• Non ci sono risultati.

1. Mitra V. and Metcalf J. Functional anatomy and blood supply of the liver. Anaesthesia &

N/A
N/A
Protected

Academic year: 2021

Condividi "1. Mitra V. and Metcalf J. Functional anatomy and blood supply of the liver. Anaesthesia & "

Copied!
7
0
0

Testo completo

(1)

1

Bibliografia

1. Mitra V. and Metcalf J. Functional anatomy and blood supply of the liver. Anaesthesia &

Intensive Care Medicine, Volume 13, Issue 2, pp 52-53, 2012.

2. Anastasi G. Trattato di anatomia umana. Volume secondo. 2006-2007, Edi. Ermes s.r.l.

Milano

3. Vollmar B. and Menger M.D. The Hepatic Microcirculation: Mechanistic Contributions an Therapeutic Targets in Liver Injury and Repair. Physiological Review 89 (4), pp.1269-1339, 2009.

4. Rubin E. and Rubin R. Il fegato e le vie biliari. Capitolo 14, pp. 771-781.

5. Campbell I. Liver: functional anatomy and blood supply. Anaesthesia & Intensive Care Medicine, Volume 7, Issue 2, pp 49-51, 2006.

6. LeCluyse E.L., Witek R.P., Andersen M.E. and Powers M.J. Organotypic liver culture models: Meeting current challenges in toxicity testing. Critical Reviews in Toxicology 42 (6), pp. 501-548, 2012.

7. Mitra V. and Metcalf J. Metabolic functions of the liver. Anaesthesia & Intensive Care Medicine, Volume 10, Issue 7, pp. 334-335, 2009.

8. Braet F. and Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comparative Hepatology 1, 2002.

9. Wake K. Cell-cell organization and functions of 'sinusoids‘ in liver microcirculation system. Journal of Electron Microscopy 48 (2), pp. 89-98, 1999.

10. Wisse E., Braet F., Luo D., De Zanger R., Jans D., Crabbe E. and Vermoesen A.

Structure and Function of Sinusoidal Lining Cells in the Liver. Toxicologic Pathology 24 (1), pp. 100-111, 1996.

11. Materne E.-M., Tonevitsky A.G. and Marx U. Chip-based liver equivalents for toxicity testing – organotypicalness versus cost-efficient high throughput. Lab Chip, 2013, 13, pp.

3481–3495.

12. Sanyal A.J. and Shah V.H. Portal hypertension: Pathobiology, evaluation and treatment.

Springer Editore.

13. Robert A. Freitas Jr. Nanomedicine, Volume IIA: Biocompatibility. Landes Bioscience, Georgetown, TX, 2003.

14. A.J. Schwab and C.A. Goresky. Hepatic uptake of protein-bound ligands: effect of an unstirred Disse space. Am. J. Physiol. 270, 1996, pp. 869-880.

15. Van der Meer A.D. and Van der Berg A. Organs-on-chip: breaking the in vitro impasse.

The Royal Society of Chemistry, 2012.

(2)

Bibliografia

2 16. Cho C.H., Park J., Tilles A.W., Berthiaume F., Toner M. and Yarmush M.L. Layered patterning of hepatocytes in co-culture systems using microfabricated stencils.

Biotechniques 48(1), 2010, pp. 47–52.

17. Huh D., Hamilton G.A. and Ingber D.E. From 3D cell culture to organs-on-chips. Trends in Cell Biology, 2011, Vol. 21, pp. 745-754.

18. Moraes C., Mehta G., Lesher-Perez S.C. and Takayama S. Organs-on-chip: A focus on compartmentalized microdevices. Annals of Biomedical Engineering, 2012, Vol. 40, pp.

1211-1227.

19. Luni C., Serena E. and Elvassore N. Human-on-chip for therapy development and fundamental science. Current Opinion in Biotechnology 2014, 25, pp. 45-50.

20. Jang K.J., Mehr A.P., Hamilton G.A., McPartlin L.A., Chung S., Suhd K.Y. and Ingber D.E. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol., 2013, 5, pp. 1119-1129.

