ContentslistsavailableatScienceDirect
Health
Policy
jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / h e a l t h p o l
Geographic
variation
in
inpatient
costs
for
Acute
Myocardial
Infarction
care:
Insights
from
Italy
Chiara
Seghieri
a,∗,
Paolo
Berta
b,
Sabina
Nuti
aaInstituteofManagementandDepartmentEMbeDS,ScuolaSuperioreSant’Anna,PiazzaMartiridellaLibertà33,56127Pisa,Italy bDepartmentofQuantitativeMethods,UniversityofMilanoBicoccaViaBicoccadegliArcimboldi8,20126Milano,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received24December2017
Receivedinrevisedform18January2019 Accepted19January2019
Keywords: Geographicvariation Healthcareexpenditures Acutemyocardialinfarction Governancemodels Recycleprediction
a
b
s
t
r
a
c
t
Geographicvariationsinhealthcareexpenditureshavebeenwidelyreportedwithinandbetween
coun-tries.Nevertheless,empiricalevidenceontheroleoforganizationalfactorsandcaresystemsinexplaining
thesevariationsisstillneeded.Thispaperaimsatassessingtheregionaldifferencesinhospitalspending
forpatientshospitalizedforAcuteMyocardialInfarction(AMI)inTuscanyandLombardyregions(Italy),
whichrankhighintermsofcarequalityandthathavebeen,atleastuntil2016,characterizedbyquite
differentgovernancesystems.Generalizedlinearmodelsareperformedtoestimateindex,30-dayand
one-yearhospitalizationspendingadjustedforbaselinecovariates.Atwo-partmodelisusedto
esti-mate31–365dayexpenditure.AdjustedhospitalspendingforAMIpatientsweresignificantlyhigher
inLombardycomparedwithTuscany.InLombardy,patientsexperiencedhigherre-hospitalizationsin
the31–365daysandlongerlengthofstaysthaninTuscany.Ontheotherhand,nosignificantregional
differencesinadjustedmortalityratesatbothacuteandlongerphaseswerefound.
Comparingtworegionalhealthcaresystemswhichmainlydifferinboththereimbursementsystems
andthelevelofintegrationbetweenhospitalandcommunityservicesprovidesinsightsintofactors
potentiallycontributingtoregionalvariationsinspendingand,therefore,inareasforefficiency
improve-ment.
©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC
BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction
Thegeographicvariationinhealthcareacrossandwithin
coun-triesiswelldocumented,andatalllevelssuchasbetweendifferent
healthcareservicesandbetweenbothlargeandsmallareas[1,2].
Partofthisgeographicvariationisexpectedandoftenlinkedto
dif-ferencesinpopulationhealthandneeds(suchdemographicsand
healthstatus).However,someofthisvariationmaybeunwarranted
anddrivenbynon-clinicalfactors,suchasprofessionaldecision
making,theavailability anddistributionof resources,physician
incentives,financingandreimbursementmodels[2].Themain
pol-icychallengeisthusnottoeliminatevariationaltogetherbutto
identifyareasof variationwhere populationcharacteristicsand
healthoutcomesarecomparablebuthigher-than-averagecosts
suggestthepotentialforimprovedefficiency.Evidencefromthe
Dartmouthresearchgroupsuggestedthatevenafteradjustingfor
differencesinpopulationcharacteristicsandinpricelevels,
high-treatmentintensity regions weregenerally not associated with
∗Correspondingauthor.
E-mailaddress:[email protected](C.Seghieri).
betteroutcomesbutwithsignificantlyhigherspending.Theresults
showedthatifalltheseregionshadreducedcarevolumestothe
levelobservedinlow-spendingregionswithasimilarlevelofcare
quality, approximately30%in spendingcouldhave beensaved.
Higherefficiencycouldthusbeachievedbyidentifyingand
reduc-ingunwarrantedvariationwithoutproducingworseoutcomes,on
average,orreductionsinthequalityofcare[3–6].
Despitesimilarvariationswerecorroboratedbyalargebody
of literature in US [7,8] and more recently in other advanced
economies[9–13],thereisstilllittleagreementaboutthecauses
andtheclinicalimplicationsofthesereportedvariations.
Numer-ous possiblefactorsof varyingimpactcoulddrivevariationsin
spending,themajorityofthestudiesfoundthatthehighest
per-centage ofvariationsisduetosupply-sidefactorsincludingthe
typesofservicesprovided[8],paymentdifferentials[14]physician
behavior[15].However,otherstudiesshownthatcostvariations
werenotduetosystemicinefficienciesbutmostlytopopulation
healthstatus[16,17].
