• Non ci sono risultati.

SESAME: Exploring small businessHV¶ behaviour to enhance resilience to flooding

N/A
N/A
Protected

Academic year: 2021

Condividi "SESAME: Exploring small businessHV¶ behaviour to enhance resilience to flooding"

Copied!
8
0
0

Testo completo

(1)E3S Web of Conferences 7, 08011 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0708011. SESAME: Exploring small business behaviour to enhance resilience to flooding 1,a. 2. 3. 4. 5. Graham Coates , Nigel Wright , Martina McGuinness , Dabo Guan , Tim Harries and Lindsey McEwen. 6. 1. School of Engineering and Computing Sciences, Durham University, Durham, United Kingdom School of Engineering and Sustainable Development, De Montfort University, Leicester, United Kingdom Management School, University of Sheffield, Sheffield, United Kingdom 4 School of International Development, University of East Anglia, Norwich, United Kingdom 5 Business School, Kingston University, Kingston, United Kingdom 6 Department of Geography and Environmental Management, University of the West of England, Bristol, United Kingdom 2 3. Abstract. In the United Kingdom, small and medium sized enterprises (SMEs) account for approximately 99.9% of businesses, 60% of the working population and 47% annual turnover. However, despite the important contribution that SMEs make to the economy, this size of business remains under-researched with a significant gap in understanding how the disruption caused by flooding impacts on SMEs from the time at which a flood event occurs through to the    

(2) 

(3)  . Business continuity management is a recognised approach for enhancing organisational resilience to major disruptions (ISO 22301, 2012). However, this strategic approach to building such resilience in SMEs is under-explored in the literature with a limited range of empirical data to draw on. This paper presents an overview of an inter-disciplinary research       

(4)  

(5)  Research Council, called  ! "

(6)   

(7)  

(8)  

(9)  

(10)   . . Furthermore, SESAME consists of four stands of research which bring together a number of disciplines including agent based modelling and simulation, flood modelling, business continuity management, economic modelling and behavioural science. This paper provides an overview of the different research stands within the SESAME project

(11)  

(12)  

(13)      . #. 1 Introduction   

(14)         

(15)

(16) 

(17)  . 

(18)         

(19)                      .  . In the United Kingdom (UK), recent years have seen businesses suffer significant losses in terms of interruption to operations and damage to property. Indeed, the Environment Agency (EA) estimates the financial cost of the 2007 and 2012 floods to UK businesses at approximately £740 million and £600 million respectively [1]. Such losses are most acutely felt by Small and Medium Enterprises (SMEs) which, in the UK, account for 99.9% of private sector businesses, 60% of employment and 47% of annual turnover [2]. Importantly, in comparison to large businesses, SMEs have different vulnerabilities to flooding. For example, SMEs have limited resources and capabilities which they can bring to bear in preparing and responding to flood events than those of large businesses [3-4]. The UK's Engineering and Physical Sciences Research Council has funded three major projects, including the SESAME project [5], focussing on the research of innovative solutions to flood risk management. This paper provides an overview of the a. SESAME project         

(20)      

(21)   .  

(22)   

(23)   

(24)    . More specifically, this paper presents progress on the four inter-related strands of research being conducted as part of the SESAME project: (i) developing and using agent based modelling, coupled with flood modelling, to simulate SME behaviours during and in the short-term aftermath of a flood event; (ii) understanding the behaviours of SMEs in relation to flooding, and why they do not tend to plan for floods and how these businesses cope when these events occur; (iii) assessing the financial impacts of SME flooding on the wider economy; (iv) understanding what stands in the way of long-term resilience-building in SMEs.. 2 Background.        

(25) 

(26)   

(27)             

(28)       

(29)       .     .    

(30)                 !     

(31)        

(32)          

(33)       .                "

(34)

(35)  . Corresponding author: [email protected]. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)..

(36) E3S Web of Conferences 7, 08011 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0708011.   