21. Mohammed J.S., Wang Y., Harvat T.A., Oberholzer J. and Eddington D.T. Microfluidic device for multimodal characterization of pancreatic islets. Lab Chip 9, 2009, pp. 97-106.

22. Park J., Koito H., Li J. and Han A. Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed. Microdevices 11(6), pp. 1145–1153, 2009.

23. Huh D., Fujioka H., Tung Y.-C., Futai N., Paine R., Grotberg G.B. and Takayama S.

Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. PNAS, 2007, pp. 18886–18891.

24. Douville N.J., Zamankhan P., Tung Y.-C., Li R., Vaughan B.L., Tai C., White J., Christensen P.J., Grotberg J.B. and Takayama S. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip, 2011, 11, pp. 609–619.

25. Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y. and Ingber D.E.

Reconstituting Organ-Level Lung Functions on a Chip. Science, 2010, pp. 1662-1668.

26. Gunther A., Yasotharan S., Vagaon A., Lochovsky C., Pinto S., Yang J., Lau C., Voigtlaender-Bolz G. and Bolz S.-S. A microfluidic platform for probing small artery structure and function. Lab Chip, 10(18), 2010, pp. 2341–2349.

27. Ho C.T., Lin R.Z., Chang H.Y. and Liu C.H.. In vitro rapid centimeter-scale reconstruction of lobule-mimetic liver tissue employing dielectrophoresis-based cell patterning. Transducers and Eurosensors, 2007, pp. 351-357.

28. Schütte J., Hagmeyer B., Holzner F., Kubon M., Werner S., Freudigmann C., Benz K., Böttger J., Gebhardt R., Becker H. and Stelzle M. Artificial micro organs_a microfluidic device for dielectrophoretic assembly of liver sinusoids. Biomedical Microdevices 2011, 13, pp. 493–501.

29. Lee P.J., Hung P.J., Lee L.P. An Artificial Liver Sinusoid With a Microfluidic

Endothelial-Like Barrier for Primary Hepatocyte Culture. Biotechnology and

Bioengineering 97(5), 2007, pp. 1340-1346.

(3)

Bibliografia

3 30. Nakao Y., Kimura H., Sakai Y. and Fujii T. Bile canaliculi formation by aligning rat

primary hepatocytes in a microfluidic device. Biomicrofluidics 5, 2011, pp. 1-7.

31. Toh Y.C., Lim T.C., Tai D., Xiao G., van Noort D. and Yu H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip, 2009, 9, pp. 2026–2035.

32. Goral V.N., Hsieh Y.-C., Petzold O.N., Clark J.S., Yuen P.K. and Faris R.A. Perfusion- based microfluidic device for 3d dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants. CBMS, 2010, Groningen, The Netherlands.

33. Shih M.C., Tseng S.H., Weng Y.S., Chu I.M. and Liu C.H. A microfluidic device mimicking acinar concentration gradients across the liver acinus. Biomed Microdevices 15, 2013, pp. 767–780.

34. Kaihara S., Borenstein J., Koka R., Lanan S., Ochoa E.R., Ravens M., Pien H., Cunningham B. and Vacanti J.P. Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Engineering 6, 2000, pp. 105-117.

35. Kaazempur-MofTad M.R., Borenstein J.T., Hartman L.M., Cheungl W.S., Weinber E.J., Shin M., Sevy A. and Vacanti J.P. Vascularized tissue engineering of vital organs:

design,modeling and functional testing. IEEE 2003.

36. Jang K.J., Cho H.S., Kang D.H., Bae W.B., Kwon T.-H. and Suh K.-Y. Fluid-shear- stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr. Biol., 2011, 3, pp. 134–141.

37. Ghafar-Zadeh E., Waldeisena J.R. and Lee L.P. Engineered approaches to the stem cell microenvironment for cardiac tissue regeneration. Lab Chip, 2011, 11, pp. 3031–3048.

38. Wang J., Ren L., Li L., Liu W., Zhou J., Yu W., Tonga D. and Chena S. Microfluidics: A new cosset for neurobiology. Lab Chip, 2009, 9, pp. 644–652.

