by the same factor the required off-axis rejection.

1.5Mkm

900km L2

COBE WMAP,

Planck

No day-night changes up there … extreme stability

WMAP (lauched in 2001)

Hinshaw et al. 2006

The last revolution … ten years ago

• Large arrays of bolometers (2002 +)

• TES allow complete microfabrication of  bolometers : large arrays possible

• e.g. Caltech/JPL, Berkeley, NIST, Goddard, Bonn,  Paris, Grenoble …

• The mapping speed is boosted. 

• Coupled to large (10m) telescopes, can explore the CMB with high angular resolution (arcmin)

Atacama Cosmology Telescope 6m diameter, 1 deg2FOV 5190 m osl

South Pole Telescope 10m diameter, 1 deg2FOV 2800 m osl

sr cm 100

2

≅ Ω A

APEX @ Atacama 12m diameter, 0.3 deg2FOV 5190 m osl

(13)

10K

10K 0.3K

1m

sr cm 100 2

≅ Ω A

Survey Telescopes :

0.4 5900

1.3 230

0.7 2300

2.1 145

1.1 1000

3.1 95

FWHM(’) N

mm

GHz

(14)

No evidence for B-modes yet !

Planck is a very ambitious experiment.

It carries a  complex CMB  experiment (the  state of the art, a  few years ago) all the way to L2, 

improving the  sensitivity wrt WMAP by at least a factor 10,

extending the  frequency coverage towards high frequencies by a factor about 10

ESA    : Jan Tauber HFI PI : Jean Loup Puget (Paris) HFI IS : Jean Michel Lamarre (Paris) LFI PI  : Reno Mandolesi (Bologna) LFI IS  : Marco Bersanelli (Milano) Almost 20 years of hard work of a 

very large team, coordinated by:

HFI LFI Scientific Laboratories

Satellite

+ subcontractors National Agencies

PI Puget PI Mandolesi

Ecliptic plane

1 o/day

Boresight (85ofrom spin axis)

Field of view rotates at 1 rpm

E M

L2

Observing strategy

The payload works in L2, to avoid the  emission of the Earth, of the Moon,  of the Sun

(15)

HFI LFI

P P P P P P P

30 44 70 100 143 217 353 545 857

14 / May/ 2009

Thermal performance :

Planck collaboration: astro-ph/1101:2023

Thermal performance :

Planck collaboration: astro-ph/1101:2023

Mission :

Planck collaboration: astro-ph/1101:2022

(16)

Atmospheric transmission, pwv=0.5mm

ISD Δ emission, 18K 6 kJy/sr @ 150 GHz

Thermal SZ

Non-Thermal SZ

Kinematic SZ

Thermal SZ

best ground-based photometers: 4 bands

A2319 As seen by Planck

All-sky Sunyaev-Zeldovich clusters

• Planck multiband observations of SZ clusters (ESZ) over the full sky: 189 high quality cluster candidates detected

• The clusters in the ESZ sample are mostly at moderate redshifts lying between z=0.01 and z=0.55, with 86% of them below z=0.3. The ESZ-cluster masses span over a decade from 0.9 to 15 × 1014Msol, i.e. up to the highest masses.

Discovered by Planck

Clusters : Planck collaboration: astro-ph/1101:2024

All-sky Sunyaev-Zeldovich clusters

Filaments

• Half of the baryons known to be present in the universe (from nucleosynthesis estimates) are  missing (i.e. have not been detected in emission, nor in  absorbtion).

• A possible physical state of  baryons escaping detection in the  radio, IR, visible, X rays domains, is a ionized medium with low density  or warm temperature.  

• In principle, this is detectable in  the microwaves, because it produces a SZ effect.

• The Planck survey, observing the  whole sky, has also observed couples of galaxy clusters, and  there is evidence for filaments of  gas connecting two of the couples (astro‐ph/1208.5911). This is hot  gas, probably heated by shocks,  but the density is low, so X‐ray emission is also very low.  It might be one step towards the solution of the missing baryons problem. 

