• Non ci sono risultati.

Cammann, “Continuous pollution control by chemical sensors”, Sensors and Actuators B, 1992, Vol.6, p

N/A
N/A
Protected

Academic year: 2021

Condividi "Cammann, “Continuous pollution control by chemical sensors”, Sensors and Actuators B, 1992, Vol.6, p"

Copied!
9
0
0

Testo completo

(1)

[1] W. Göpel, K.D Shierbaum, “Definitions and typical examples”, In: Göpel., Hesse J., Zemel J.N. Eds., “Sensors-a comprehensive survey”, 1991, Vol. 2, p. 15-17

[2] K. Cammann, “Continuous pollution control by chemical sensors”, Sensors and Actuators B, 1992, Vol.6, p. 19-24

[3] R.M. Harrison, R. Perry, “Handbook of Air Pollution Analysis, second edition”, London – New-York: Chapman and Hall, 1986, p. 21-85

[4] A. Mandelis, C. Christofides, “Physics, Chemistry and Technology of Solid State Gas Sensors Devices” , Vol.125 in Chemical Analysis: A series of monographs on Analytical Chemistry and Ita Applications, Ed. J.D.

Winefordner, 1993

[5] S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D.S. Presicce, A.M. Taurino, “Solid state gas sensors: State of the art and future activities”, J.O.A.M. Vol. 5, 2003, p. 1335-1348

[6] S.J. Gregg, K.S.W. Sing, “Adsorption, surface area and porosity”, Second edition, Ed. Academic Press, 1982

[7] Rodomontano, “Chimica generale”, http://publishing.yudu.com/Library/

/Aqmh2/ChimicaGenerale/resources/187.htm

[8] C. Wongmanerod, S.Zangooie, H.Aewin, “Determination of pore size distribution and surface area of thin porous silicon layers by spectroscopic ellipsometry”, Applied Surface Science Vol. 172, 2001, p. 117–125

[9] Proceeding of the international Symposium on surface area determination, School of Chemistry, University of Bristol U.K. 1969

[10] A. Hulanicki, S. Glab, F. Ingman, “Chemical Sensors - Definitions and Classification”, Pure & Appl. Chem., Vol. 63, No. 9, 1991, p. 1247-1250

[11] A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D.

Negendank, J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases”, Sensors and Actuators B, 2010, p. 194- 198

[12] M. Ando, T. Kobayashi, S. Iijima, M. Haruta, “Optical CO sensitivity of Au–CuO composite film by use of the plasmon absorption change”, Sensors and Actuators B, 2003, p. 589-595

(2)

H2, O2, O3, CO, CO2 and H2O in air”, Trends in Analytical Chemistry, Vol.

25, No. 10, 2006, p. 937-948

[14] C.K. Ho, M.T. Itamura, M. Kelley, R.C. Hughes, “Review of Chemical Sensors for In-Situ Monitoring of Volatile Contaminants”, Sandia Report , 2001

[15] R.J. Wu, C.H. Hu, C.T. Yeh, P.G. Su, “Nanogold on powdered cobalt oxide for carbon monoxide sensor” Sensors and Actuators B, Vol. 96, 2003, p.

596-601

[16] Y. Tan, T.C. Tan, “An amperometric carbon monoxide sensor based on the steady-state difference response technique”, Sensors and Actuators B, Vol.

28, 1995, p. 113-121

[17] L. Malavasi, C. Tealdi, A. Montenero, J.M. Tulliani, P. Moggi, M.

Guglielmi, G. Flor, A. Lorenzi, A. Martucci, L. Montanaro, G. Chiodelli,

“Materials development for CO-detection with improved selectivity through catalytic activation”, Sensors and Actuators B, Vol. 118, 2006, p.

121-128

[18] A.Lloyd Spetz, P.Tobias, L. Unéus, H. Svenningstorp, L-G. Ekendahl, A.

