• Non ci sono risultati.

IBLIOGRAFIA 5.B

N/A
N/A
Protected

Academic year: 2021

Condividi "IBLIOGRAFIA 5.B"

Copied!
18
0
0

Testo completo

(1)
(2)

Aida M., Ishida T., Tasaka M., 1999. Shoot apical meristem and cotyledon

formation during Arabidopsis embryogenesis: interaction among the

CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development

126: 1563-1570.

Aida M., Vernoux T., Furutani M., Traas J., Tasaka M., 2002. Roles of

PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of

the Arabidopsis embryo. Development 129: 3965–3974.

Anderson K.V., Lengyel J.A., 1980. Changing rates of histone mRNA synthesis

and turnover in Drosophila embryos. Cell 21: 717–727.

Arnold D.R., Françon P., Zhang J., Martin K., Clarke H.J., 2008. Stem–loop

binding protein expressed in growing oocytes is required for accumulation of mRNAs encoding histones H3 and H4 and for early embryonic development in the mouse. Dev. Biol. 313: 347–358.

Ascenzi R., Gantt J.S., 1999. Molecular genetic analysis of the drought-inducible

linker histone variant in Arabidopsis thaliana. Plant Mol. Biol. 41: 159–169.

Babu M.M., Luscombe N.M., Aravind L., Gerstein M., Teichmann S.A., 2004.

Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14: 283-291.

Barton M.C., Madani N., Emerson B.M., 1997. Distal enhancer regulation by

promoter derepression in topologically constrained DNA in vitro. Proc. Natl. Acad. Sci. USA 94: 7257–7262.

Bender J., 2004. DNA methylation and epigenetics. Annu. Rev. Plant Biol. 55: 41–

(3)

Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J., 2003. Local, efflux-dependent auxin gradients as a common module

for plant organ formation. Cell 115: 591-602.

Berger S.L., 2002. Histone modifications in transcriptional regulation. Curr. Opin.

Genet. Dev. 12: 142–148

Berry M., Grosveld F., Dillon N., 1992. A single point mutation is cause of the

Greek form of the hereditary persistence of fetal haemoglobin. Nature 358: 499-502.

Bewley D., Hempel F.D., McCormick S., Zambryski P., 2003. Lo sviluppo

riproduttivo. In: Biochimica e biologia molecolare delle piante. Ed. Zanichelli, pp. 909-962. Bologna.

Bock, C., Reither S.,. Mikeska T., Paulsen M.,. Walter J, Lengauer T., 2005. BiQ

Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21: 4067-4068.

Boggs B.A., Cheung P., Heard E., Spector D.L., Chinault A.C., Allis C.D., 2002.

Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat. Genet. 30: 73–76.

Bracegirdle B., Miles P.H., 1971. An atlas of plant structure. Vol. I Heinemann

Educational Books, London.

Braybrook S.A., Stone S.L., Park S., Bui A.Q., Le B.H., Fischer R.L., Goldberg R.B., Harada J.J., 2006. Genes directly regulated by LEAFY COTYLEDON2

provide insight into the control of embryo maturation and somatic embryogenesis. Proc. Natl. Acad. Sci. USA 103: 3468-3473.

(4)

Burke T.W., Kadonaga J.T. 1997. The downstream promoter element, DPE, is

conserved from Drosophila to humans and is recognized by TAFII60 of

Drosophila. Genes Dev. 11: 3020–3031.

Cao X., Springer N.M., Muszynskii M.G., Phillips R.L., Kaeppler S., Jacobsen S.E., 2000. Conserved plant genes with similarity to mammalian de novo

DNA methyltransferases. Proc. Natl. Acad. Sci. USA 97: 4979–4984.

Cappelletti C., 1975. Gli organi della riproduzione. In: Botanica Vol. 1. Ed. UTET,

pp. 489-602, Torino.

Carninci P., Sandelin A., Lenhard B., Katayama S., Shimokawa K., Ponjavic J., Semple C.A., Taylor M.S., Engstrom P.G., Frith M.C., 2006. Genome-wide

analysis of mammalian promoter architecture and evolution. Nat. Genet. 38: 626-635.

Cartharius K., Frech K., Grote K., Klocke B., Haltmeier M., Klingenhoff A., Frisch M., Bayerlein M., Werner T., 2005. MatInspector and beyond:

promoter analysis based on transcription factor binding sites. Bioinformatics 21: 2933-2942.

