• Non ci sono risultati.

A 2-D model for friction of complex anisotropic surfaces Journal of the Mechanics and Physics of Solids

N/A
N/A
Protected

Academic year: 2021

Condividi "A 2-D model for friction of complex anisotropic surfaces Journal of the Mechanics and Physics of Solids"

Copied!
16
0
0

Testo completo

(1)

Journal of the Mechanics and Physics of Solids 112 (2018) 50–65

ContentslistsavailableatScienceDirect

Journal of the Mechanics and Physics of Solids

journalhomepage:www.elsevier.com/locate/jmps

A 2-D model for friction of complex anisotropic surfaces

Gianluca Costagliolaa, Federico Bosiaa, Nicola M.Pugnob,c,d,

a Department of Physics and Nanostructured Interfaces and Surfaces Centre, University of Torino, Via Pietro Giuria 1, Torino, 10125, Italy

b Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, Trento 38123, Italy

c School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK

d Ket Labs, Edoardo Amaldi Foundation, Italian Space Agency, Via del Politecnico snc, Rome 00133, Italy

a rt i c l e i n f o

Article history:

Received 24 July 2017 Revised 7 November 2017 Accepted 16 November 2017 Available online 20 November 2017 Keywords:

Friction Numerical models Microstructures Anisotropic materials

a b s t ra c t

The friction force observedat macroscale is the result of interactionsat various lower lengthscalesthataredifficulttomodelinacombinedmanner.Forthisreason,simplified approaches arerequired,dependingonthe specificaspectto beinvestigated.In partic- ular,thedimensionalityofthesystemisoftenreduced,especiallyinmodelsdesignedto provideaqualitativedescriptionoffrictionalpropertiesofelasticmaterials,e.g.thespring- blockmodel.Inthispaper,weimplementforthefirsttimeatwodimensionalextension ofthespring-blockmodel,applyingittostructuredsurfacesandinvestigatingbymeansof numericalsimulationsthefrictionalbehaviourofasurfaceinthepresenceoffeatureslike cavities,pillarsorcomplexanisotropicstructures.Weshowhowfrictioncanbeeffectively tunedbyappropriatedesignofsuchsurfacefeatures.

© 2017ElsevierLtd.Allrightsreserved.

1. Introduction

Thefrictionalbehaviorofmacroscopicbodiesarisesfromvarioustypesofinteractionsoccurringatdifferentlengthscales betweencontactsurfacesinrelative motion.Whileitisclearthat theirultimateoriginliesininter-atomicforces,itisdif- ficult to scale theseup tothe macroscopic levelandto includeother aspects such asdependenceon surfaceroughness, elasticityorplasticity,wearandspecificsurfacestructures (NosonovskyandBhushan,2007;Persson,2000).Moreover,the dependenceon“externalparameters”,e.g.relative slidingvelocity ofthesurfacesandnormalpressure,isneglectedinap- proximatemodelssuchasthefundamentalAmontons–Coulomblaw,andviolationsofthelatterhavebeenobserved(Deng etal.,2012;Katanoetal.,2014).

Forthesereasons,simplifiedmodelsarerequiredintheoreticalstudiesandnumericalsimulations,andfrictionproblems canbe addressedindifferentwaysdependingon thespecificaspectsunderconsideration.Inordertoimprovetheoretical knowledgeoffriction,ortodesignpracticalapplications,itisnotnecessarytosimulateallphenomenasimultaneously,anda reductionistapproachcanbeusefultoinvestigateindividualissues.Thus,despitetheimprovementincomputational tools, inmostcases itis still preferableto developsimplified models todescribe specific aspects,aiming to providequalitative understandingofthefundamentalphysicalmechanismsinvolved.

One ofthe mostusedapproaches todeal withfriction of elasticbodies consistsinthe discretization ofa materialin springsandmasses,asdonee.g.intheFrenkel–Kontorovamodel(BraunandKivshar,2004),ortheBurridge–Knopoff model

Corresponding author.

E-mail addresses: [email protected] (G. Costagliola), [email protected] (F. Bosia), [email protected] (N.M. Pugno).

https://doi.org/10.1016/j.jmps.2017.11.015 0022-5096/© 2017 Elsevier Ltd. All rights reserved.