(37)       . :     

(38)     

(39)         

(40)  

(41)   

(42)     94; x  )     < x  .     .  < x      < x   

(43)    .  .     #$!%   

(44)   

(45)

(46)  

(47) 

(48)    .              &$!       

(49)  .   

(50) 

(51)   

(52)       '()*+ 

(53)   

(54)  .

(55) 

(56)      ',+    &    -.  

(57)  / .  0  &/-11234     $!                            

(58)    '5+  6      7 

(59)                  .         .  )/"     .      '43)44+ . 3.1. Agent-based modelling and simulation                          #8$/%      

(60)        

(61) = = .  >=  == =

(62) =

(63) =

(64)  = ?= 8         ; #%   )    0  #8$0 %                  - / 

(65)     

(66)          

(67)    .   

(68)

(69)    

(70)       < #%       .    .          

(71)                    

(72)  <#%               

(73)      

(74)

(75)  . 

(76)  

(77)

(78)       

(79)          91   

(80)  8$/    . 3 SESAME  /"/8"       /"    .     

(81)                         

(82)          

(83)       94  . . Agent based modelling & simulation. Agent-based modelling. Economic impact analysis. Education of stakeholders Virtual Geographic Environment. Business continuity processes. . identifies. . Flood modelling. Business Agents. Agent Interaction Framework. implemented in. Agent-based simulation. . Figure 1. Overview of the SESAME project 

(84)  

(85) .. . Figure 2. Agent-based modelling and simulation.. . 9              

(86)   .       .      .                

(87)  

(88) 

(89)    /                      

(90)          )

(91)    )       

(92)   

(93)           

(94) /"   .   

(95) 

(96)                       . .   

(97) 

(98)             

(99)

(100)   9                    

(101)                       

(102)     &   

(103)   

(104)      7  .      

(105)  

(106)   .              . 3.1.1 Classifying businesses and organisations  = 8$> =  =   =   = @AB"C=     

(107) . 

(108)   .                             

(109)    

(110)         

(111)     .         

(112)        7    

(113)  

(114)   

(115)     8$> = AB"=

(116) = . 

(117)  =  .  = =          D   E   F   #DEF%        . 

(118)  G4       8.  E

(119)  - /> =  £ [12]  9                

(120)      / 

(121)

(122) 0  E F A      

(123)     AB"

(124)    

(125)    

(126)  .       92 . 2.

(127) E3S Web of Conferences 7, 08011 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0708011.  Number of businesses (%). 40 35 30 25. 19/07/2007 17:30. 21/07/2007 14:00. 22/07/2007 10:00. 25/07/2007 03:00. 27/07/2007 20:00. 29/07/2007 02:00. 30/07/2007 13:00. 01/08/2007 23:30. 20 Sheffield. 15. Tewkesbury. 10 5 0. . National Land Use Database code. . Figure 3. Business/organisation by type (>1% share).. H   / 

(128)

(129)           AB"  

(130)  II*3  (51  .          9   92   #354

(131)    351

(132) 

(133)   

(134) .    %         .  #434

(135) 

(136)  431

(137) 

(138)

(139)  %                  9     

(140)   .     DEF                           

(141)            

(142)  8$  

(143)   

(144)   /"            . 

(145)   

(146)         

(147)       

(148)    

(149)         

(150)     .   7 

(151)        7     

(152)  

(153)   

(154)   . . Figure 4. 2007 flood simulation of Tewkesbury.. 3.1.3 Using the VGE with inundation data from flood modelling 9              .          9 G     =

(155) = =8$> =AB"M=  M== M=  = =

(156)   )      8   7       

(157)  AB"      9 I           43 33     11 K 133*  &  )          

(158)               

(159)   .      

