• Non ci sono risultati.

[4] S. De Flora, A. Izzotti, K. Randerath, E. Randerath, H. Bartsch, J. Nair, R.M.

N/A
N/A
Protected

Academic year: 2021

Condividi "[4] S. De Flora, A. Izzotti, K. Randerath, E. Randerath, H. Bartsch, J. Nair, R.M."

Copied!
5
0
0

Testo completo

(1)

Bibliografia

[1] S. De Flora, L.R. Ferguson “Overview of mechanisms of cancer chemopreventive agents” Mutation Research, 591, 8-15 (2005).

[2] S. De Flora, A. Quaglia, C. Bennicelli, M. Vercelli “The epidemiological revolution of the 20th century” FASEB J, 19, 892-897 (2005).

[3] F. Levi, F. Lucchini, E. Negri, C. La Vecchia “Cancer mortality in the European Union” Int. J. Cancer, 98, 636-637 (2002).

[4] S. De Flora, A. Izzotti, K. Randerath, E. Randerath, H. Bartsch, J. Nair, R.M.

Balansky, F.J. van Schooten, P. Degan, G. Fronza, D.Walsh, J. Lewtas “DNA adducts in chronic degenerative diseases. Pathogenetic relevance and implications in preventive medicine” Mutat. Res. 366, 197-238 (1996).

[5] J.M. Last “Scope and methods of prevention” in: J.M. Last, J. Chin, J.E.

Fielding, A.L. Frank, J.C. Lashoff, R.B. Wallace (Eds.), Maxcy–Rosenau “Public Health and Preventive Medicine” Appleton-Century-Crofts, Norwalk, CT, 3-7 (1986).

[6] S. De Flora, A. Izzotti, F. D’Agostini, R.M. Balansky, D. Noonan, A. Albini

“Multiple points of intervention in the prevention of cancer and other mutation related diseases” Mutat. Res. 480-481, 9-22 (2001).

[7] S. De Flora, C. Ramel “Mechanisms of inhibitors of mutagenesis and carcinogenesis. Classification and overview” Mutat. Res. 202, 285-306 (1988).

[8] S. De Flora, A. Izzotti, C. Bennicelli “Mechanisms of antimutagenesis and anticarcinogenesis. Role in primary prevention” in: G. Bronzetti, H. Hayatsu, S.

De Flora, M.D. Waters, D.M. Shankel (Eds.) “Antimutagenesis and

Anticarcinogenesis Mechanisms III” Plenum Press, New York, NY, 1-16 (1993).

(2)

[9] S. De Flora “Mechanisms of inhibitors of mutagenesis and carcinogenesis”

Mutat. Res. 402, 151-158 (1998).

[10] S. De Flora, R. Balansky, L. Scatolini, C. Di Marco, L. Gasparini, M.

Orlando, A. Izzotti “Adducts to nuclear DNA and mitochondrial DNA as biomarkers in chemoprevention” in: B.W. Stewart, D. McGregor, P. Kleihues (Eds.), “Principles of Chemoprevention” IARC Sci. Publ. No. 139, International Agency for Research on Cancer, Lyon, France, 291-301 (1996).

[11] Y.-J. Surh “Cancer chemoprevention with dietary phytochemicals” Nature Rev. Cancer, 3, 768-780 (2003).

[12] B. Alberts, A. Johnson, J. Lewis “Biologia Molecolare della Cellula” IV Ed.

Zanichelli (2008).

[13] G.M. Cooper, R.E. Hausman “La cellula: un approccio molecolare” Ed.

Piccin (2005).

[14] V. Gogvadze, S. Orrenius, B. Zhivotovsky “Mitochondria in cancer cells:

what is so special about them?” Trends in Cell Biology, 18, 165-173 (2008).

[15] Moll, U.M. and Schramm, L.M. “p53 – an acrobat in tumorigenesis” Crit.

Rev. Oral Biol. Med, 9, 23-37 (1998).

[16] Wang, G.L. and Semenza, G.L. “General involvement of hypoxiainducible factor 1 in transcriptional response to hypoxia” Proc. Natl. Acad. Sci. U.S.A. 90, 4304-4308 (1993).

[17] Pelicano, H. et al. “Mitochondrial respiration defects in cancer cells cause

activation of Akt survival pathway through a redoxmediated mechanism” J. Cell

Biol. 175, 913–923 (2006).

(3)

[18] Greijer, A.E. and van der Wall, E. “The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis” J. Clin. Pathol. 57, 1009–1014 (2004).

[19] Wu, M. et al. “Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells” Am. J. Physiol. Cell Physiol. 292, C125–C136 (2007).