(2)

G. Costagliola et al. / Journal of the Mechanics and Physics of Solids 112 (2018) 50–65 51

(BurridgeandKnopoff,1967), thelatteralsoknownasthespring-blockmodel.Forsimplicity,thesemodels areoftenfor- mulatedinonedimension alongthesliding direction,invarious versionsdependingonthe specificapplication. Inrecent years,interesting resultshave beenobtained withthese models, explainingexperimental observations (Amundsen etal., 2012;Bouchbinderetal.,2011;Maegawaetal.,2010;Rubinsteinetal.,2004;ScheibertandDysthe,2010;Trømborgetal., 2011).Theextensiontotwodimensionsisthestraightforwardimprovementtobetterdescribeexperimental resultsandto correctlyreproducephenomenaoccurringintwodimensions.Thishasalreadybeendoneforsomesystems,liketheFrenkel–

Kontorovamodel(Mandellietal.,2015;Norelletal.,2016)andthespring-blockmodelappliedtogeology(Andersen,1994;

Brownetal.,1991;Giaccoetal., 2014;Mori andKawamura,2008a;Mori andKawamura,2008b; Olamietal., 1992),but muchworkremainstobedonetodescribethefrictionofcomplexandstructuredsurfaces.

Theinterestofthisstudyliesnotonlyinthenumericalmodelingoffrictioninitself,butalsointhepracticalaspectsthat canbeaddressed:therearemanystudies relativetobio-inspiredmaterials(Baumetal.,2014;Lietal.,2016;Murarashet al.,2011;Yurdumakanetal.,2005)orbiologicalmaterials(Autumnetal.,2000;Labonteetal.,2014;StempfleandBrendle, 2006; Stempfle et al., 2009; Varenberg et al., 2010) that involve non-trivial geometries that cannot be reducedto one- dimensionalstructuresinordertobecorrectlymodeled.

Theonedimensionalspring-blockmodelwasoriginallyintroducedtostudyearthquakes(CarlsonandLanger,1989;Carl- son etal., 1994; Xiaet al., 2005) andhasalso been usedto investigatemany aspects ofdryfriction of elasticmaterials (Amundsen et al., 2015; Braun etal., 2009; Capozza and Pugno, 2015; Capozza et al., 2011; Capozza and Urbakh, 2012;

Pugnoetal.,2013;Trømborgetal.,2015).InCostagliolaetal.(2016),wehaveextensivelyinvestigatedthegeneralbehav- iorofthemodelandtheeffectsoflocalpatterning(regularandhierarchical)onthemacroscopicfriction coefficients,and inCostagliolaetal.(2017a) wehaveextendedthestudytocompositesurfaces,i.e.surfaceswithvaryingmaterialstiffness androughness;finallyinCostagliolaetal.(2017b)wehaveintroducedthemultiscaleextension ofthemodeltostudythe statisticaleffectsofsurfaceroughnessacrosslengthscales.

Inthis paper,we propose a 2-D extension of the spring-block modelto describe the frictional behavior ofan elastic materialslidingona rigidsubstrate.Ourmain aimistocomparetheresultswiththoseobtainedinthe one-dimensional caseandto extendthe studytomorecomplexsurfacestructures,e.g. isotropicoranisotropic arrangementsofcavities or pillars,simulatingthosefoundinbiological materials.Thetwo-dimensional spring-blockmodelallowstoconsidera more realisticcasesandcapturesavarietyofbehaviorsthatcanbeinterestingforpracticalapplications.

Thepaperisorganizedasfollows:inSection 2,wepresentthemodel;inSection 3.1,wediscussthemaindifferences withtheone-dimensionalcaseandweexploretheroleoftheparameterswithoutsurfacestructures,highlightingthephe- nomenologyofthe model;inSection3.2,wepresenttheresultsforstandard1-D and2-D surfacestructureslikegrooves andcavities;inSections3.3and3.4,weconsidermorecomplexcasesofanisotropicsurfacepatterning;finally,inSection4, conclusionsandfuturedevelopmentsarediscussed.

2. Model

Theequationofmotionforanisotropiclinearelasticbodydrivenby aslideronaninfinitelyrigidplane withdamping andfriction can be written as:ρu¨=μ∇2u++μ)(· u)γ ρu˙, where uis the displacementvector, ρ isthe mass

density,γ isthedampingfrequency,λ,μaretheLamé constants.Thefollowingboundaryconditionsmustbeimposed:the topsurfaceofthebodyisdrivenatconstantvelocityv,thebottomsurfaceissubjectedtoaspatially variablelocalfriction force, whichwe discussbelow, representingthe surfaceinteractions betweentheelastic body andthe rigidplane, while freeboundaryconditionsaresetontheremainingsides.