Casson S.A., Lindsey K., 2006. The turnip mutant of Arabidopsis reveals that LEAFY

COTYLEDON1 expression mediates the effects of auxin and sugars to

promote embryonic cell identity. Plant Physiol. 142: 1–16.

Chiba Y., Johnsonb M.A., Liddera P., Vogelc J.T., van Erpc H., Greena P.J., 2004.

AtPARN is an essential poly(A) ribonuclease in Arabidopsis. Gene 328: 95–102.

Clark S.E., Jacobsen S.E., Levin J.Z., Meyerowitz E.M., 1996. The CLAVATA and

SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development. 122: 1567-1575.

(5)

Clark S.E., Running M.P., Meyerowitz E.M., 1995. CLAVATA3 is a specific

regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121: 2057-2067.

Clemente S., Franco L., Lopez-Rodas G., 2001. Distinct site specificity of two pea

histone deacetylase complexes. Biochemistry 40: 10671–76.

Dean Rider S.Jr., Henderson J.T., Jerome R.E., Edenberg H.J., Romero-Severson J., Ogas J., 2003. Coordinate repression of regulators of embryonic identity by

PICKLE during germination in Arabidopsis. The Plant J. 35: 33-43.

de Boer G.J., Testerink C., Pielage G., Nijkamp H.J., Stuitje A.R., 1999. Sequences

surrounding the transcription initiation site of the Arabidopsis enoyl-acyl carrier protein reductase gene control seed expression in transgenic tobacco. Plant Mol. Biol. 39: 1197–1207.

Dennis E.S., Peacock W.J., 2007. Epigenetic regulation of flowering. Curr. Opin.

Plant Biol. 10: 520-527.

Dieguez M.J., Bellotto M., Afsar K., Mittelsten S.O., Paszkowski J., 1997.

Methylation of cytosines in nonconventional methylation acceptor sites can contribute to reduced gene expression. Mol. Gen. Genet. 253: 581–588.

Dillon S.C, Zhang X., Trievel R.C, Cheng X., 2005. The SET-domain protein

superfamily: protein lysine methyltransferases. Genome Biol. 6: 227.

Dong A., Yoderr J.A., Zhang X., Zhou L., Bestor T.H., Cheng X., 2001 Structure of

human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res. 29: 439-448.

Fambrini M., Durante C., Cionini G., Geri C., Giorgetti L., Michelotti V., Salvini M., Pugliesi C., 2006. Characterization of LEAFY COTYLEDON1-LIKE gene

(6)

in Helianthus annuus and its relationship with zygotic and somatic embryogenesis. Dev. Genes Evol. 216: 253–264.

Finnegan E.J., Peacock W.J., Dennis E.S., 2000. DNA methylation, a key regulator

of plant development and other processes. Curr. Opin. Genet. Dev. 10: 217– 223.

FitzGerald P.C, Shlyakhtenko A, Mir A.A, Vinson C., 2004. Clustering of DNA

sequences in human promoters. Genome Res. 14: 1562-1574.

Fletcher J.C., Meyerowitz E.M., 2000. Cell signaling within the shoot meristem.

Curr. Opin. Plant Biol. 3: 23-30.

Forino L.M.C., Andreucci A.C., Girali E., Tagliasacchi A.M., 2000.

Cytohistochemical anlysis of Malus domestica Borkh. seed from shedding and nonshedding fruits. Int. J Plant Sci. 161: 463-472.

Fransz P.F., Armstrong S., de Jong J.H., Parnell L.D., van Drunen C., 2000.

Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100: 367– 376.

Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G., 2003. Efflux-dependent auxin gradients establish the apical-basal

axis of Arabidopsis. Nature 426: 147-153.

Frontini M., Imbriano C., Manni I., Mantovani R., 2004. Cell cycle regulation of

NF-YC nuclear localization. Cell Cycle 3: 217-222.

Fujiwara T., Nambara E., Yamagishi K., Goto D.B., Naito S., 2002. Storage

proteins. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD, DOI/10.1199/tab.0020, http://www.aspb.org/publications/arabidopsis/

(7)

Gazzarrini S., Tsuchiya Y., Lumba S., Okamoto M., McCourt P., 2004. The

transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev. Cell 7: 373–385.