(160)   

(161)               

(162)

(163)         

(164)      . 3.1.2 Flood modelling &       

(165) 

(166)  /"    ) 

(167)  

(168) 

(169)      

(170) 

(171)        / 

(172)

(173) 0  E  F  A                             

(174)        AB"

(175)        

(176)   )      9        

(177) 

(178)  #4%    4333 

(179)    

(180)   JF   E  F A 

(181) / 

(182)

(183)  #1% K133*

(184)     &   

(185)        

(186)       

(187)            

(188)

(189)         

(190) 

(191)          

(192)          

(193) 7

(194)  

(195)                    /  8   

(196)    

(197)       7      /     

(198)   K 133*       1F E&/9E--F)9L  

(199)      43        $     9G 9      9 G   .             . ” Crown copyright and/or database right 2016. All rights reserved.. . . Figure 5: VGE output for Tewkesbury flood, 22/07/07 (10am).. . &   

(200)      ) .           AB"   

(201)       

(202)           

(203) 

(204)  4333

(205)   

(206)  J F   E F A 

(207) / 

(208)

(209)   . 3.

(210) E3S Web of Conferences 7, 08011 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management.  :7    

(211)         

(212)

(213)  

(214)  

(215)

(216)         

(217)        .     8   

(218)          

(219)       

(220)   

(221)  : /"               9( &   N  >=     :

(222)   /"         "8     #       .  = N >= 7 %                      

(223)     .     8                     

(224)   

(225)  

(226)           

(227)      

(228)     

(229)    .  /             

(230)                 #    %  F 

(231)        

(232)   /"> =   = =                   H                 M= = /" >=  = = 

(233)      

(234)         6        #    %    )7           /"   

(235)              .           

(236)  = 

(237)

(238)  = /"> = =   ?= /   M=    )  = = = == > =.           

(239) 7    9           

(240)     = =/"> =            8    9 (              . 3.1.4 Attributes and behaviours of businesses modelled as agents $ .   0            

(241)    

(242)   ; #% 

(243)    7  

(244)     

(245)  )        /"     

(246) 

(247)   :     7

(248)              

(249)        < #%  .       

(250)                                  /"       < #% "   8      

(251)   .   

(252) 

(253)  < #%       .        #$!%   0   #&/-112234%  &      /"     7  

(254)         

(255)     N >= = N7 >        

(256)   "8  $!     

(257)     N >= = N  >                         

(258)             .       

(259)   /"  

(260)         

(261)    3.1.5 Agent interaction network /   

(262)      

(263)   .           

(264)  

(265)  

(266)           

(267)                          &       /"              

(268)  

(269)      

(270) /"  

(271)     9 7 7 

(272)  )      /".       

(273)        7        

(274)        /  7 

(275)   )7         /"    

(276)  

(277)

(278)  /"   

(279)            

(280)  :

(281)   /"                   

(282)              3.1.6 Preliminary experiments. simulations. and. design. DOI: 10.1051/ e3sconf/2016 0708011. Key. Production capacity level (%) Total available machines (%) No. of available employees (own site) No. of available employees (aid site). 100. PClevel. Percentage. 80. f Rle , Rlm , Rls.

(283). 60. 40 20. of. 0 0. 8  

(284)   . 

(285)     )   

(286) 

(287) = /" >= 7 =                   . .  

(288)    

(289)      9            

(290)         9( &  

(291) 

(292)       7         . .   

(293)   

(294)

(295)  

(296) 

(297)

(298)      

(299)      

(300)  

(301) 

(302)    .     /    .        )  

(303)  

(304) 

(305)         )

(306) . 5. 10 Time (days). 15. 20. 10 ne 0. . Figure 6: Sample output for an SME with mutual aid.. 3.2 Business continuity processes   

(307)    

(308)   ;#%   

(309)    .  >=    = =

(310)  =         7 

(311) 

(312)  <#%     #% 

(313)   

(314)    8$ #  /   2 4% 

(315)            #  /   2 2%< #%. 4.

(316) E3S Web of Conferences 7, 08011 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management.                 # /  2 G% . &  F  #$&F%    

(317)    E F A 

(318) / 

(319)

(320)   &          )    .                