Inordertosimulatethissystem,weextendthespring-blockmodeltothetwo-dimensionalcase:thecontactsurfaceis discretizedintoelementsofmassm,eachconnectedbyspringstotheeightfirstneighborsandarrangedinaregularsquare mesh(Fig. 1)withNx contactpointsalong thex-axisandNy contactpointsalongthe y-axis. Hence,the totalnumberof blocksisNb≡NxNy.Thedistancesontheaxisbetweentheblocksare,respectively,lxandly.Themeshadoptedinprevious studiesofthe2-Dspring-block model,e.g. Olamietal.(1992)andGiaccoetal.(2014),doesnotincludediagonalsprings, butweaddthemtoaccountforthePoissoneffect(ourmeshinsimilartothatusedinTrømborgetal.(2011)).

Inordertoobtaintheequivalenceofthisspring-masssystemwithahomogeneous elasticmaterialofYoung’smodulus E,thePoisson’sratiomustbefixedtoν=1/3(AbsiandPrager,1975),whichcorrespondstotheplanestresscase,lx=ly≡ l andKint=3/8Elz, where lz is the thickness ofthe 2-D layer andKint is the stiffness of the springs connectingthe four nearestneighborsofeachblock,i.e.thosealignedwiththeaxis.ThestiffnessofthediagonalspringsmustbeKint/2.Hence, the internal elastic force on the block i exerted by the neighbor j is F(inti j)=ki j(ri j− li j)(rj− ri)/ri j, whereri, rj are the positionvectorsofthetwoblocks,rijisthemodulusoftheirdistance,lijisthemodulusoftheirrestdistanceandkij isthe stiffnessofthespringconnectingthem.

All the blocks are connected, through springs of stiffness Ks, to the slider that is moving at constant velocity v in the xdirection, i.e. theslider vector velocity is v=(v,0). Giventhe initial restposition r0i of block i,the shear force is F(si)=Ks(vt+r0i− ri). Wedefine thetotaldriving forceoni asF(moti) =

jF(inti j)+F(si).ThestiffnessKs canbe relatedtothe macroscopicshearmodulusG=3/8E,sincealltheshearspringsareattachedinparallel,sothatbysimplecalculationswe obtainKs=Kintl2/lz2.Inthefollowing,forsimplicitywefixlz=l.Thisformulation,commonlyusedinspring-blockmodels, neglectsthelong-rangeinteractions thatmayarisefromwavepropagationthroughthe bulk(Elbanna 2011;Hulikaletal.,

(3)

52 G. Costagliola et al. / Journal of the Mechanics and Physics of Solids 112 (2018) 50–65

Fig. 1. Discretization of a square surface into a 2-D spring-bock model, showing the mesh of the internal springs. The shear springs K s modeling the block interaction with the slider are not shown.

2015;Rice,1993;RiceandRuina,1983).Here,wesupposethatthelocalinteractionsaredominating,whichisareasonable assumptionforslowslidingvelocitiestypicaloftheexperimentswe useasbenchmarks(Baumetal.,2014;Lietal., 2016;

Murarashetal., 2011).Thisassumptionhasalreadyallowed toobtaincorrectdescriptions ofthephenomenaoccurringat thetransitionfromstatictodynamicfriction(Braunetal.,2009;Trømborgetal.,2015).

Theinteractions betweentheblocksandtherigidplanecanbe introducedinmanyways:intheoriginal paperonthe springblock model(BurridgeandKnopoff,1967) andinearthquakerelatedpapers,e.g. Olamietal.(1992)andMori and Kawamura(2008a), itisintroduced by meansofan effectivevelocity-dependent force(Dieterich,1979;Rice etal.,2001), infrictionstudies,e.g.Amundsenetal.(2012)andBraunetal.(2009),byspringsthatattachanddetachduringmotion,in Trømborgetal.(2011)andGiaccoetal.(2014)bymeansoftheclassicalAmontons–Coulomb(AC)frictionforce.Thesevari- ousapproachesgiverisetoslightlydifferentquantitativeresults,butiftheyareimplementedunderreasonableassumptions, theydonotsignificantlyaffecttheoverallpredictionsofthemodel,whichisthoughttoprovideaqualitativeunderstanding ofthebasicmechanismsoffriction.Thisistrueatleastforthesmallslidingvelocitiesweareconsideringcomparedtothe characteristicvelocityscalesofthesystem,i.e.l

Kint/m.Adifferentqualitativebehaviormayariseforhigherslidingveloc- ities,asshownforrate-and-state frictionlaws (Elbanna andHeaton,2012;Heaton,1990; ZhengandRice,1998).In these cases,acarefulevaluationoftheinterplaybetweenthefrictionlawandslidingvelocityofthesystemmustbeperformed.