Gerola F.M., 1995. Generalità degli eucarioti: la riproduzione. In: Biologia e

diversità dei vegetali. Ed. UTET, pp. 241-266. Torino.

Gidekel M., Jimenez B., Herrera-Estrella L., 1996. The first intron of the

Arabidopsis thaliana gene coding for ELONGATION FACTOR 1 contains an

enhancer-like element. Gene 170: 201–206.

Goldberg R.B., de Plaiva G., Yadegari R., 1994. Plant embryogenesis: zygote to

seed. Science 266: 605-614.

Golden T.A., Schauer S.E., Lang J.D., Pien S., Mushegian A.R., Grossniklaus U., Meinke D.W., Ray A., 2002. SHORT INTEGUMENTS/ SUSPENSOR1/

CARPEL FACTOR, a Dicer homolog, is a maternal effect gene required for

embryo development in Arabidopsis. Plant Physiol. 130: 808-822.

Goll M.G., Bestor T.H., 2005. Eukaryotic cytosine methyl transferases. Annu. Rev.

Biochem. 74: 481–514.

Goodrich J., Tweedie S., 2002. Remembrance of things past: chromatin remodeling

in plant development. Annu. Rev. Cell Dev. Biol. 18: 707–746.

Graessle S., Loidl P., Brosch G., 2001. Histone acetylation: plants and fungi as

model systems for the investigation of histone deacetylases. Cell. Mol. Life Sci. 58: 704–720.

Graves R.A., Marzluff W.F., Giebelhaus D.H., Schultz G.A., 1985. Quantitative

and qualitative changes in histone gene expression during early mouse embryo development. Proc. Natl. Acad. Sci. U. S. A. 82: 5685–5689.

(8)

Grunau C., Clark S., Rosenthal A., 2001. Bisulfite genomic sequencing: systematic

of critical experimental parameters. Nucleic Acid Res. 29: e65.

Guerra R.F., Imperadori L., Mantovani R., Dunlap D.D., Finzi L., 2007. DNA

Compaction by the Nuclear Factor-Y. Biophys. J. 93: 176-182.

Guoli J., Jianti Z., Yingjia S., Xiaohui W., Ronghan J., Yun L., Loke J.C., Davis K.M., Reese G.J, Qingshun Q.L., 2007. Predictive modeling of plant

messenger RNA polyadenylation sites. BMC Bioinformatics 8: 43.

Gusmaroli G., Tonelli C., Mantovani R., 2001. Regulation of the CCAAT-binding

NF-Y subunits in Arabidopsis thaliana. Gene 264: 173-185.

Gusmaroli G., Tonelli C., Mantovani R., 2002. Regulation of novel members of the

Arabidopsis thaliana of the CCAAT-binding nuclear factor Y subunits. Gene

283: 41-48.

Haecker A., Groß-Hardt R., Geiges B. Sarkar A., Breuninger H.r, Herrmann M., Laux T., 2004. Expression dynamics of WOX genes mark cell fate decisions

during early embryonic patterning in Arabidopsis thaliana.Development 131: 657-668.

Hamann T., Benkova E., Bäurle I., Kientz M., Jürgens G., 2002. The Arabidopsis

BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 16: 1610-1615.

Harada J.J. 1999. Signaling in plant embryogenesis. Curr. Opin. Plant Biol. 2: 23-27. Harada J.J., 2001. Role of the Arabidopsis LEAFY COTYLEDON genes in seed

development. J. Plant Physiol. 158: 405-409.

Hetzl J., Foerster A.M., Raidl G., Scheid Mittelsten O., 2007. CyMATE: a new tool

for methylation analysis of plant genomic DNA after bisulphite sequencing. The Plant J. 51: 526–536.

(9)

Higgs D.R., Vernimmen D., Hughes J., Gibbons R., 2007. Using Genomics to

Study How Chromatin Influences Gene Expression. Annu. Rev. Genomics Hum. Genet. 8: 299–325.

Hsieh T.F., Fisher R.L., 2005. Biology of chromatin dynamics. Annu. Rev. Plant

Biol. 56: 327-335.

Holdsworth M., Kurup S., McKibbin R., 1999. Molecular and genetic mechanisms

regulating the transition from embryo development to germination. Trends Plant Sci. 4: 275-280.

Howell S.H., 1998. Embryogenesis. In: Molecular genetics of plant development.