Göras, P. Rask, P. Salomonsson, P. Mårtensson, R. Wigren, P. Ljung, M.

Mattsson, “Combustion monitoring field effect gas sensors based on Silicon Carbide”, Proc. Transducers’99, 1999, p. 946-949

[19] Y.S. Fung, C.C.W. Wong, “Determination of Carbon monoxide in ambient air using piezoelectric crystal sorption detection”, Analytica Chimica Acta, Vol. 456, 2002, p. 227-239

[20] R. Arsat, M. Breedon, M. Shafiei, P.G. Spizziri, S. Gilje, R.B. Kaner, K.

Kalantar-zadeh, W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications”, Chemical Physics Letters, Vol. 467, 2009, p. 344-347

[21] V. Casey, J. Cleary, G. D’Arcy, J.B. McMonagle, “Calorimetric combustible gas sensor based on a planar thermopile array: fabrication, characterisation, and gas response”, Sensors and Actuators B, Vol. 96, 2003, p.114-123

[22] N. Yamazoe, “Toward innovations of gas sensor technology”, Sensors and Actuators B, Vol. 108, 2005, p. 2-14

[23] S.E. Lewis, J. R. DeBoer, J. L. Gole, P.J. Hesketh, “Sensitive, selective, and analytical improvements to a PS gas sensor”, Sensors and Actuators B, 2005, p. 54-65

(3)

[24] G.M. O’Halloran, M.Kuhl, P.J. Trimp, P.J. French, “The effect of additives on the adsorption properties of porous silicon”, Sensors and Actuators A, Vol. 61, 1997, p. 415-420

[25] V.E. Bochenkov, G.B. Sergeev, “Adsorption, Catalysis, and Reactions on the Surfaces of Metal Nano-oxides”, Catalysis and nanotechnologies, Vol.

2, No. 1, 2010, p. 1-10

[26] J. Watson, K. Ihokura, G. S. V. Coles, “The Tin Dioxide Gas Sensor”, Meas. Sci. Technolol., Vol. 4, 1993, p. 711-719

[27] J. Wollenstein, H. Bottner, M. Jaegle, W. J. Becker, E. Wagner, “Material properties and the influence of metallic catalysts at the surface of highly dense SnO2 films”, Sensors and Actuators B, Vol. 70, 2000, p. 196-202

[28] V.E. Bochenkov, G.B. Sergeev, “Preparation and chemiresistive properties of nanostructured materials”, Advanced in Colliod and Interface Science, Vol. 116, 2005, p. 245-254

[29] B. Bahrami, A. Khodadadi, M. Kazemeini, Y.Mortazavi, “Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane”, Sensors and Actuators B, Vol. 133, 2008, p. 352-356

[30] G. Korotcenkov, B.K. Cho, “Porous Semiconductors: Advanced Material for Gas Sensor Applications”, Critical Review in Solid State and Materials Sciences, Vol. 35, 2010, p. 1-37

[31] C.A. Berven, V. Dobrokhotov, D.N. McIlroy, S. Chava, R. Abdelrahaman, A. Heieren, J. Dick, W. Barredo, “Gas Sensing with Mats of Gold- Nanoparticle Decorated GaN Nanowires”, IEEE Sensors Journal, Vol. 8, No. 6, 2008, p. 930-935

[32] A. Salehi, D.J. Kalantari, “Characteristics of highly sensitive Au/porous- GaAs Schottky junctions as selective CO and NO gas sensors”, Sensors and Actuators B, Vol. 122, 2007, p. 69-74

[33] C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, G. di Francia, F. De Filippo, V. La Ferrara, L. Quercia, L. Lancellotti, “Gas detection with a porous Silicon based sensor”, Sensors and Actuators B, Vol. 65, 2000, p.