(321)        

(322) 

(323)  

(324)     

(325)  8$ .  . 3.2.1 Case studies /7       

(326)  ,3 )         4 &      

(327)  /" 7       

(328)

(329)        

(330)   .  

(331)        ; #%    

(332)

(333)    

(334) 

(335)   <#%  .  

(336)    

(337)    <#% 

(338)

(339)        . 

(340) . 

(341)  

(342) .   . / 

(343)

(344) . 133*. 1,. 9.  . 133*. 4*.  . 1342. (. H . 133*. 4*.  H. 1342. (. J  . 134G. (.  !   . DOI: 10.1051/ e3sconf/2016 0708011. 3.2.2 Emerging findings 8 

(345)    

(346)      

(347)   )                

(348)  /" 

(349)       .      "8

(350) 

(351)   

(352)    . 

(353) 

(354)      J      .    

(355)    

(356)     

(357)                    7.        

(358)      " 

(359)  

(360)    7

(361)  

(362)   

(363)    .         

(364)  .       D  .    .                 

(365)          . .          

(366)     

(367)    

(368)  

(369)        /" > ) )  7  

(370)                       

(371)  .                 .                 

(372)         

(373)         

(374) 7                         

(375)        

(376)      

(377)             .   

(378)  .  

(379)

(380)           = =  == =

(381) > = = =7?=&=                  

(382) 7     8 7 9,    :

(383)  /"

(384) 7     . 

(385)            

(386)

(387)       

(388)    . L: 9 !  : L 9 !  : L L: 9.  $  

(389)               .        

(390) 7   

(391)  

(392)

(393)    

(394)     8  

(395)   

(396)       9*  .  . Figure 7: Sectoral breakdown of participant firms..         

(397)                    

(398)             

(399) 

(400)           9  7  J    .              

(401)    .     .    

(402)  

(403) 

(404)    <         .       8  / 

(405)

(406)  .    7               

(407)    :               

(408)   133*

(409)          

(410) $ . .  Figure 8: SME problem solving using existing resources.. 5. .

(411) E3S Web of Conferences 7, 08011 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0708011.      

(412)          

(413)               

(414)     

(415) 

(416)        

(417)

(418)  

(419)  

(420)                )         

(421)  /"/8"    ;#%       8  J  & )-   #8J&-%     

(422)    )

(423)  

(424)        

(425)       

(426)          < #%      8J&-         )      #

(427)        %       

(428)   

(429)          < #%    8J&-            

(430)      /"       

(431)  

(432)  /" >= . = =     .    7              .            .   &                       

(433)   

(434)     ?=  =  = = 

(435)  = =

(436) > = ) 7    

(437)   

(438)                   

(439)    .  & 

(440) 

(441)          . 

(442)  /"      

(443)  

(444)     /   .                   

(445)             

(446) .   

(447)  

(448)             

(449)  

(450)       

(451)                  

(452)

(453)     

(454)        

(455)  

(456)            8

(457)          

(458)   .                   .              

(459)       

(460)     .  

(461)                     .   9    

(462) 

(463)                      

(464)     

(465)   .      7  

(466)                  

(467)              

(468)       /"/8"          .     .    

(469)    9     )7  

(470)             

(471)

(472)      

(473)       7 

(474)      .       

(475)         

(476) .     /                      

(477) 

(478)         

(479)    

(480)   .    

(481)        )      .              

(482)   .  . 3.3.1 City scale modelling 8   8J&-        &  -   #&-%        

(483)                   :   N    >=

(484) = =  =        . 

(485) .               .   =   M=   =   = =  > =        

(486)          

(487)      

(488)  &-     

(489)   =!="    >= )   F           G(    8  8J&-                      

(490)   D  /    -

(491)

(492)   3.3.2 Case study 9 

(493)            

(494)         

(495)     =    ?= B= = /"/8"=   > = =

(496) =     

(497)    .  >         

(498)      

(499)

(500)    .   