Ed. Cambridge University Press, pp. 55-82. Cambridge.

Huh J.H., Bauer M.J., Hsieh Tzung-Fu, Fischer R., 2007. Endosperm gene

imprinting and seed development. Curr. Opin. Genet. Dev. 17: 1–6.

Hyman A.A., Stearns T., 1992. Spindle positioning and cell polarity. Cell Division

9: 469-471.

Jackson J.P., Lindroth A.M., Cao X., Jacobsen S.E., 2002. Control of CpNpG DNA

methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416: 556–560.

Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T., 2005.

LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol. 46: 399-406.

Kahle J., Baake M., Doenecke D., Albig W., 2005. Subunits of the heterotrimeric

transcription factor NF-Y are imported into the nucleus by distinct pathways involving importin beta and importin 13. Mol. Cell Biol. 25: 5339–5354.

(10)

Kim J.H., Richter J.D., 2006. Opposing polymerase-deadenylase activities regulate

cytoplasmic polyadenylation. Mol. Cell. 24: 173-183.

Kohler C., Hennig L., Bouveret R., Gheyselinck J., Grossniklaus U., Gruissem W., 2003. Arabidopsis MSI1 is a component of MEA/FIE Polycomb group

complex and required for seed development. EMBO J. 22: 4804-4814.

Koltunow A.M., Grossniklaus U., 2003. Apomixis: a developmental perspective.

Ann. Rev. Plant Biol. 54: 547-574.

Kwong R. W., Bui A.Q., Lee H., Kwong L.W., Fischer R.L., Goldberg R.B., Harada J. J., 2003. LEAFY COTYLEDON1-LIKE defines a class of regulators essential

for embryo development. Plant Cell 15: 5–18.

Larkin J.C., Oppenheimer D.G., Pollock S., Marks M.D., 1993. Arabidopsis

GLABROUS1 gene requires downstream sequences for function. The Plant

Cell 5: 1739–1748.

Laux T., Mayer K.F., Berger J., Jürgens G., 1996. The WUSCHEL gene is required

for shoot and floral meristem integrity in Arabidopsis. Development 122: 87-96.

Laux T., Wurschum T., Breuninger H., 2004. Genetic regulation of embryonic

pattern formation. The Plant Cell 16: S190-S202.

Lee H., Fischer R.L., Goldberg R.B., Harada J.J., 2003. Arabidopsis LEAFY

COTYLEDON1 represents a functionally specialized subunit of the CCAAT

binding transcription factor. Proc. Natl. Acad. Sci. USA 100: 2152–2156.

Leyser O., Day S., 2003. Primary axis development. In: Mechanisms in plant

development. Ed. Blackwell Publishing, pp. 48-73. Oxford.

Li Q., Hunt A.G., 1997. The polyadenylation of RNA in plants. Plant Physiol. 115:

(11)

Loidl P., 2004. A plant dialect of the histone language. Trends Plant Sci. 9: 84-90. Loke J.C., Stahlberg E.A., Strenski D.G., Haas B.J., Wood P.C., Li Q.Q., 2005.

Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures. Plant Physiol. 138: 1457– 1468.

Lo Schiavo F., 2003. Modelli di sviluppo: dall’embrione alla pianta. In: Biologia

vegetale. Ed. Zanichelli, pp. 338-348. Bologna.

Lotan T., Ohto M., Yee K. M., West M.A. L., Lo R., Kwong R. W., Yamagishi K., Fischer R. L., Goldberg R.B., Harada J.J., 1998. Arabidopsis LEAFY

COTYLEDON1 is sufficient to induce embryo development in vegetative

cells. Cell 93: 1195–1205.

Luger K., Mader A.W., Richmond R.K., Sargent D.F., Richmond T.J., 1997.

Crystal structure of the nucleosome core particle at 2.8A° resolution. Nature 389: 251-260.

Mangus D.A, Evans M.C, Jacobson A., 2003. Poly(A)-binding proteins:

multifunctional scaffolds for the posttranscriptional control of gene expression. Genome Biol. 4: 223.

Mantovani R., Li X.Y., Pessara U., Hooft van Huisjduijnem R., Benoist C., Mathis D., 1994. Dominant negative analogs of NF-YA. J. Biol. Chem. 269:

20340-20346.

Mantovani R., 1999. The molecular biology of the CCAAT-binding factor NF-Y.