257-259

[34] F. Raissi, S. Mirzakuchaki, H.M. Jalili, A. Erfanian, “Room-Temperature Gas-Sensing Ability of PtSi/Porous Si Schottky Junctions”, IEEE Sensors Journal, Vol. 6, p. 146-150

(4)

film as CO sensor”, Microelectronics Journal, Vol. 39, p. 1354-1355

[36] Z.H. Mkhitaryan, A.A. Shatveryan, V.M. Aroutiounian, “Current-Voltage Characteristics of Structures with a Porous Silicon Layer at Adsorption of Carbon Monoxide”, Journal of Contemporary Physics (Armenian academy of Sciences), Vol. 42, 2007, p. 158-161

[37] A. Foucaran, F. Pascal-Delannoy, A. Giani, A. Sackda, P. Combette, A.

Boyer, “Porous Silicon layers used for gas sensor applications”, Thin Solid films, Vol. 297, 1997, p. 317-320

[38] G. Barillaro, A. Nannini, F. Pieri, “APSFET: a new, porous Silicon-based gas sensing device”, Sensors and Actuators B, Vol. 93, 2003, p. 263-270

[39] G. Barillaro, A. Diligenti, L.M. Strambini, “p+n diodes with a lateral porous layer as gas sensors”, Phys. Stat. Sol., Vol. 204, No. 5, 2007, p. 1399-1403

[40] G. Barillaro, G.M. Lazzerini, L.M. Strambini, “A porous Silicon JFET gas sensor: experimental and modeling”, IEEE Sensors 2008, Lecce (Italy) 26- 29 Oct 2008, p. 494-497

[41] G. Barillaro, A. Diligenti, G. Marola, L.M. Strambini, “A Silicon crystalline resistor with an adsorbing porous layer as gas sensor”, Sensors and Actuators B, Vol. 105, 2005, p. 278-282

[42] G. Barillaro, F. Pieri, U. Mastromatteo, “A porous Silicon LED based on a standard BCD technology”, Optical Materials, Vol. 17, 2001, p. 91-94

[43] G. Barillaro, A. Diligenti, F. Pieri, “Integrated porous-Silicon light-emitting diodes: A fabbrication process using graded doping profiles”, Appl. Phys.

Lett., Vol. 78, 2001, p. 4154-4156

[44] T.E. Bell, P.T. Gennissen, D. DeMunter, M. Kuhl, “Porous Silicon as a sacrificial material”, J. Micromech. Microeng., Vol. 6, 1996, p. 361-369

[45] J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N.

Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, “IUPAC – Recommendations for the characterization of porous solids”, Pure & Appl.

Chem., Vol. 66, No. 8, 1994, p. 1739-1758

[46] L.T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers”, Appl. Phys. Lett., Vol. 57, 1990, p.

1046-1048

[47] A. Halimaoui, “Porous Silicon:material processing, properties and applications” in J.C. Vial, J. Derrien (editors), “Porous silicon science and technology”, Ed. Springer-Verlag 1995

(5)

[48] É. Vázsonyi, E. Szilágyi, P. Petrik, Z.E. Horváth, T. Lohner, M. Fried, G.

Jalsovszky, “Porous silicon formation by Stain etching”, Thin Solid Films, Vol. 388, 2001, p. 295-302

[49] http://www.diflon.it/catalogo/Catalogo_Ptfe.pdf

[50] S. Ossicini, L. Pavesi, F. Priolo, “Light emitting Silicon for microphoto- nics”, “CAPITOLO 3 - Porous Silicon”, Ed. Springer Tracts in modern Physics, Vol. 194, 2003

[51] Z. Gaburro, N. Daldosso, L. Pavesi, “Porous Silicon, Encyclopedia of Condensed Matter Physics”, in : F. Bassani, J. Liedl, P. Wyder, Ed.

Elsevier, 2005

[52] R.L. Smith and S.D. Collins, “Porous Silicon formation mechanisms”, J.