106YROSAT cts/s X rays

SZ

Sky coverage of the SPT SZ survey (astro‐ph/1210.7231)

2500 sq. deg = 9Mpixels !

(17)

• In the first 720 sq.deg.

analyzed:

– 230 cluster candidates – 158 with counterparts found in 

the follow‐up optical/IR  observations – 121 have S/N > 5 – 117 new discoveries (!) – Cluster masses estimated:

• Comparing to models:

– The number of clusters that  formed over the history of the  universe is sensitive to the mass  of neutrinos and the influence of  dark energy on the growth of  cosmic structures. 

150 GHz SPT‐SZ survey

astro.ph/1203.5775

Ω

Λ

=0.7 Ω

Λ

=0.0

Simulations:  e.g. Da Silva et al. astro‐ph/0011187

SPT SZ survey (550 sq.deg.) 

134 new clusters discovered with the SZ effect  (confirmed by optical and IR follow ups).

Reichart et al. astro‐ph/1203.5775

Much more  to come

The field is extremely active and growing No way to list every experiment,

currently working or planned.

A very biased personal selection follows …

DISCLAIMER

DISCLAIMER

• Photometric observations of the SZ can be significantly biased, when there are less spectral channels than free parameters.

• Components, LOS through a rich cluster:

ThSZ

KSZ

CMB ISD

NThSZ pmin, Amp

Td,

τ

d….(

β

)

At least, 8 independent parameters !

(18)

Atmospheric transmission, pwv=0.5mm

ISD Δ emission, 18K 6 kJy/sr @ 150 GHz

Thermal SZ

Non-Thermal SZ

Kinematic SZ

Thermal SZ

best ground-based photometers: 4 bands

A2319 As seen by Planck

The final solution: spectroscopic measurements of the SZ

• Requirements:

– Wide spectral coverage (in principle 100 to 1000 GHz)

– Modest spectral resolution (λ/Δλ = 100 to 1000) – Differential input, high rejection of common mode

signal (CMB is common mode and is 2750000 μK, cluster signal is differential and can be as low as 10 μK).

– Imaging instrument

– Wide field of view to image the whole cluster and have a clean reference area to compare

• In fig. 1 we show the OLIMPO balloon payload (Masi et al.

2008), with solar panels, ground shield and sun shield removed.

• Note the tiltable 2.6m primary mirror and the lightweigth secondary.

• Pointing is obtained rotating the payload around an azimuth pivot and changing the elevation of the inner frame, including the telescope, the FTS and the detector’s cryostat

• The total mass of the payload is 1.5 tons.

The instrument is based on a double Martin Pupplett Interferometer configuration to avoid the loss of half of the signal.

A wedge mirror splits the sky image in two halves IAand IB, used as input signals for both inputs of the two FTS’s.

Olimpo Telescope

Olimpo Cryostat

⎟⎟⎠

⎜⎜ ⎞

⎛ +

= 0

) 2 / sin(

) 2 / cos(δ y δ

x

FTSII B iA

E

⎟⎟⎠

⎜⎜ ⎞

= +

) 2 / sin(

) 2 / cos(

0 δ

δ x

y FTSI

A i E B

outgoing fields :

(19)

FTS Cold Optics Optical optimization

has been performed using ZEMAXTM software, optimizing the optical quality in the full FOV of OLIMPO.

The instrument was designed to fit the available room in between the primary mirror and the cryostat, a 75x75x30 cm3box.

Simulated OLIMPO measurement of a cluster l.o.s. with τth=0.005, Te=10 keV, τnonth=0.0001, vpec=500 km/s, Idust=6kJy/sr@150GHz The data with the error bars are simulated observations from a single pixel of the OLIMPO-FTS, for an integration time of 3 hours. The two lines through the data points represent the input theory (thin) and the best fit for the plotted data realization (thick).