Gene 239: 15–27.

Marziali G., Perrotti E., Ilari R., Testa U., Coccia E.U., Battistini A., 1997.

(12)

cells and monocyte-tomacrophage differentiation. Mol. Cell Biol. 17: 1387-1395.

Mayer K.F.X., Schoof H., Haecker A., Lenhard M., Jüngens G., Laux T., 1998. Role

of WUSCHEL in regulating stem cell fate in Arabidopsis shoot meristem. Cell 95: 805-815.

Mazhar H., Quayle R., Fido R.J., Stobart A.K., Napier J.A., Shewry P.R., 1998.

Synthesis of storage reserves in developing seeds of sunflower. Phytochemistry 48: 429-432.

Mendez R., Richter J.D, 2001. Translational control by CPEB: a means to the end.

Nat. Rev. Mol. Cell. Biol. 2: 521-529.

McNabb D.S., Pinto I., 2005. Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA

Complex in Saccharomyces cerevisiae. Eukariot. Cell 4: 1829–1839.

Newcomb W., 1973. The development of the embryo sac of sunflower Helianthus

annuus after fertilization. Can. J. Bot. 51: 879-890.

Miyoshi K., Ito Y., Serizawa A., Kurata N., 2003. OsHAP3 genes regulate

chloroplast biogenesis in rice The Plant J. 36: 532–540.

Molina C., Grotewold E., 2005. Genome wide analysis of Arabidopsis core

promoters. BMC Genomics, 6: 25.

Nishimura N., Kitahata N., Seki M., Narusaka Y., Narusaka M., Kuromori T., Asami T., Shinozaki K., Hirayama T., 2005. Analysis of ABA

HYPERSENSITIVE GERMINATION2 revealed the pivotal functions of PARN

in stress response in Arabidopsis. The Plant J. 44: 972-984.

Ogas J., Kaufmann S., Henderson J., Somerville C., 1999. PICKLE is a CHD3

(13)

vegetative development in Arabidopsis. Proc. Natl. Acad. Sci. USA 96: 13839– 13844.

Ogawa M., Hanada A., Yamauchi Y., Kuwahara A., Kamiya Y., Yamaguchi S., 2003. Gibberellin biosynthesis and response during Arabidopsis seed

germination. The Plant Cell 15: 1591–1604.

Parcy F., Valon C., Kohara A., Misera S., Giraudat J., 1997. The ABSCISIC

ACID-INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON1 loci act in concert to

control multiple aspects of Arabidopsis seed development, The Plant Cell 9: 1265-1277.

Piccioni F., Zappavigna V., Verrotti A.C., 2005. Translational regulation during

oogenesis and early development: the cap-poly(A) tail relationship. C. R. Biol. 328: 863–881.

Pfluger J., Wagner D., 2007. Histone modifications and dynamic regulation of

genome accessibility in plants. Curr. Opin. Plant Biol.10: 645–652.

Przemeck, G. K. H., Mattsson, J., Hardtke, C. S., Sung, Z. R., Berleth, T., 1996.

Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200: 229–237.

Purves W.K., Sadava D., Orians G.H., Heller H.C., 2001. La riproduzione delle

Angiosperme. In: Biologia: la biologia delle piante. Ed. Zanichelli, pp., 862-877. Bologna.

Rangwala S.H., Richards E.J., 2004. The value-added genome: building and

maintaining genomic cytosine methylation landscapes. Curr. Opin. Genet. Dev. 14: 686–691.

(14)

Reverdatto S.V., Dutko J.A., Chekanova J.A., Haminlton D.A., Belostotsky D.A., 2004. mRNA deadenylation by PARN is essential for embryogenesis in higher

plants. RNA 10: 1200-1214.

Reyes J.C., 2006. Chromatin modifiers that control plant development. Curr. Opin.

Plant Biol. 9: 21-27.

Richter J.D., 1999. Cytoplasmic polyadenylation in development and beyond.

Microbiol. Mol. Biol. Rev. 63: 446-456.

Robinson P.J.J., Fairall L., Huynh Van A.T., Rhodes D., 2006. EM measurements

define the dimensions of the "30-nm" chromatin fiber: Evidence for a compact, interdigitated structure. Proc. Natl. Acad. Sci. USA 103: 6506-6511.

Rombauts S., Florquin K., Lescot M., Marchal K., Rouze P., Van de Peer Y., 2003.