Appl. Phys., Vol. 71, No.8, 1992, R1-21

[53] V. Parkhutik, “Porous Silicon – mechanisms of growth and applications”, Solid-State Electronics, Vol. 43, 1999, p. 1121-1141

[54] G.C. John, V.A. Singh, “diffusion-induced nucleation model for the formation of porous Silicon”, Physical Review B, Vol. 52, No. 15, 1995, p.

11126-11131

[55] V. Lehmann, U. Gösele, “Porous Silicon formation: A quantum wire effect”, Appl. Phys. Lett., Vol. 58, No. 8, 1991, p. 856-858

[56] T. Nakagawa, H. Koyama, N. Koshida, “Control of structure and potical anisotropy in porous Si by magnetic-field assisted anodization”, Appl.

Phys. Lett., Vol. 69, 1996, p. 3206-3208

[57] N.K. Ali, M.R. Hashim, A.A. Aziz, “Study of porous Silicon fabricated by pulsed anodic etching of n-Si(100)”, ICSE2006 Proc.2006, Kuala Lumpur, Malaysia

[58] D.Dimova-Malinovska, M.Sendova-Vassileva, N. Tzenov, M.Kamenova,

“Preparation of thin porous Silicon layers by Stain etching”,Thin Solid Films, Vol. 297, 1997, p. 9-12

[59] “Silicon nanostructures from electroless electrochemical etching”, Current Opinion Solid State & Materials Science, Vol. 9, 2005, p. 73-83

[60] R.W. Fathauer, T. George, A. Ksendzov, R.P. Vasquez, “Visible luminescence from Silicon wafers subjected to stain etches”, Appl. Phys.

Lett., Vol. 60, No. 8, 1992, p. 995-997

(6)

Ezzaouia, “Chemical vapour etching of Silicon and porous Silicon: Silicon solar cells and micromachining applications”, Phys. Stat. Sol., Vol. 202, No. 8, p. 1606-1610

[62] R.E. Hummel, S.-S. Chang, “Novel technique for preparing porous Silicon”, Appl. Phys. Lett., Vol. 61, 1992, p. 1965-1967

[63] Y. Kanemitsu, K. Suzuki, H. Uto, Y. Masumoto, T. Matsumoto, S.

Kyushin, K. Higuchi, H. Matsumoto, “Visible photoluminescence of Silicon-based nanostructures: Porous Silicon and small Silicon-based clusters”, Appl. Phys. Lett., Vol. 61, 1992, p. 2446-1448

[64] X. Li, P.W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous Silicon”, Appl. Phys. Lett. Vol. 77, No. 16, 2000, p. 2572-2574

[65] S.W. Chang, V.P. Chuang, S.T. Boles, C.A. Ross, C.V. Thompson,

“Densely packed array of ultra-high-aspect-ratio Silicon nanowires fabricated using blocks-copolymer lithography and metal-assisted etching”, Adv. Funct. Mater., Vol. 19, 2009, p. 2495-2500

[66] M.L. Chourou, K.Fukami, T. Sakka, S. Virtanen, Y.H. Ogata, “Metal- assisted chemical etching of p-type Silicon under anodic polarization in HF solution with and without H2O2”, Electroch. Acta, Vol. 55, 2010, p. 903- 912

[67] “Electrochemically driven intrusion of Silver particles into Silicon under polarization”, Electrochem. Comm., Vol. 10, 2008, p. 346-349

[68] C.Chartier, S. Bastide, C. Lévy-Clément, “Metal-assisted chemical etching in HF/H2O2”, Electroch. Acta, Vol. 53, 2008, p. 5509-5516

[69] H. Asoh, F. Arai, S. Ono, “Effect of noble metal catalyst species on the morphology of macroporous Silicon formed by metal-assisted chemical etching”, Electroch. Acta, Vol. 54, 2009, p. 5142-5148

[70] C.C. Büttner, A. Langner, M. Geuss, F. Müller, P. Werner, U. Gösele,

“Formation of straight 10 nm diameter Silicon nanopores in gold decorated Silicon”, AcsNano, Vol. 3, No. 10, 2009, p. 3122-3126