Additionally,mostfindingsinUSconfirmedthatgreaterhealth
carespendingdoesnotnecessarilycorrelatewithbettercareor
betterhealth[8,18–20].However,indistinctiontotheDartmouth
https://doi.org/10.1016/j.healthpol.2019.01.010
0168-8510/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
research,otherstudiesinUSshowedthatmorespendingand
uti-lizationarelikelytoleadtobetteroutcomes[21–25].
Otherrecent studies in Europealso reported mixed results.
Whilesomeresearcheshaveshownthatwithincountryvariations
inhealthexpendituresaremainlyexplainedbymedicalneed[26]
andthatexpendituresarelikelytobepositivelyrelatedtohealth
outcomes[27],otherstudies,althoughconfirmingsignificant
vari-ationsincostsandoutcomesacrossandwithincountriesandfor
differentconditions,didnotfoundanyclearcost-qualitytradeoff
pattern[28,29,13,30].
Regardless the magnitude and direction of the association
betweenhealthcarecostsandoutcomes,itseemsthatthereisa
largeproportionofvariationinspendingandutilizationamongand
withincountrieswhichmightreflectdifferencesininefficiencies.
Furtherresearchisthereforeneededtogainabetterunderstanding
oftheunderlyingdriversofvariationsandtoidentifytherelated
healthpolicyimplications.
Inthis context,thepresent studyaimsat analysingregional
variationinhospitalspendingforpatientswithAcuteMyocardial
Infarction(AMI) inItaly. Using specific econometricmodelsfor
healthcarecosts,wecompareone-yeartreatmentsand
Diagnostic-RelatedGroup(DRG)-basedexpendituresofpatientshospitalized
forAMIinLombardyandTuscanyregionswhichareboth
character-izedbysimilarhigh-performinghealthcaresystemsbut,however
differ in terms of institutional settings. In particular, Tuscany
healthcaresystemisbasedonastrongintegrationbetweenthe
var-ioushealthcareproviderstofavourtheefficientuseofbothacute
andpost-acuteservices,andonplanning,targetsettingand
com-petitivebenchmarkingonqualityofcarethatplayacrucialrolein
theregionalgovernance.Lombardyhasadopteduntil2016a
quasi-marketsystemmadeupofbothpublicandprivateprovidersand
basedonaprospectivepaymentsystemtoreimburse
hospitaliza-tions[31–34].ThedistinctdifferencesbetweenLombardy’squasi
marketgovernancemodelandtheintegratedcaremodelof
Tus-canyofferavaluableopportunitytoexploreregionalvariationsin
healthcarespending.
WefocusoncomparisonofAMIcareforseveralreasons
sup-portedbythescientificliterature[35,36],includingthefactthat
AMIis one of the most commonhospital admission; that it is
anacuteconditionwhichisnotrelatedtothepatients’choiceof
providers,patientsareinfactgenerallytakentothenearesthospital
forimmediatetreatment,and,althoughthereisagrowing
interna-tionalconsensusonwhichtreatmentsshouldbeadministeredto
AMIpatients,geographicvariationsinqualityandtreatment
inten-sityarewidelydocumented[13].Moreover,thehospitalizationfor
AMIisawell-definedindexevent,whichislikelytobesimilarly
definedacrossandwithincountries.
2. ThehealthcaresystemsofLombardyandTuscany
Regions
The Italian National Healthcare System (NHS) follows the
Beveridge model [37], providing universal healthcare coverage
throughouttheItalianStateasasinglepayer.Itentitlesallcitizens,
regardlessoftheirsocialstatus,toequalaccesstoessential
health-careservices.In1992,asystemreformtransferredadministrative
andorganizationalresponsibilitiesandtasksfromthecentral
gov-ernmenttotheadministrationsofthe21regionsinItaly.These
regionsnowhavesignificantautonomyontherevenuesideand
inorganizingservicesdesignedtomeettheneedsoftheir
respec-tivepopulations[38,34].Acrossyears,thedecentralizedstructure
oftheItalianNHShasledtotheemergenceofarangeof
differ-entgovernancemodelsattheregionallevel[33],whichofferrich
opportunitiesforcomparativestudyoftheimpactofdifferent
insti-Table1
DescriptionoftheTuscanyandLombardyhealthcaresystems.