Computational approaches to identify promoters and cis-regulatory elements in plant genomes. Plant Physiol. 132: 1162-1176.

Romier C., Cocchiarella F., Mantovani R., Moras D., 2003. The NF-YB/NF-YC

structure gives insight into DNA binding and transcription regulation by CCAAT Factor NF-Y. J. Biol. Chem. 278: 1336-1345.

Ronchi A., Berry M., Raguz S., Imam A., Yannoutsos N., Ottolenghi S., Grosveld F., Dillon N., 1996. Role of duplicated CCAAT box region in gamma-globin

gene regulation and hereditary persistence of fetal haemoglobin. EMBO J. 15: 143-149.

Rothnie H.M., 1996. Plant mRNA 3’-end formation. Plant Mol. Biol. 32: 43-61. Roy B., Lee A., 1995. Transduction of calcium stress of the human transciption

factor CBF with the proximal CCAAT regulatory element of the grp/Bip promoter. Mol. Cell Biol. 15: 2263-2274.

(15)

Santos Mendoza M., Dubreucq B., Miquel M., Caboche M., Lepiniec L., 2005.

LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett. 579: 4666-4670.

Shahmuradov I.A., Gammerman A.J., Hancock J.M., Bramley P.M., Solovyev V.V., 2003. PlantProm: a database of plant promoter sequences. Nucleic Acids

Res. 31: 114-117.

Shahmuradov A., Solovyev V.V., Gammerman A.J., 2005. Plant promoter

prediction with confidence estimation. Nucleic Acids Res. 33: 1069–1076.

Smale S.T., 1997. Transcription initiation from TATA-less promoters within

eukaryotic protein-coding genes. Biochim. Biophys. Acta 1351: 73–88.

Springer N.M., Napoli C.A., Selinger D.A., Pandey R., Cone K.C., Chandler V.L., Kaeppler H.F., Kaeppler S.M., 2003. Comparative analysis of SET domain

proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol. 132: 907-925.

Srivastava L.M., 2001. Embryogenesis. In: Plant growth and development:

hormones and environment. Ed. Academic press, pp. 75-92. San Diego.

Stephenson T.J.C., McIntyre L., Collet C., Xue G.P., 2007. Genome-wide

identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Mol. Biol. 65: 77–92.

Stone S.L., Kwong L.W., Yee K.M., Pelletier J., Lepiniec L., Fischer R.L., Goldberg R.B., Harada J.J. 2001. LEAFY COTYLEDON2 encodes a B3 domain

transcription factor that induces embryo development. Proc. Natl. Acad. Sci. USA 98: 11806-11811.

(16)

VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol. 143: 902–

911.

Tamaru H., Selker E.U., 2001. A histone H3 methyltransferase controls DNA

methylation in Neurospora crassa. Nature 414: 277–283.

Testa A., Donati G., Yan P., Romani F., Huang T. H.-M., Viganò M.A., Mantovani R., 2005. Chromatin Immunoprecipitation (ChIP) on Chip experiments

uncover a widespread distribution of NF-Y Binding CCAAT sites outside of core promoters. J. Biol. Chem. 280: 13606–13615.

Tian L, Chen ZJ., 2001. Blocking histone deacetylation in Arabidopsis induces

pleiotropic effects on plant gene regulation and development. Proc. Natl. Acad. Sci. USA 98: 200-205.

To A., Valon C., Savino G., Guilleminot J., Devic M., Giraudat J., Parcy F., 2006.

A network of local and redundant gene regulation governs Arabidopsis seed maturation. The Plant Cell 18: 1642–1651.

Ueda K., Kinoshita Y., Xu Z.J., Ide N., Ono M., 2000. Unusual core histones

specifically expressed in male gametic cells of Lilium longiflorum. Chromosoma 108: 491–500.

Vandepoele K., Casneuf T., Van de Peer Y., 2006. Identification of novel

regulatory modules in dicotyledonous plants using expression data and comparative genomics. Genome Biol. 7: R103.

Vanyushin B.F., 2006. DNA methylation plants. Curr. Top Microbiol. Immunol.

301: 67-122.

Warnecke P.M., Stirzaker C., Song J., Grunau C., Melki J.R., Clark S.J., 2002.

Identification and resolution of artifacts in bisulfite sequencing. Methods 27: 101-107.