The other thin lines represent thermal plus non-thermal SZE, and dust emission.

this shift is due to the peculiar velocity of the cluster The high-frequency excess is due to a modest amount of dust

dust thermal + non-thermal

OLIMPO spectrometer

Ideal ground-based 4-bands photometer

• Antenna diameter: 10 m

• Range of wavelengths:

0.01 – 20 mm

• Bolometric sensitivity (λ0.3mm, 1h integration):

5x10-9Jy

• Interferometry sensitivity (λ0.5mm, 300s integration, 16GHz bw) : 10-4Jy

• Interferometer beam:

10-9arcsec Millimetron ASC Moscow ROSCOSMOS

3 hours of observations of a rich cluster with a DFTS on Millimetron Absolutely outstanding. USING A PHOTON NOISE LIMITED BOLOMETER IN THE COLD ENVIRONMENT OF L2 WITH 4K TELESCOPE

(20)

3h integration on the same LOS through a rich cluster

P. de Bernardis, et al., Astronomy and Astrophysics, 538, A86 (2012)

7.5 ’

Oppure ammassi speciali …

1ES0657-556

Isolating SZ DM (at 223 GHz)

The SZE from the hot gas disappears at x0,th(∼ 220-223 GHz) while the SZDMexpected at the locations of the two DM clumps remains negative and with an amplitude and spectrum which depend on Mχ.

M

χ

= 20 GeV M

χ

= 40 GeV M

χ

= 80 GeV

[Colafrancesco, de Bernardis, Masi, Polenta & Ullio 2006]

Inflation

Inflation & polarization & polarization

Kinetic Inductance Detectors MUSIC Caltech NIKA Inst.Neel Grenoble FBK Trento + Sapienza + INFN

(21)

CEB Idea and development: Leonid Kuzmin & (Chalmers + NijniNovgorod)

Polarization

Polarization modulators modulators

Pisano, G., Ng, M.W., Haynes, V., Maffei, B., “A Broadband Metal-Mesh Half-Wave Plate for Millimetre Wave Linear Polarisation Rotation”, Submitted to PIER JEMWA (2012)

EBEX EBEX Focal Plane

• Total of 1476 detectors

• Maintained at 0.27 K

• 3 frequency bands/focal plane

738 element array 141 element hexagon Single TES Lee, UCB

3 mm

5 cm

• G=15-30 pWatt/K

• NEP = 1.4e-17 (150 GHz)

• NEQ = 156 μK*rt(sec) (150 GHz)

τ = 3

msec,

150

150 150

150 250

250 420

Slide: Hanany

(22)

William Jones Princeton University

for the Spider Collaboration

The Path to CMBpol June 31, 2009 Suborbital Polarimeter for Inflation Dust and the Epoch of Reionization

Suborbital Polarimeter for Inflation Dust and the Epoch of Reionization

Spider: A Balloon Borne CMB Polarimeter

• Long duration (~30 day cryogenic hold time) balloon borne polarimeter

• Surveys 60% of the sky each day of the flight, with ~0.5 degree resolution

• Broad frequency coverage to aid in foreground separation

• Will extract nearly all the information from the CMB E-modes

• Will probe B-modes on scales where lensing does not dominate

• Technical Pathfinder: solutions appropriate for a space mission

Carbon Fiber Gondola

Attitude Control

• flywheel

• magnetometer

• rate gyros

• sun sensor

Flight Computers/ACS

• 1 TB for turnaround

• 5 TB for LDB Pointing Reconstruction

• 2 pointed cameras

• boresight camera

• rate gyros Six single freq. telescopes

30 day, 1850 lb, 4K / 1.4 K cryostat

The Large The Large Scale Polarization Scale Polarization Explorer Explorer

P. de

P. de BernardisBernardis, , forforthe LSPE the LSPE collaborationcollaboration SWIPE STRIP

LSPE in a nutshell

• The Large-Scale Polarization Explorer is

– a spinning stratospheric balloon payload – flying long-duration, in the polar night

– aiming at CMB polarization at large angular scales – using polarization modulators to achieve high stability

• Frequency coverage: 40 – 250 GHz (5 channels)

• Angular resolution: 1.5 – 2.3 deg FWHM

• Sky coverage: 20-25% of the sky per flight

• Combined sensitivity: 10 μ K arcmin per flight

P. de Bernardis Bologna 14 feb 2012

SWIPE

• The Short WavelengthInstrument for the PolarizationExplorer

• Uses overmoded bolometers, trading angular resolution for sensitivity

• Sensitivity of photon-noise limited bolometers vs # of modes:

3.2 3.3 2.5 NET Focal Plane (μK/sqrt(Hz))=

30 25 NET (μK/sqrt(Hz) ) = 15

1.6 1.9 2.4 FWHM (deg) =

83 58 37 N det =

1.4 2.1 λ (mm) 3.3

220 145 90 f (GHz)

40 25 15 N modes (geom) =

m 0.8 F = Instrument

m 0.4 D lens = Bolometric

0.25 eff = LSPE - SWIPE

Number of modes actually coupling to the bolometer absorber P. de Bernardis Bologna 14 feb 2012

(23)

13

The EPIC-IM Mission Concept and

US CMB Activities

Jamie Bock (JPL/Caltech)

Beyond CORE Workshop

Paris, 25 June 2012 13

3.5 m 13 m

4 m Note: Configurations not shown on same scale Planck based on flight sensitivity and mission duration

EPIC- Low Cost Intermediate Mission 4 K Option Comprehensive Science Science Inflationary B-mode polarization

only

Inflationary B-modes, E-modes to cosmic variance, gravitational lensing to cosmic limits, neutrino mass, dark energy, Galactic astronomy

Inflationary B-modes, E-modes to cosmic variance, gravitational lensing, neutrino mass, dark energy, Galactic astronomy

Speed 140 Plancks 1000 Plancks 70 Plancks

Detectors 2400 11,000 (TES bolometer or MKID) 1500

Aperture Six 30 cm refractors 1.4 m Crossed Dragone telescope 3 m Gregorian Dragone Bands 30 – 300 GHz 30 – 300 GHz + 500 & 850 GHz 30 – 300 GHz

Cooling LHe cryostat + ADR 4 K Cryo-cooler + ADR TBD

Mass 1320 kg CBE 1670 kg CBE 3500 kg CBE

Publication ArXiv 0805.4207 (192 pages) ArXiv 0906.1188 (157 pages) ArXiv 0805.4207 (192 pages)

Cost $660M (FY07) $920M (FY09) No cost assessed

The EPIC-IM Design

13

Descoped Focal Plane for 30 K Telescope

‘4 K Telescope’ Option ‘30 K Telescope’ Option

• Focal plane reduced by 2.3x in mass

• Detectors become larger for 30 K telescope due to edge spillover

• Total detectors reduced from 11094 to 2022

COrE: www.core-mission.org ESA-M3 (2020)

(24)
(25)

There is still so much to discover about the early universe …

… and important technology improvements are making it possible !

Riferimenti

Documenti correlati

Nella Sezione di Genova dell’Istituto Nazionale di Fisica Nucleare è stata recentemente installata, in collaborazione con il Laboratorio di Fisica Ambientale del Dipartimento di

Nasce dunque quello che inizialmente è chiamato il Distretto Veneto dei Beni Culturali, con tre elementi di base: il patrimonio di beni culturali presenti nel

Summary. — Fossil fuels are an energy source and an energy storage system. The demand for electricity and heat varies daily, weekly, and seasonally with seasonal variations

• Le attrezzature del vigneto e di trasformazione e condizionamento del prodotto dovrebbero essere progettate considerando gli aspetti seguenti: il rispetto per

Perciò neanche questa volta Pelaindios comprese perché mai di colpo l’uomo con il passamontagna gli si avventasse contro, perché mai intervenissero altri a prenderlo a pedate

Così come non meno significativo e “modernissimo” è il richiamo (perennemen-.. te inascoltato, almeno in penale) all’utilità delle statistiche per una buona ed

ethic in the early modern period, and indeed it is still very much alive in the present day: it held that a lawyer was to actively participate in the administration of

Wretschko, Die Geschichte der Juristischen Fakultät an der Universität Innsbruck (1671-1904), Innsbruck 1904, p. Moos, Der Verbrechensbegriff in Österreich im 18. Lentze,