Inthisstudy,weadoptaspring-blockmodelbasedontheACfrictionforce andastatisticaldistributiononthefriction coefficients (Costagliola et al., 2016; 2017a;2017b): while the block i is at rest,the friction force F(f ri) is opposedto the total drivingforce, i.e.F(f ri)=−F(moti),up to a thresholdvalue Ff r(i)=μsiFn(i),where μsi isthe staticfriction coefficient and Fn(i) isthenormalforceactingoni.Whenthislimitisexceeded,aconstantdynamicfrictionforceopposesthemotion,i.e.

F(f ri)=μdiFn(i)r˙i,whereμdiisthestaticfrictioncoefficientandr˙iisthevelocitydirectionoftheblock.Inthefollowing,we willdropthesubscriptss,deverytimetheconsiderationsapplytoboththecoefficients.

Thefrictioncoefficientsareextractedfroma Gaussianstatisticaldistributiontoaccountfortherandomnessofthesur- faceasperities,i.e.pi)=(2πσ)−1exp[i(μ)m)2/(2σ2)],where(μ)mdenotesthemeanofthemicroscopicfriction coefficientsandσ isitsstandarddeviation.Inordertosimulatethepresenceofpatterningorofstructuresonthesurface,

wesettozerothefrictioncoefficientsoftheblockslocatedonzonesdetachedfromtherigidplane.Themicroscopicstatic anddynamicfrictioncoefficientsarefixed conventionallyto s)m=1.0(1)andd)m=0.50(5),respectively,wherethe numbersinbracketsdenotethestandarddeviationsoftheirGaussiandistributions.

The macroscopic friction coefficientsare denoted with (μ)M. The staticfriction coefficient is calculated fromthe first maximum ofthetotal friction force, whilethe dynamicone asthetime average over thekinetic phase. Tocalculatethe frictioncoefficientsasratiobetweenlongitudinalforceandnormalforce,thenormofthelongitudinalforcevectormustbe calculated.When calculatingtime averages,care mustbe takenintheorderofthe operations:ifthereisan inversion of thefrictionforce(i.e.someblocksexceedtherestposition,asintheanalyticalcalculationsofCostagliolaetal.(2016))ora periodicmotiontakesplace,switchingthe operationsofnormandtimeaverageproducesdifferentresults.Inthesecases, the calculation closerto the realistic experimental procedure must be adopted. However, in the results below, we have checkedthatthe aboveconditionsdonotoccur andtheorderoftheoperationsisirrelevant.The modeldoesnot include roughnessvariationsduringslidingorotherlongtermeffects,sothattheresultsfordynamicfrictionaretobeconsidered withinthelimitsofthisapproximation.

Adampingforceisaddedto eliminateartificialblockoscillations: inBraunetal.(2009)andinthepapersbasedonit (e.g.CapozzaandPugno,2015)thisisdonebymeansofaviscousdampingforceproportionaltothevelocityoftheblock, i.e.F(di)=γmr˙i.Anotheroption,asinthe2-DmodelinTrømborgetal.(2011),istoimposethedampingontheoscillations betweeneachpairofblocksiandj,i.e.F(di j)=−mγ (r˙i− ˙rj),thusemulatingthedescriptionusuallyadoptedforviscoelastic

(4)

G. Costagliola et al. / Journal of the Mechanics and Physics of Solids 112 (2018) 50–65 53

Fig. 2. Time evolution for the total friction force and percentage of moving blocks for N = 20 , pressure P = 0 . 1 MPa, velocity v = 0 . 1 cm/s, γ/ω = 0 . 1 (a) or γ/ω = 0 . 5 (b), where ω is the internal frequency ω

K int /m . The other parameters are set to the default values. Greater damping enhances the dynamic friction coefficient and reduces stick-slip oscillations.

materials(Banksetal.,2011;CarboneandPutignano,2013;Hunter,1961;Krushynskaetal.,2016;Persson, 2001;Tschoegl 1989).InSection 3.1,wediscussthe differentbehaviorobtainedwiththetwo approaches,butinthe followingweadopt theformerone,whichisthesimplesttoallowdampingofnon-physicaloscillations.