TuscanyRegion LombardyRegion
No.Inhabitants(million) 3,7 10
Populationdensity(inh./km2) 163.24 419,11
Lifeexpectancy(years) 85 85
No.ofpublichospitals 40 98
No.ofprivatehospitals 0 102
tutionalsettingsoncostsandoutcomes(i.e.onthevaluecreation
process[39]).
Amongthe20Italianregions,bothLombardyandTuscanyare
amongwealthiestregionsinItalyandtheirpopulationaresimilar
intermsofhealthconditionsandlifestyles.AsshowninTable1,
Tuscanycountsabout3,7inhabitantswhileLombardyabout10
mil-lions.Lifeexpectancyatbirthisof85yearsinbothregionsandthe
percentageofpeoplereportingofbeingingoodhealthconditions
are71.5%and71.2%inTuscanyandLombardyrespectively(Source:
http://dati.istat.it).Thetworegionsarebothcharacterizedbyhigh
qualityhealthcaresystems[40,41]butwithdifferentapproachesto
theorganisationofhealthcaredeliveryandtothefinancingmodel.
TheLombardyhealthcaresystemcomprisesapproximately200
hospitalsgenerating2milliondischargesannually;18billionEuros
aredevotedtohealthcareexpenditures(80%oftheregionalbudget)
everyyear.Theregionalhealthcaresystemwasreformedin1997
becomingaquasi-marketcharacterizedbyaseparationbetween
healthcarepurchasersandproviders,andwhereprivateproviders
deliverthe30%ofthehospitalizationsperyearandcompetewith
thepublicproviders.Patients,therefore,arefreetochoosewhere
to behospitalized whether in any privateor public accredited
providersAnessi-Pessinaetal.[31,33,42,43].
DifferentlyfromLombardy,thehealthcaresysteminTuscany
isbasedona strongintegrationbetweenthevarioushealthcare
providerstofavourtheefficientuseofbothacuteandpost-acute
services.Planning,targetsettingandcompetitivebenchmarking
playcrucialrolesintheregionalgovernance[40]ofTuscany.The
systemcomprisesabout40publicprovidersand34healthdistricts
that areincharge oforganize anddeliverservicesof territorial
healthnetworks,socialcareandsocialintegration.Startingfrom
2016,theRegionalHealthcareSystemhasbeenreformedby
aggre-gatingtheexisting12LocalHealthAuthorities(LHAs)intothree
majornewLocalHealthAuthoritieswhilekeepingtheexistingfour
TeachingHospitals.Morethan95%ofhospitalbedsarepublicand
eachoftheLHAsarefinancedbytheregionaladministrationunder
aglobalbudgetwithaweightedcapitationsystem,thatis,funds
areallocatedtoprovidersthroughanadministrativeprocessnot
directlylinkedtopatientvolumes.Ontheotherhand,budgetcost
controlandqualitycaretargetsareappliedtoteachinghospitals.
Eventhoughpatientshaveafreechoiceofhealthcareprovider,the
absenceofaclearlinkbetweenvolumesandreimbursementmeans
thathospitalsdonothavethesameincentivetocompeteformarket
sharethattheydoinDRG-basedfinancingsystems.Indeed,
hospi-talsinTuscany,aremorefocusedonoutcomeandappropriateness
targetsthataremonitoredthroughabenchmarkingapproachand
throughpublicdisclosureofproviders’performancelevels(http://
performance.sssup.it/netval).
WithregardtotheorganizationofcareforAMI,inItalythere
hasbeenarisinginAMIcarenetworkcoverageacrossthewhole
territory,withagrowingnumberofPercutaneousCoronary
Inter-vention (PCI)promptlydelivered [44]. Thisholds also for both
TuscanyandLombardyregions,inwhichrevascularizationservices
arepromptlyaccessedbytheregionalpopulationsexceptforfew
municipalitieswhicharemorethan60mindistantfromthe
near-estcarenetwork[44].Moreover,inthelastyears,thehealthcare
inte-gratednetworkofcardiachealthservices,followingthelogicof
Hub&Spokemodel[45],whereasaccesstotreatmentofAMIin
Lombardyisassuredthroughthecoordinationamonghospitalsand
emergencyservices,especiallyforthetreatmentofSTEMIpatients
[46,47].