(501)   

(502)     

(503)  

(504)  

(505)      

(506)         .  

(507)       .    

(508)

(509)     

(510)                 

(511)

(512)                    

(513)    

(514)         

(515)    

(516)  . .        

(517)   

(518)     ! 

(519)  / 

(520)

(521)          

(522)  133*

(523)        4*  

(524) / 

(525)

(526) 0    

(527)    )    

(528)  

(529)    OI44   ( 1P

(530)   0 .     8     9 5      

(531)          4;4    O1,(    O11I       8          

(532)   

(533)    

(534)  

(535)                       )                     ;      <          . 3.3 Economic impact analysis 8          

(536) 

(537)       

(538)  ) 

(539)

(540)               8. .  

(541)    

(542) 

(543)      

(544)       

(545)

(546)    .       

(547)       

(548)          

(549)    .   

(550)  )     / 

(551)

(552)          ).                                      

(553)       

(554) 

(555)       /"     )  

(556)

(557)                     

(558)  

(559)        

(560)      . 6.

(561) E3S Web of Conferences 7, 08011 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management.    

(562)  

(563)   ;  

(564)        .  <        .    / 

(565)

(566)  /      <         

(567)    

(568)     

(569) 

(570)      : .            .  

(571)    <   .  / 

(572)

(573)   ! )           .         

(574)           /   !   B  #/!B%                      .  

(575)                $ .    !    9  

(576)  /$ .     #

(577)   %  D   9  9     

(578)          # .    %          .      

(579)      4I          

(580)      7       .      

(581)

(582)          $ .  J   L   B  #$JLB%      .  

(583)          

(584)                   

(585)    &                     .   

(586)   133*           

(587)    .      )     .  .   &    

(588)          )      .           

(589)                

(590)      

(591)       /"/8"   >                       

(592)  

(593)                     .  8

(594) 

(595)

(596)         ; 7 <   #1)2             .      %<     . 

(597)  )      7   .    )       .  < 

(598)  

(599)   7   .   .    .  &               . ) ) .               /!B  $JLB

(600)            

(601)       .     

(602)      

(603)  . 

(604)   

(605)              

(606)    ;   .      <

(607)    

(608)   

(609) 

(610)   <  

(611)   

(612)  )      <   :    

(613)     

(614)    <       = =  . = = = N  >Q=  = 

(615)

(616)    . <        8    .       /!B  $JLB   

(617)                       ;           

(618)   .       <          

(619)

(620)       

(621)   .   

(622)   133*

(623)    #  )     .   

(624)    %<    .                 

(625)   

(626) 

(627)        "        

(628) O*(  1(P

(629)   .  . DOI: 10.1051/ e3sconf/2016 0708011. Figure 9: Direct/indirect damage for 2007 flood in Sheffield..  

(630)      

(631)       

(632)    #  

(633)           %          

(634)  OG IO4( 8  .          

(635)

(636)    

(637) .     .     #             

(638) .    %  &  

(639)     

(640)

(641)        .        O4I  #*P

(642)   %

(643)  .   O42 #(P

(644)   %  3.4 Education of stakeholders             ; #4%      

(645)       .    )      

(646)      

(647)       

(648)   8$< #%       )      

(649)      

(650)   .           .         /"      

(651)                

(652)          7.         

(653)   .     

(654)        

(655)          

(656)         /"   .                                  /"  

(657)  .      

(658)             .       

(659)                  

(660)   . 

(661)  )                /"     : .    .            

(662)           )        .       

(663)                       

(664)   .                 .                .            

(665) ; 7  =  .  =

(666) = N )   >                

(667)    . 7.

(668) E3S Web of Conferences 7, 08011 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management.      

(669)      )

(670)      

(671)        .   .  <

(672)  

(673)   .      .    .  .      