[20] Wojtczak, L. et al. “Effect of glucose and deoxyglucose on the redistribution of calcium in ehrlich ascites tumour and Zajdela hepatoma cells and its consequences for mitochondrial energetics. Further arguments for the role of Ca(2+) in the mechanism of the crabtree effect” Eur. J. Biochem. 263, 495–501 (1999).

[21] Papandreou, I. et al. “HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption” Cell Metab. 3, 187–197 (2006).

[22] Semenza, G.L. “Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1” Biochem. J. 405, 1–9 (2007).

[23] Matoba, S. et al. “p53 regulates mitochondrial respiration” Science 312, 1650–1653 (2006).

[24] Guzy, R.D. and Schumacker, P.T. “Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia”

Exp. Physiol. 91, 807–819 (2006).

[25] Gillies, R.J. and Gatenby, R.A. “Adaptive landscapes and emergent

phenotypes: why do cancers have high glycolysis?” J. Bioenerg. Biomembr. 39,

251–257 (2007).

(4)

[26] Abel, F. et al. “Imbalance of the mitochondrial pro- and antiapoptotic mediators in neuroblastoma tumours with unfavourable biology” Eur. J. Cancer, 41, 635–646 (2005).

[27] Tan, W. and Colombini, M. “VDAC closure increases calcium ion flux”

Biochim. Biophys. Acta, 1768, 2510–2515 (2007).

[28] Orrenius, S. et al. “Mitochondrial oxidative stress: implications for cell death” Annu. Rev. Pharmacol. Toxicol. 47, 143–183 (2007).

[29] Baines, C.P. et al. “Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death” Nat. Cell Biol 9, 550–555 (2007).

[30] Bauer, M.K. et al. “Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis” J. Cell Biol. 147, 1493–1502 (1999).

[31] Majewski, N. et al. “Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak” Mol.

Cell, 16, 819–830 (2004).

[32] Pelicano, H. et al. “Glycolysis inhibition for anticancer treatment” Oncogene, 25, 4633–4646 (2006).

[33] Costantini P, Jacotot E, Decaudin D, Kroemer G. “Mitochondrion as a novel target of anticancer chemotherapy” J Natl Cancer Inst, 92, 1042–1053 (2000).

[34] Szewczyk A, Wojtczak L. “Mitochondria as a pharmacological target”

Pharmacol Rev, 54, 101–127 (2002).

[35] N. Dias, G. Bailly “Drugs targeting mitochondrial functions to control tumor

cell growth” Biochemical Pharmacology, 70, 1-12 (2005) e referenze ivi citate.

(5)

[36] S.J. Ralph, J. Neuzil “Mitochondria as targets for cancer therapy” Mol. Nutr.

Food Res. 53, 9-28 (2009) e referenze ivi citate.

[37] F. Wang, M.A. Ogasawara, P. Huang “Small mitochondria-targeting molecules as anti-cancer agents” Molecular Aspects of Medicine, 31, 75-92 (2010) e referenze ivi citate.

[38] K. A. Conklin, G. L. Nicolson “Molecular Replacement in Cancer Therapy:

Reversing cancer Metabolic and Mitochondrial Dysfunction, fatigue and the

Adverse Effects of Cancer Therapy” Current Cancer Therapy Reviews, 4, 66-76

(2008) e referenze ivi citate.

Riferimenti

Documenti correlati

Detection of clonal T-cell receptor gamma chain gene rear- rangements by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE) in archival specimens

In models that allow noiseless communication, we prove a reduction of (a suitable variant of) Broadcast to binary Consensus, that preserves the communication model and all

Among the traits that correlate with metabolic alterations and therapy resistance, it has been recently demonstrated that altered lipid metabolism induces

Furthermore, when given after surgery in a sequen- tial fashion with radiation therapy, modern che- motherapy regimens lead to very low locoregional recurrence rates for

Table10.1.Potential cardiotoxicity of cancer therapy DrugToxic dose rangeaAcute toxicitybChronic toxicity2 Doxorubicinc>550mg/m2Arrhythmias,pericarditis-

GH, growth hormone; CRT, cranial radiation therapy; TBI, total body irradiation; HPA, hypothalamic–pituitary axis; IGF-1, insulin- like growth factor 1; IGFBP3, IGF binding protein

Is there enough evidence for us to be able to advise dietary modifications, such as reduced fat and increased soy protein consumption, and the use of nutritional supplements, for

Recombinant soluble TRAIL induces apoptosis within 4 to 8 h in a number of transformed cell lines derived from leukemia, multiple myeloma, neuroblastoma, and cancers of the colon,