3. Methods
3.1. Datasources
Weconductedaretrospectivecohortstudyusingdatafrom
hos-pitaldischargerecordsfromTuscanyandLombardy.Theanalysis
includedallpatientsdischargedwithaprimarydiagnosisofAMI
(InternationalClassificationofDeceases,9threvision,Clinical
Mod-ification-ICD-9-CMcodes:410.xx)betweenJanuary1,2012,and
December31,2013,fromallhospitalsinTuscanyandLombardy.
Admissionslastinglessthantwodayswereexcluded,aswell
ashospitalizationsofpatientsnotresidentinthetworegions.The
analysisconcernedpatientsolderthan18yearsandyoungerthan
100years.Recordswithadiagnosticcode410.9AMIofunspecified
site,andadiagnosticcode410.×2subsequentepisodeofcarefor
dischargedpatientswerealsoexcludedfromtheanalysis.
IfapatienthadmorethanoneadmissionforAMIduringany
studyyear,werandomlyselectedoneofthoseadmissionsforeach
studyyear[48,49]. StartingwiththeAMIhospitalization (index
admission),eachpatientwasthenfollowedforoneyeartomeasure
variationsinhospitalizationvolumesandspendingacrossTuscany
andLombardy,bothattheinitialAMIepisodeandduringthe
post-hospitalizationperiod.
The study observationwas divided into fourperiods: index
admission(1), allhospitalizationsupto30daysfromtheindex
admission(0–30)(2),fromdays31to365(3),andoverall1-year
hospitalizations(4).The0–30dayswindowcanbeconsideredas
theacutephaseofAMImanagementwhenpatientsshouldreceive
mostoftheguideline-basedadmissiontherapies(i.e.acute
reperfu-siontherapy),andre-hospitalizationsinthisperiodmaybestrongly
linkedtotheadmissionepisodeof care.Ontheotherhand,
re-hospitalizationoncetheacutephasehaspassed(i.e.fromday31
to365)shouldalsodependontheprimarycareandcommunity
supportprovidedtopatients.
Foreachpatient,hospitalizationcostsatindexandpost-index
periodswereidentifiedusingtheDRGreimbursementregistered
intheHDRs.Inordertotakeintoaccountoftheinter-regional
differencesinspendingassociatedwithdifferencesinDRGtariffs,
expenditureswerecalculatedfortheAMIpatientsofeachregion
byapplyingtheLombardyDRGtariffsystemtothe
correspond-ingDRGsinTuscany.Data hadalreadybeenanonymizedatthe
RegionalHealthInformationSystemOffice,whereeachpatientwas
assignedauniqueidentifier.Thisidentifierpreventsthepatient’s
identityandothersensitivedatafrombeingtraced.Thestudywas
carriedoutincompliancewithItalianlawonprivacy,andapproval
byanEthicsCommitteewasnotrequired.
3.2. Methodologicalapproach
The major methodological issues that arise when analysing
healthcarecostsarethatthesenon-negativedataoftenexhibit
sub-stantialpositiveskewness,“heavy”uppertailandamassatzero
fornon-users, asinourstudy,forthosepatientswhowerenot
hospitalizedinthe31–365observationperiod[50–52].
Theskewnessofthecostdistributionswasapproachedusing
GeneralizedLinearModels(GLMs).Inparticular,toestimate
hospi-talizationspendingatthepatient’sindexadmission,at30days,and
at1yearfollowup;threedifferentGMLsweretested,specifying
severalfamilies(Gamma,Poisson,InverseGaussian)andalinklog
function.ThemodifiedParktest[53]andHosmer-Lemeshowtest
[54]wereappliedtochoosethespecificationwiththebettermodel
fitting. For the three dependent variables here considered, the
testsindicatedthattheGamma-Loglinkmodelwasadequate
com-paredtoothertypesofdistributions.Differently,atwo-partmodel
[50,55,56]wasusedtoestimatehospitalization costsat31–365
follow-upperiod(conditionalonsurvivingthefirst30days).This
allowstocontrolforthezero-inflationaffectingthehospitalization
costsinthisobservationperiod.Two-partmodeliscomposedby
tworelatedequation:inthefirstpartofthemodel(Eq.(2)inthis
paper)theprobabilitytoobserveapatientintheperiod31–365
daysismodelledviaprobitregression.Inthesecondpartofthe
model(Eq.(3)inthispaper),thelevelofhospitalexpenditureforthe
patientshospitalizedintheperiod31–365daysismodelledusinga
GLMwithGamma-Loglinkspecification.Allconsideredmodelsare
adjustedforage,sex,ST-segmentAMIandselectedcomorbiditiesat
baselinewhichwereretrieved,foreachpatient,atboththeindex
andinallhospitalizationsoneyearpriortotheindex.Adummy
variableindicatingthepatient’sregionofresidence(1=Lombardy,
0=Tuscany)wasalsoincludedasacovariateinthemodels,inorder
tomeasurethedifferencesbetweenthetworegions.