(674)        )      

(675)

(676)           =

(677)  = =   = N = =   >M=  =  ) 

(678)          

(679)   ) $ .   / "7        

(680)      :    

(681)                /!B  $!LB                 ;  . .     .         

(682) 

(683)  

(684)   

(685)     <              <              )     .   

(686)     7 

(687)       

(688)    . DOI: 10.1051/ e3sconf/2016 0708011. Acknowledgements The authors gratefully acknowledge the funding provided    %&  

(689)  '()*++(')#. References 1. 2.. http://www.environment-agency.gov.uk Rhodes, C., Business statistics, Briefing paper 06152, House of Commons Library, December 2015. 3. McGuinness, M., Johnson, N., Responding to changing paradigms of risk: managing flood risk and enhancing organisational resilience, In Proc of the Association of Geographical Societies in Europe (8*(2

(690)   &RQJUHVV µ&KDQJLQJ *HRJUDSKLHV and GeograSKLHV RI &KDQJH¶, Rome, Italy, 5-7 September 2013. 4. Reuter, C., Towards Efficient Security: Business Continuity Management in Small and Medium Enterprises, International Journal of Information Systems for Crisis Response and Management, 7(3), 69-79, 2015. 5. Coates, G., Hawe, G.I., McGuinness, M., Wright, N.G., Guan, D., Harries, T. and McEwen, L., A framework for organisational operational response and strategic decision making for long term flood preparedness in urban areas', In Proc of the 3rd International Conference on Disaster Management, A Coruña, Spain, 9-11 July 2013. 6. Elliott, D., Herbane, B. & Swartz, E., Business Continuity Management, Routledge: London, 2001. 7. Herbane, B., The evolution of business continuity management: A historical review of practices and drivers, Business History, 52(6), pp. 978-1002, 2010. 8. Pitt, M., The Pitt Review: Lessons learned from the 2007 floods, Cabinet Office, 2008. 9. http://www.iso.org 10. Musgrave, B. & Woodman, P., Weathering the Storm: The 2013 Business Continuity Management Survey, Chartered Management Institute: London, 2013. 11. Herbane, B., Small business research: Time for a crisis-based view, International Small Business Journal, 28(1), pp. 43-64, 2010. 12. 

(691)

(692)   . 4 Conclusions and further work    /"/8"              /"    

(693)          

(694)          

(695)   )   

(696)    

(697)     

(698)               $       

(699)       .      

(700)           

(701)         .                                   

(702)

(703)  . 

(704)  

(705)

(706)          

(707)  /" >=    = =          

(708)     8             

(709)  . .        

(710)  

(711)           &               )           /"     

(712)      .          

(713)  

(714)     &  

(715) 

(716)             

(717)    

(718)   .    

(719)  /" 

(720)  7      9  7 

(721)        

(722)         

(723)

(724)  

(725)  

(726)

(727)       

Riferimenti

Documenti correlati

Naturalmente, dai processi di internazionalizzazione derivano anche degli effetti, sia sullo sviluppo locale che sulla forza lavoro delle imprese venete: i primi, risultano essere

Certainly the use of a test is a function the objective that you want to check. Indeed, if the aim is to measure the lexical skills of students in relation to the total process

[Luo (2010)] Luo W., Gallagher M., (2010) Unsupervised DRG Upcoding Detection in Health- care Databases, 2010 IEEE International Conference on Data Mining Workshops, pp.. [R Core]

La concomitanza con tali opere, fornisce le prime informazioni relative al pubblico lavatoio e alla cosiddetta Fonte Vecchia, alimentati dalla stessa sorgente Fonte Trufo e

Figure 1. SDS-PAGE analysis of ARF protein levels. a) HaCaT cells were transfected with an empty plasmid (vector) and increasing amount of p14ARF expression plasmid. Twenty-four

We show that administration of 17R-RvD1 reduces the activation of NF- kB and modulates the expression of miR-126 in lung from SS mice exposed to H/R; in parallel, expression of