(17)

Wassenegger M., 2000. RNA-directed DNA methylation. Plant Mol. Biol. 43: 203–

20.

Wasserman W.W., Palumbo M., Thompson W., Fickett J.W., Lawrence C.E., 2000.

Human-mouse genome comparisons to locate regulatory sites. Nat. Genet. 26: 225–228.

West M.A.L., Yee K.M., Danao J., Zimmerman J.L., Fischer R.L., Goldberg R.B., Harada J.J., 1994. LEAFY COTYLEDON1 is an essential regulator of late

embryogenesis and cotyledon identity in Arabidopsis. The Plant Cell 6: 1731-1745.

Wobus U., Weber H., 1999. Seed maturation: genetic programmes and control

signals. Curr. Opin. Plant Biol. 2: 33-38.

Woodland H.R., 1980. Histone synthesis during the development of Xenopus.

FEBS Lett. 121: 1–7.

Wu C.T., Morris J.T., 2001. Genes, genetics and epigenetics: a corrispondence.

Science 293: 1103-1105.

Wu K., Tian L., Malik K., Brown D., Miki B., 2000. Functional analysis of HD2

histone deacetylase homologues in Arabidopsis thaliana. The Plant J. 22: 19–27.

Xiao W., Custard K.D., Brown R.C., Lemmon B.E., Harada J.J., Goldberg R.B., Fischer R.L., 2006. DNA methylation is critical for Arabidopsis embryogenesis

and seed viability. The Plant Cell 18: 805–814.

Yamamoto Y.Y., Ichida H., Matsui M., Obokata J., Sakurai T., Satou M., Seki M., Shinozaki K., Abe T., 2007. Identification of plant promoter constituents by

(18)

Yan H., Jensen W.A., 1991. Ultrastructure of the developing embryo sac of

sunflower (Helianthus annuus) before and after fertililization. Can. J. Bot. 69: 191-202.

Yazawa K., Kamada H., 2007. Identification and characterization of carrot HAP

factors that form a complex with the embryo-specific transcription factor C-LEC1. J. Exp. Bot. 58: 3819–3828

Yun J., Chae H.D., Choi T.S., Kim E.H., Bang Y.J., Chung J., Choi K.S., Mantovani R., Shin D., 2003. Cdk2-dependent phosphorilation of the NF-Y

transcriptional factor and its involvement in the p53-p21 signaling pathway. J. Biol. Chem. 278: 36966-36972.

Yun J., Chae H.D., Choy H.E., Chung J., Yoo H.S., Han M.H., Shin D.Y., 1999. p53

negatively regulates cdc2 transcription via the CCAAT-binding NF-Y transcription factor. J. Biol. Chem. 274: 29677-29682.

Zhang S.H., Lawton M.A., Hunter T., Lamb C.J., 1994. atpk1, a novel ribosomal

protein kinase gene from Arabidopsis: I. Isolation, characterization, and expression. J. Biol. Chem. 269: 17586–17592.

Zilberman D., Henikoff S., 2005. Epigenetic inheritance in Arabidopsis: selective

Riferimenti

Documenti correlati

CHARACTERIZATION OF EXTRACTIVE WASTE FACILITIES FOR SRM RECOVERY FROM MINING SITES: CASE STUDIES FROM THE SMART GROUND

Attraverso l’esame puntuale e meticoloso dei dibattiti dei congressi e delle posizio- ni espresse dai giornali delle associazio- ni internazionali e nazionali — come pure

To develop a prediction model of BW based on BCS, both the intercepts and the slopes of the 12 linear simple equations (one for each breed) were fitted against the mature weight of

43 contribuito al miglioramento complessivo dello stato ecologico della fauna ittica, dall’altro le caratteristiche strutturali dell’habitat (es. altezza della

There follows a list of possible documents which is not exhaustive: documents issued by Bulgarian or foreign authorities, by the Bulgarian Orthodox Church, pronouncements of courts

Several aspects have been revealed about the Takatori Center, hence this this section will focus on the Center activities rather than its history. The Center hosts

A recent review of the literature has been performed for 348 patients with WHO grades II and III spinal cord ependymomas who underwent surgery with known extent of resection (GTR

In Section 2, observational constraints on LGRBs are discussed, leading to our choice of progenitor and requirements of disc be- haviour; in Section 3, we briefly introduce