Thiseconometricapproachcanbeformulatedasfollow:
Model1:Dependentvariables:costatIndex,0–30dayspost
AMI,andat1year
E(Cosi|X)=exp(X/!)
Wherei=1,....,naretheLombardyandTuscanypatients,Xisthe
matrixofthecovariatesand!isthevectorofthecoefficients.Using
similarnotation,Model2forthedependentvariableexpressing
costat31–365dayspostAMIcanbeformulatedasfollow:
E(CostiX) =Pr (Costi>0X) *E (Costi>0,X) (2)
Whichiscomposedby:
Pr (Costi>0X) = exp(Xϕ) 1+exp(Xϕ) (3) E(Costi>0,X) =exp
!
X#"
(4)Asanticipated,differentlyfromModel1,whenweestimatethe
costfor31–365days,weneedtocontrolfortheprobabilitytobe
aliveafter30days.Forthisreason,thetwo-partmodelapproachas
describedbyEq.(2)isadopted,whereEq.(3)estimatesthe
prob-abilitytobealiveat30daysandEq.(4)estimatestheexpenditure
adjustedfortheprobabilitytobealiveat30days.
DifferencesinadjustedcostsbetweenthetwoItalianregions
wereestimatedusingrecycledpredictions.Thismethodavoidsthe
problemofthecovariatesimbalanceaffectingnonlinear
retrans-formationsinGLM[56],andconsistsin1000bootstrapreplications
usedtoestimate95%-bootstrap-percentile-intervals[56,57]ofthe
differencebetweentheexpenditureinTuscanyandLombardy.
Moreover, although the study wasnot designed to test the
impactofspendingonhealthoutcomes,wecomparedmortality
ratesbetweenthetwo regionsafteradjustingfor age,sex,race,
ST-segmentAMI,andcomorbiditiesatbaselinebyusingalogistic
regression.Theavailabledatadidnotallowustoanalyse
possi-bledifferencesinnon-clinicaloutcomessuchaspatients’reported
outcomesorsatisfaction.
Finally,asensitiveanalysiswasperformedaimedatchecking
for potentialselection biasdue tothemainconfounders andto
potentialdifferencesincodingpracticesbetweenthetworegions,
we replicatedtheanalysisbyfirst matchingthepatientsofthe
tworegionsonage,sexandcomorbiditiesusingaCoarsenedExact
Matching(CEM)non-parametricapproach[32,58,59].Theglobal
balancebetweenthepatientsbelongingtothetworegionswas
Table2
SampleCharacteristicsCareProvidedtopatientsadmittedforAcuteMyocardialInfarction.
Patientscharacteristics Lombardy(N=30,225) Tuscany(N=13,187) P-value
Mean(SD) Mean(SD)
Age 70.325 (13.404) 71.940 (13.329) <0.001
Male 0.647 (0.478) 0.637 (0.4808) 0.068
Lipidmetabolismdisorder 0.093 (0.290) 0.212 (0.408) <0.001
Cancer 0.031 (0.174) 0.036 (0.185) 0.027
Diabetes 0.132 (0.338) 0.212 (0.408) <0.001
Hypertensivediseases 0.209 (0.406) 0.411 (0.4925) <0.001
Otherformsofischemicheartdiseases 0.248 (0.431) 0.350 (0.477) <0.001
PreviousHeartfailure 0.173 (0.3773) 0.268 (0.442) <0.001
Conductiondisordersandcardiacdysrhythmias 0.182 (0.3857) 0.209 (0.406)
Cerebrovasculardiseases 0.054 (0.225 0.073 (0.260) <0.001
Vasculardiseases 0.039 (0.192) 0.060 (0.237) <0.001
Chronicobstructivepulmonarydisease 0.040 (0.195) 0.066 (0.249) <0.001
Chronicnephropathies 0.070 (0.254) 0.116 (0.320) <0.001
N-STEMI 0.513 (0.499) 0.557 (0.496) <0.001
Treatmentsatindexadmission
PCI 0.624 (0.484) 0.594 (0.491) <0.001
CABG 0.019 (0.135) 0.009 (0.093) <0.001
Patientoutcomesa
30daymortality 0.077 (0.001) 0.075 (0.002) 0.753
1yearmortality 0.167 (0.001) 0.157 (0.002) 0.055
PatientspendinginEuros(D)b
Index 7,324 (4,336) 6,610 (3,204) <0.001
30day 9,033 (6.032) 8,037 (5,227) <0.001
31-365dayc 3,668 (7,236) 3,044 (6,537) <0.001
1year 12,419 (9,908) 10,854 (8,682) <0.001
aRepresentsrisk-adjustedpercentage(standarderror).