Thus,thecompleteequation ofmotionforblock i is:mr¨i=

jF(inti j)+F(si)+F(f ri)+F(di).The overallsystemofdifferential equationsis solved using a fourth-order Runge–Kuttaalgorithm. Inorder to calculatethe average ofany observable, the simulationmust beiterated, extractingeachtime newrandom friction coefficients. Inrepeatedtests, an integrationtime steph=10−8sprovestobesufficienttoreduceintegrationerrorsunderthestatisticaluncertaintyintherangeadoptedfor theparametersofthesystem.

Weconsideronly asquare mesh,i.e.Nx=Ny≡ N,andwe willspecifythenumberofblocks foreach considered case.

ThedefaultnormalpressureisP=0.05MPa,sothatthenormalforceoneachblockisFn(i)=Pl2 andthetotalnormalforce isFn=Pl2N2.Theslidervelocity isv=0.05cm/s.We willdiscussinSection3.1the motivationsforthesechoices, butin anycasetheresultsdisplaysmalldependenceontheseparameters.

Realisticmacroscopicelasticpropertiesarechosen,e.g.aYoung’smodulusE=10MPa,whichittypicalforasoftpolymer orrubber-like materialanda densityρ=1.2g/cm3. Thedistancebetweenblocks lin themodelis anarbitraryparame- ter representingthe smallestsurfacefeature that can be takeninto account andis chosen by defaultasl=10−3 cm,so thatthe orderofmagnitudematchesthose typicalofsurfacestructures usedin experiments(Baumetal., 2014;Lietal., 2016).

3. Results

3.1. Non-patternedsurface

Inthissection,wemodelfrictionproblemsrelativetohomogeneous,non-patternedsurfacesvaryingthefundamentalpa- rameterstounderstandtheoverallbehaviorandtocompareitwiththatofthe1-DmodelstudiedinCostagliolaetal.(2016). InFig.2,thefriction forcebehavior asa functionoftime isshownwiththedefaultsetofparameters:thereisalinearly growingstaticphase upto themacroscopicruptureevent, followedbya dynamicphaseinwhich thesystemslideswith smallstick-slip oscillationsatconstantvelocityv.Thepercentageofblocksinmotionasafunctionoftimeisalsoshown:

inthekinetic phase,singleblocksorsmallgroupsslipsimultaneouslybutnot ina synchronizedmannerwithrespectthe restofthesurface.

Thefirstdifferencewiththe1-D modelisthatthe2D arrayofspringsshowninFig.1allowstocorrectlysimulatethe Poissoneffect,i.e.adeformationinthetransversaldirectionduetothestretchinginthelongitudinalone.Secondly,dueto themodeldefinitionexplainedinSection2,thestiffnessesdonotdependonthetotalnumberofblocks,sothatincreasing Ndoesnot modifytheelasticproperties,butonlythesizeofthesystem.Sincethenumberofpointsgrowsasthesquare ofthe lateral size, N100 can already be considered a large system, as shownin Fig. 3, where the size effects on the globalstaticfrictioncoefficientareshown.Similarresultsholdforthedynamicfriction.Intheleft(Fig.3a)andrightpanels (Fig.3b),theinfluenceoftheappliedpressurePandtheslidervelocityvisalsoshown,respectively.Inthetypicalrangesof

Riferimenti

Documenti correlati

Anche gli altri componenti della famiglia Alexiano (così come la maggior parte della colonia) tornano a disperdersi in diaspora: Alessan- dro, Paniotto e Antonio Alexiano, fratelli

Different from prior analyses, our study was focused ex- clusively on advanced stage patients, included IPS and PET-2 as major prognostic factors in multivariable analysis, and

Among the explored methods, the tandem gold(I)-catalyzed [3,3]-rearrangement/Nazarov reaction of piperidine- derived enynyl acetates bearing a C-2 propargylic ester side-chain (6)

The solution was washed with a solution of sodium thiosulfate and distilled water, dried over anhydrous sodium sulfate and concentrated in vacuo to yield the

The income inequality raises several problems, both because of its thickness and of its characteristics which often make it inequality unacceptable according to

In particular, generational accounting tries to determine the present value of the primary surplus that the future generation must pay to government in order to satisfy the

In tali studi sono stati analizzati i vantaggi e le problematiche legate alla manipolazione delle pelli e proposto un nuovo sistema d’accatastamento automatico che risolva il

Curves showing (a) the tidal prism values obtained by varying the surface extension of the lagoon basin, derived from Equation (1) (gray dashed line), the 1D model (black