39. Manz A., Graber N. and Widmer H.M. Miniaturized total chemical analysis systems_a novel concept for chemical sensing. Sensors and Actuators B1, 1990, pp. 244-248.

40. Chen Y.S., Dai T.H., Ke L.Y. and Liu C.H.. Microfluidic circulatory system for the raise of liver urea assay. NEMS 2012, Kyoto, JAPAN.

41. Viravaidya K. and Shuler M.L. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol. Prog. 20, 2004, pp. 590–597.

42. Ho C.T., Lin R.Z., Chang, W.Y., Changb H.Y. and Liu C.H.. Rapid heterogeneous liver- cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip, 2006, 6, pp. 724–734.

43. Gong S.E., Chen R.J., Chin C.K., Chu W.C., Ho C.T., Chang H.Y. and Liu C.H.. On-chip

lobule-mimetic construction of heterogeneous cells and co-culture via a logarithmical-

concentration varying bioreactor. Transducers 2009, pp. 761–764.

(4)

Bibliografia

4 44. Chu Y.J., Punde T.H., Yan S.M., Srinivasu V.P., Shilpa S., Chen R.J. and Liu C.H.. An integrated lobule-mimetic liver chip for testing hepatotoxicity. Transducers 2011, Beijing, China.

45. Chu1 Y.J., Wang Z.C, Yang S.M., Peng H.L. and Liu C.H.. Drug screening lobule- mimetic liver chip for studying interleukin 8 response in k.pneumonia infected hepatocytes. MicroTAS 2011. Seattle, Washington, United States.

46. Chen Y.S., Ki L.Y. and Liu C.H.. 3D lobule-mimetic chip via positive dielectrophoresis force with sinusoidal spacing poly ethylene glycol-diacrylate microwalls. Transducers 2011, Beijing, China.

47. Ong S.M., Zhang C., Toh Y.C., Kim S.H., Foo H.L., Tan C.H., Van Noort D., Park S.and Yu H. A gel-free 3D microfluidic cell culture system. Biomaterials 29, 2008, pp. 3237–

3244.

48. Ke L.Y., Chen Y.S., Liu J. and Liu C.H.. Cryogenic frozen device for hepatocyte culture and responses. NEMS 2012, Kyoto, JAPAN, March 5-8,2012.

49. Carraro A., Hsu W.-M., Kulig K.M., Cheung W.S., Miller M.L., Weinberg E.J., Swart E.F., Mofrad M.K., Borenstein J.T., Vacanti J.P. and Neville C. In vitro analysis of a hepatic device with intrinsic microvascular based channels. Biomed. Microdevices 2008, vol 10, pp. 795–805.

50. W. Menz, J. Mohr, O. Paul. Microsystem Technology. Wiley-VCH (2001).

51. Judy W.J. Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater. Struct. 10, 2001, pp. 1115–1134.

52. Kovacs G.T.A., Maluf N.I and Petersen K.E. Bulk Micromachining of Silicon.

Proceedings of the IEE 86, 1998.

53. Bustillo J.M., Howe R.T. and MULLER R.S. Surface Micromachining for Microelectromechanical Systems. Proceedings of the IEE 86, 1998.

54. Gardner J.W., Varadan V.K. and Awadelkarim O.O. Smart Material Systems and MEMS:

Design and Development Methodologies. Jhon Wiley & Sons, (2001).

55. H. Yang and Z. Ma. Microsystem for Stem Cell-Based Cardiovascular Research.

BioNanoScience 2012, Volume 2, Issue 4, pp. 305-315.

56. J.F. Dishinger, K.R. Reid and R.T. Kennedy. Quantitative Monitoring of Insulin Secretion from Single Islets of Langerhans in Parallel on a Microfluidic Chip. Anal.

Chem. 2009, 81, pp. 3119–3127.

57. X. Zhang, A. Grimley, R. Bertram and M.G. Roper. Microfluidic System for Generation of Sinusoidal Glucose Waveforms for Entrainment of Islets of Langerhans. Anal. Chem.

2010, 82, pp. 6704–6711.