bSpendingisadjustedforregionaldifferencesinDRG-tariffsystems. c Conditionalonsurvivingthefirst30days.
4. Results
Weidentified13,187patientsinTuscanyand30,225in
Lom-bardy who were hospitalized for AMI in the years 2012 and
2013.AsshowninTable2,Tuscanpatientsweresignificantlyolder
andshowedmorecomorbiditiesonaveragethantheLombardy
patients(p<0.001).Theseresultscouldexplainthehigher
signifi-cantpercentageofNSTEMI(non-STsegmentelevationmyocardial
infarction)patientsinTuscanycomparedtoLombardy,with56%
and 51% respectively (p<0.001). Otherstudies have foundthat
patientshospitalizedforSTEMI(STsegmentelevationmyocardial
infarction)weremorelikelytobeyounger,male,andwereless
likelytohaveapriorhistoryofseveralcomorbidities[60].
Additionally, Lombardypatientsweremore likely toreceive
invasivetreatmentssuchasPCIorCoronaryArteryBypassGraft
(CABG) at theindex admission(p<0.001). Aftercontrolling for
patientcharacteristics,adjustedmortalityratesattheacutephase
(within30daysoftheAMI)wassimilarinthetworegions(7.7%
and7.5%inLombardyandTuscanyrespectively)whereas,inthe
longer-term(oneyear),themortalityofAMIpatientsinLombardy
wasaboutonepercentagepointshigherthaninTuscany(adjusted
1yearmortalityrates,16.7%inLombardyand15.7%inTuscany)
However,theadjustedratesatbothobservationperiodsdidnot
differsignificantlyacrossthetworegions.
Unadjusted mean hospital spending, standardized for the
regionaldifferencesintheDRGtariffsystems,weresignificantly
higherinLombardycomparedtoTuscanyacrossalltheobservation
periods.
Morespecifically,totalone-yearspendingperpatientwas14%
higherinLombardythanTuscany(p<0.001).Theregionalgapin
spending waslower in theacutephase of AMIwithLombardy
exceedingTuscanyby11%and12% (p<0.001) attheindexand
within30daysrespectively.Ontheotherhand,thelongerterm
post-admissionperiod hadthegreatestinterregionalgapinthe
spending.Thatis,between31and365days,spendingfor
hospi-talreadmissionwasonaverage20%higherinLombardycompared
withTuscany(p<0.001).Totalexpendituresinthispost-acutecare
phaseaccountedforrespectively27%and26%ofthetotal1year
spendinginLombardyandTuscany.
Atotalof41%oftheLombardypatientswerereadmittedatleast
onceinthe31–365daysaftertheindexadmissioncomparedwith
37%oftheTuscanypatients.Inbothregions,thehighestvolumes
ofhospitalizationswereforcardiovascularinterventions,although
therateofrehospitalizationforrevascularizations(eitherCABGor
PCI)washigherinLombardycomparedtoTuscany(Fig.1).Indeed,
almost9%and2%ofthereadmissionsinLombardywerefor
per-cutaneouscardiovascularprocedureswithadrug-elutingstentand
barestentrespectively,comparedto5%and1%inTuscany,whereas
1%ofthereadmissionswereforCABGinLombardycomparedto
0.5%inTuscany
Table3describestheregionaltrendsintheLengthofStay(LOS)
togetherwiththepercentageofhospitalizationwithLOS
exceed-inganestablishedthreshold(long-stayoutliers).TheaverageLOS
attheindexforLombardywastwodayslongerthaninTuscany,
whereasinthepost-acutecare(31–365dayspostadmission),the
averagelengthofstaywasabout10and7daysforLombardyand
Tuscany,respectively.BesideshavingonaveragelongerLOS
com-paredwithpatientsinTuscany(p<0.001),patientsinLombardy
werealsolikelytoexperiencegreaterlengthsofstaythantheDRG
specificLOSthresholdbothatindexandinthe1-yearfollow-up
(p<0.001).Indeed,theproportionsofhospitalizationsclassifiedas
long-stayoutliersinLombardywerealmosttwicethoseof
Tus-cany,thusleadingtohigherhospitalspendingforthesameDRGin
LombardycomparedtoTuscany.