[71] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, U. Gösele, “Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of Silicon”, J. Phys. Chem., Vol. 114, 2010, p. 10683-10690

[72] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, J. Zhu,

“Fabrication of single-crystalline Silicon nanowires by scratching a Silicon surface with catalytic metal particles”, Vol. 16, 2006, p. 387-394

(7)

[73] V. Lehmann, “Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications”, Ed. Wiley-VCH Verlag GmbH, 2002

[74] Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gosele, “Metal-assisted chemical etching of silicon: a review”, Adv. Mater., 2011, Vol. 23, p. 285- 308

[75] C.C. Büttner, N.D. Zakharov, E. Pippel, U. Gösele, P.Werner, “Gold- enhanced oxidation of MBE-grown Silicon nanowires”, Semicond. Sci.

Technol., Vol, 23, 2008, p. 1-6

[76] S. Cruz, A. Hönig-d’Orville, J. Müller, “Fabrication and optimization of porous Silicon substrates for diffusion membrane applications”, J.

Electrochem. Soc., Vol. 152, No. 6, p. C418-C424

[77] S. Yae, Y. Kawamoto, H. Tanaka, N. Fukumuro, H. Matsuda, “Formation of porous Silicon by metal particle enhanced chemical etching in HF solution and its application for efficient solar cells”, Electrochem. Comm., Vol. 5, 2003, p. 632-636

[78] T. Hadjersi, N. Gabouze, E.S. Kooij, A. Zinine, A. Ababou, W. Chergui, H.

Cheraga, S. Belhousse, A. Djeghri, “Metal-assisted chemical etching in HF/Na2S2O8 or HF/KMnO4 produces porous Silicon”, Thin Solid films, Vol. 459, 2004, p. 271-275

[79] “Blue luminescence from porous layers produced by metal-assisted chemical etching on low-doped Silicon”, Vacuum, Vol. 80, 2005, p. 366- 370

[80] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, U.

Gösele, “Ordered arrays of vertically aligned [110] Silicon nanowires by suppressing the crystallographically preferred <100> etching directions”, Nano Lett., Vol. 9, No. 7, 2009, p. 2519-2525

[81] K. Tsujino, M. Matsumura, “Boring deep cylindrical nanoholes in Silicon using Silver nanoparticles as a catalyst”, Adv. Mater., Vol. 17, No. 8, 2005, p. 1045-1047

[82] K. Tsujino, M. Matsumura, “Morphology of nanoholes formed in Silicon by wet etching in solutions containing HF and H2O2 at different concentrations using Silver nanoparticles as catalysts”, Electroch. Acta, Vol. 53, 2007, p. 28-34

[83] T. Hadjersi, “Oxidizing agent concentration effect on metal-assisted electroless etching mechanism in HF-oxidizing agent-H2O solutions”, Appl. Surf. Sc., Vol. 253, 2007, p. 4156-4160

(8)

[84] K. Peng, Y. Yan, S. Gao, J. Zhu, “Dendrite-assisted growth of Silicon nanowires in electroless metal deposition”, Adv. Funct. Mater., Vol. 13, No. 2, 2003, p. 127-132

[85] M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, N.-B.

Wong, “Preparation of large-area uniform Silicon nanowires arrays through metal-assisted chemical etching”, J. Phys. Chem. C, Vol. 112, p. 4444-4450

[86] K. Peng, A. Lu, R. Zhang, S.-T. Lee, “Mobility of metal nanoparticles in Silicon and induced anisotropic Silicon etching”, Adv. Funct. Mater., Vol.