58. M.F. El Sharkawy, P. Georgiou and C. Toumazou. A Silicon Pancreatic Islet for the

Treatment of Diabetes. IEEE 2010, pp. 1136-1139.

(5)

Bibliografia

5 59. S. Burgarella, S. Merlo, M. Figliuzzi and A. Remuzzi. Isolation of Langerhans islets by

dielectrophoresis. Electrophoresis 2013, 34, pp. 1068–1075.

60. H. Huang, L. Jiang, S. Li, J. Deng, Y. Li, J. Yao, B. Li and J. Zheng. Using microfluidic chip to form brain-derived neurotrophic factor concentration gradient for studying neuron axon guidance. Biomicrofluidics 8, 2014.

61. J.V. Nielsen, M. Thomassen, K. Møllgård, J. Noraberg and N.A. Jensen. Zbtb20 Defines a Hippocampal Neuronal Identity Through Direct Repression of Genes That Control Projection Neuron Development in the Isocortex. Cereb. Cortex, 2013.

62. W.R. Kim, M.J. Jang, S. Joo, W. Sun and Y. Nam. Surface-printed microdot array chips for the quantification of axonal collateral branching of a single neuron in vitro. Lab Chip, 2014,14, pp. 799-805.

63. Horio Y., Aihara K. and Yamamoto O. Neuron-synapse IC chip-set for large-scale chaotic neural networks. Neural Networks, IEEE Transactions on, Volume 14, Issue 5, pp. 1393-1404.

64. R.A. Kaul, N.I. Syed and P. Fromherz. Neuron-Semiconductor Chip with Chemical Synapse between Identified Neurons. PHYSICAL REVIEW LETTERS, 2004.

65. J.C. López. Silicon neurons. Nature Reviews Neuroscience 2, 681, 2001.

66. D. Huh, H. J. Kim, J.P. Fraser, D.E. Shea, M. Khan, A. Bahinski, G.A. Hamilton and D.E. Ingber. Microfabrication of human organs-on-chips. Nature Protocols 8, 2013, pp.

2135–2157.

67. H.J. Kim, D. Huh, G. Hamilton and D.E. Ingber. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip, 2012, 12, pp. 2165–2174.

68. Kim H.J. and Ingber D.E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb), 2013 (9), pp. 1130-1140.

69. J.W. Haycock. 3D Cell Culture: A Review of Current Approaches and Techniques.

Methods in Molecular Biology, vol. 695.

70. Uhlir A. Electrolytic shaping of germanium and silicon. Bell System Tech, J., 1956, 35, pp. 333–347.

71. Turner D.R. Electropolishing silicon in hydrofluoric acid solutions. J. Electrochem. Soc., 1958, 105, pp. 402–408.

72. Theunissen M.J.J. Etch Channel Formation during Anodic Dissolution of N-Type Silicon in Aqueous Hydrofluoric Acid. J. Electrochem. Soc., 1970, 117, pp. 959–965.

73. R. L. Meek, ibid., 118, 437 (1971).

74. V. Lehmann. Electrochemistry of Silicon. Wiley-VCH (2002).

75. G. Barillaro, A. Diligenti, A. Nannini, G. Pennelli, Sens. Actuators, A Phys., 2003, 107,

pp. 279.

(6)

Bibliografia

6 76. G. Barillaro, S. Merlo, L. Strambini, IEEE JSTQE, 14 (4), 1074 (2006).

77. G. Barillaro, A. Diligenti, M. Benedetti, S. Merlo, Appl. Phys. Lett., 89 (15),151110/1 (2006).

78. G. Barillaro, V. Annovazzi-Lodi, M. Benedetti, S. Merlo, Appl. Phys. Lett., 90(12), 121110/1 (2007).

79. G. Barillaro, L. M. Strambini, V. Annovazzi-Lodi, S. Merlo, IEEE JSTQE, 15(5); 1359 (2009).

80. G. Barillaro, A. Nannini, M. Piotto, Physica Status Solidi. A, Applications and Materials Science, 204 (5), 1464 (2007).