Theresultspresentedabovewereconfirmedbyfindingsfrom
themultipleregressionofhospitalspendingforAMI(Fig.2),which
showedthatalsoafteradjustingforcomorbiditiesandfor
differ-encesinDRGtariffs,adjustedhospitalspendingwassignificantly
higherinLombardythanTuscanyacrossallobservationalperiods.
Fig.1. Re-hospitalizationinthe31–365daysfollowingtheindexadmissionperpatientwithAcuteMyocardialInfarction(AMI)forthemostcommonsurgicalinterventions.
Table3
Analysisofthelengthofstay.
Lombardy Tuscany P-value
Index
AverageLengthofStay(SD) 8.987 (6.979) 6.898 (5.239) <0.001
%hospitalizationoverDRGthreshold(SD) 20.206% (40.154) 9.559% (29.404)
Upto30daysaftertheindexadmission
AverageLengthofStay(SD) 10.356 (8.920) 7.471 (6.485) <0.001
%hospitalizationoverDRGthreshold(SD) 20.874% (40.640) 9.584% (29.437)
31to365daysaftertheindexadmission
AverageLengthofStay(SD) 10.477 (12.134) 7.961 (10.729) <0.001
%hospitalizationoverDRGthreshold(SD) 13.625% (34.306) 7.854% (26.903)
1yearaftertheindexadmission
AverageLengthofStay(SD) 10.396 (10.108) 7.629 (8.108) <0.001
%hospitalizationoverDRGthreshold(SD) 18.452% (38.791) 9.024% (28.653)
patienthospitalizedinLombardywasonaverage2081euroshigher
thanthatforAMIpatientshospitalizedinTuscany(p<0.001).On
theotherhand,themeandifferencesbetweenLombardyand
Tus-canywere774and1197eurosforthehospitalizationcostsatindex
admissionandinthefirst30days(p<0.001)respectively.
More-over,inthetwo-partmodel,comparedwithTuscany,Lombardy
incurred onaverage 941 eurosextra (p<0.001) in
hospitaliza-tionexpenditureinthelonger-term(31–365days)post-admission
period.
ResultsoftheCEManalysisreportedalowerpost-matchingL1
valuewhichdecreasesfrom0.51to0.28indicatingahigh-quality
match(astrongreductionintheunbalancingofthecovariates).
AveragehospitalspendingofthematchedsamplesofAMIpatients
ofLombardyand Tuscanywerefoundtobesignificantly
differ-ent.Thismeansthatevenafterremovingpotentialselectionbias
duetodifferentclinicalanddemographiccharacteristicsofthetwo
AMIcohorts,hospitalspendingremainssignificantlyhigherin
Lom-bardyregioncomparedtoTuscanyacrossallthestudyobservation
periods(p<0.001).
Aftermatchingthetwocohorts,significantregionaldifferences
werealsoobservedforbothLOSandvolumeofrevascularizations
(eitherCABGorPCI)inthe31–365observation,whichremained
higherforLombardypatients(p<0.001)comparedtoTuscanyones.
Onthecontrary,wedidnotobserveanydifferenceintermsof
mor-talitybetweenTuscanyandLombardyinalltheobservationperiods
(p>0.10)
5. Discussion
Theliteratureongeographicvariationhaswidelyprovedthat
thereareavarietyoffactorsthatcontributetoexplainregional
variationsinhealthcarespending andutilization.Someofthese
factorssuchasthedifferentpatients’needsandpreferencesare
“warranted”,whereas,theultimatechallengeforpolicymakersis
reducingregionalsvariationsdueto“unwarranted”factorswhich
ultimatelyreflectsysteminefficiencies.
Inthisstudy,weanalysetheextentofregionalvariationin
hos-pitalspendingforAMIpatientsacrosstwoItalianregions,Tuscany
andLombardy,bothwithhighqualityhealthcaresystemsbutwith
differentregionalgovernancemodelsforfinancinganddelivering
healthcare.