18, 2008, p. 3026-3035

[87] a) M. Haruta, “Size- and support-dependency in the catalysis of gold”, Catal. Today, Vol. 36, 1997, p. 153-166; b) M. Haruta, M. Daté, “Advances in the catalysis of Au nanoparticles”, Appl. Catal. A: General, Vol. 222, 2001, p. 427-437; c) M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, M. Haruta, “Chemical vapor deposition of gold on Al2O3, SiO2, TiO2 for oxidation of CO and of H2”, Catal. Lett., Vol. 51, 1998, p. 53-58

[88] a) M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide”, J. Catal., Vol. 115, 1989, Vol. 301-309; b) M. Haruta, S.

Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmont, “Low- temperature oxidation of CO over gold supported on TiO2, α-Fe2O3 and Co3O4”, J. Catal., Vol. 144, 1993, p. 175-192

[89] S. Polisski, B. Goller, A. Lapkin, D. Kovalev, “Hybrid metal/silicon nanocomposite systems and their catalytic activity”, Phys. Status Sol. C, Vol. 6, No. 7, 2009, p. 1575-1579

[90] S. Kaya, E. Erunal, R. Shaltaf, S. Ellialtioglu, D. Uner, “On the structure sensititvity of CO oxidation on alumina supported Pd-Pt bimetallic catalysts”, Turk J. Chem. Vol. 33, 2009, p. 11-21

[91] “Ag/SiO2 catalysts prepared via g-ray irradiation and their catalytic activities in CO oxidation”, J. Molec. Catal. A: Chem., Vol. 274, 2007, p.

95-100

[92] F. Moreau, G.C. Bond, B. van der Linden, B.A.A. Silberova, M. Makkee,

“Gold supported on mixed oxides for the oxidation of carbon monoxide”, Appl. Catal. A: General, Vol. 347, 2008, p. 208-215

[93] N. Ferralis, R. Maboudian, C. Carraro, “Temperature-induced self-pinning and nanolayering of AuSi eutectic droplets”, J. Am. Chem. Soc., Vol. 130, 2009, p. 2681-2685

(9)

[94] M. Bassu, M.L. Strambini, G. Barillaro, F. Fuso, “Light emission from silicon/gold nanoparticle systems”, Appl. Phys. Lett., Vol. 97, 2010, p.

143113-143115

[95] Y. Chen, K. Peng, Z. Cui, “A lift-off process for high resolution patterns using PMMA/LOR resist stack”, Microelec. Engineer., Vol. 73-74, 2004, p.

278-281

[96] G. Barillaro, L.M. Strambini, “An integrated CMOS sensing chip for NO2

detection”, Sens. Act. B, Vol. 134, 2008, p. 585-590

[97] J.T. Frederiksen, P.G. Melcher, E. Veje, “Electrical band-gap energy of porous silicon and the band offsets at the porous-silicon/crystalline heterojunction measured versus sample temperature”, Phys. Rew. B, Vol.

58, No. 12, 1998, p. 8020-8024

Riferimenti

Documenti correlati

Indeed, infected plants under controlled water stress conditions show (i) a high rate of photosynthesis and stomatal conductance; (ii) low hydraulic resistance to water transport;

providing the first characterization of the overall variability of the structure and genomic organization of a satellite DNA within a species and.. among

After Pacuvius Saturus and Nahania Victoria, Gabinius Ru- fus (father) and Iulia Gallitta are the only other married flamines attested in Thugga.. It seems improbable that the words

Ma come abbiamo già detto, molto spesso, il soggetto anziano è un soggetto che tende ad aumentare la sedentarietà, e quindi la conseguente diminuzione degli

Laboratory spectra of ion irradiated mixtures are used to fit the profile of the solid CO 2 bending mode band observed by the Spitzer Space Telescope in the line of sight to

Per permettere all’utente di interfacciarsi con il sistema tramite PC è stata realizzata una piattaforma software in ambiente LabView, con i vantaggi di una potenza

[r]

Machine perception is a very challenging topic for underwater applications, and has so far been limited to 2D mosaicking and 2.5D bathymetric mapping. Recently,