81. Baudrant A. Silicon Technologies: Ion Implantation and Thermal Treatment. June 2011, Wiley-ISTE.

82. Morrison S.R. Electrochemistry at semiconductor and oxidized metal electrodes. Plenum Press (1984).

83. Smith R.L. and Collins R.D. Porous silicon formation mechanism. J. Appl. Phys., 71, (1992) R1.

84. M. J. Eddowes, J. Electroanal. Chem., 280, (1990), 297.

85. L. Strambini. Progettazione, processi tecnologici e caratterizzazione di microsistemi e sensori. Tesi di Dottorato Università di Pisa, (2007).

86. R. Memming, G. Schwandt, Surf. Sci., 4, (1966), 109.

87. H. Föll, Appl. Phys. A 53, (1991) 8.

88. S. Cattarin, I. Frateur, M. Musiani and B. Tribollet , Journal of The Electrochemical Society, 147, (2000).

89. M. Christophersen et al. J. Electrochem. Soc. 148, E267-E275 (2001).

90. G. Barillaro, A. Nannini and M. Piotto. Electrochemical etching in HF solution for silicon micromachining. Sensors and Actuators, Volume 102, Issues 1-2, pp. 195-201 (2002).

91. V. Lehmann, U. Gruning. The limits of macropore array fabrication. Thin Solid Films 297, 13-17 (1997).

92. D.H. Ge, J.W. Jiao, S. Zhang and Y.L. Wang. Fast speed nano-sized macropore formation on highly-doped n-type silicon via strong oxidizers. Electrochemistry Communications 12 (2010) 603–606.

93. Bao, X. Q., Jiao, J. W., Wang, Y. L., Na, K. W. and Choi, H. Heavily-branched

macropore and single-trench fabrication via breakdown mechanism. Phys. Status Solidi

A, 204, 2007, pp. 2287–2295.

(7)

Bibliografia

7 94. P.Y.Y. Kan, S.E. Foss, T.G. Finstad. Thick etch-through macroporous Si membrane from p- and n-Si, and fast pore etching and tuning the pore size from n-Si. Materials Science and Engineering B 137, 2007, pp. 63–68.

95. Christophersen M., Carstensen J. and Föll H. Macropore Formation on highly doped n- type silicon. Phys. Stat. Sol. (a) 182, 45, 2000.

96. Carstensen J., Christophersen M. and Föll H. Pore formation mechanisms for the Si-HF system. Materials Science and Engineering B69-70, 2000, pp. 23-28.

97. Carstensen J., Christophersen M. and Föll H. Formation and application of porous silicon. Materials Science and Engineering R280, 2002, pp. 1-49.

98. Carstensen J., Christophersen M., Hasse G. and Föll H. Parameter dependence of pore formation in silicon within a model of local current bursts. Phys. Stat. Sol. (a) 182, 63, 2000.

99. 2400 Series SourceMeter

®

User’s Manual.

Riferimenti

Documenti correlati

The hollow spaces between the liver cell plates form a labyrinth, in which the sinusoids and Disse’s space are located. E lias, 1949) consists of smaller, ba- sophilic and

Menghini. Holtz, T., Moseley, R.H., Scheiman, J.M.: Liver biopsy in fever of unknown origin. Holund, B., Poulsen, H., Schlichting, P.: Reproducibility of liver biopsy diagnosis

Glucagon stimulates the adenylate cyclase system in the liver and thereby the formation of cAMP, which gives rise to important metabolic changes. 3.10) • Fur- thermore, there is

Depending on the degree of impairment of the body’s own defence mechanisms, the candida infection can disseminate further into the tracheobronchial system and gastrointestinal

Experimental results from RF devices implemented in a complicated Si/poly-Si/poly- SiC substrate [16], show that the negative-resistance effect of self-heating (whereby

The distribution of hemoglobin levels after 7 days treatment of fresh green coconut water in animal experiments, the highest hemoglobin level at day 17 was group A, and the

Finally, in the last section we discuss two applications: one is to computing Hall-polynomials, which give an algorithm for computing products of elements in a p-group (or in a

The parent hull of the series, C1 model, was derived from a pre- existing model, C954, that had shown good performance, registered by an intensive experimental program in a towing