Inlinewithpreviousstudiesreportingthatdifferencesinprices
andpatienthealthstatusaccountforonlyapartofthevariationin
spending[6,17,61],wefoundthat,comparedwithTuscany,
Lom-bardypresented significantly higheradjusted spending for AMI
patientsatboththeacutephase(within30daysoftheAMI
hos-pitalization)andinthelonger-term(31–365days)post-admission
periods.Morespecifically,afteradjustingfordifferencesinpatients’
case-mixand regionalDRG tariffs,the averageannual hospital
costperAMIpatientstillsignificantlydifferedbetweenthetwo
regionsanditwasonaverage2081euroshigherinLombardy
com-paredtoTuscany.Ontheotherhand,aftercontrollingforpatients’
characteristics, themortality rates at acute (within 30 days of
theAMI)andlonger-termpostadmissionperiod(1year)ofthe
AMIdidnotsignificantlydifferbetweenthetworegions.Results
werealsoreinforcedbytheCEManalysiswhichshowsthatthein
matchedsamplesLombardyreportedsignificantlyhigherAMI
hos-pitalspendingcomparedtoTuscanywhereasthetworegionsdid
notsignificantlydifferintermsofAMImortalityacrossthestudy
periodsBeyondtheseobserveddifferencesinregionalspending,
thestudyattemptstocontributetothediscussiononthe
poten-tialdriversatsystemlevelofvariationsinhospitalspendingacross
regionalhealthcaresystemswithcomparablehealthoutcomesand
populations.
WefoundthattheaverageLOSwashigherinLombardy
com-paredtoTuscany,withapercentagedifferencebetweenLombardy
andTuscanyrangingbetween30%attheindexat36%at1year
follow-up.Moreover,theproportionofhospitalizationswithlonger
thanastatedLOSoutlierthresholdwasalmostdoubleinLombardy
withrespecttoTuscanyacrossallthestudyperiodsandthiswas
truealsointhematchedcohorts.
Lombardy’shigherpercentageoflong-stayoutliers,especially
in the post-acute phase, could, for instance, suggest that this
regionalhealthcaresystemmightlackeffectivetransitional
pro-gramsbetweentheacutehospitalsectorandcommunityservices
fortheAMIpatients,especiallyforthosewhoaremoreinneedof
coordinateddischargeandongoingsupport[62].
Furthermore,between31and365days,AMIpatientsin
Lom-bardyweremorelikelytobereadmittedcomparedtoTuscany.In
particular,higherratesofrepeatedPCIwereobservedinthe31–365
daysfortheLombardypatientswithrespecttotheTuscanyones
inboththematchedandnotmatchedcohorts.Intheliterature,
activity-relatedfundingwasfoundtoprovideincentivesforgreater
volumes[63,64]andthereforetopotentiallyleadtodifferentlocal
practicepatterns.Indeed,inthis context,wemighthypothesize
adifferentprofessionals’choiceonrevascularizationmodalityin
patientswithmulti-vesseldisease.PCIMulti-vesselcaninfactbe
performedeitheratthetimeoftheindexhospitalizationorat
sepa-ratesubsequenthospitalizations.Althoughtheidentificationofthe
optimaltimingofastagedprocedureinAMIpatientsstillrequired
furtherinvestigation,clearlythestrategyofproceduresperformed
inrepeatedhospitalizationsleadstoincreasedhospitalcostswith
respecttotreatothervesselsatonestage[65,66].
Variationsinproceduresratesandintheuseofresources(e.g.
differentLOSforsimilarpatients)especiallyinthepost-acutephase
mightbealsoexplainedbyregionaldifferencesinother
supply-sidefactorssuchasprovider’scapacity(e.g.hospitalandlong-term
carebedsperthousand,numberofcardiacfacilities)[67,3,68].As
anexample,cardiachospitalbedsin2013were2.29per100,000
inhabitantsinLombardyregioncomparedwith1.53per100,000
inhabitantsinTuscany(Source:Ministryofhealth-http://www.
dati.salute.gov.it/dati/homeDataset.jsp).Theavailabledatadidnot
allowustoanalysedifferencesinout-of-hospitalresourcecapacity.
Indeed, these results seem to confirm that, even between
regionalhealthcaresystemsdominatedbyhighstandardsofcare,
there can exist both different type of organizational structures
withinandbetweencaresettingsanddifferentlevelsof
profes-sionals’discretionoverthecareprovidedforsimilarpatients.
Wethereforehypothesizethatsystem-levelfactors,suchasthe
differentreimbursementsystems,andthedifferentorganization
andlevelofintegrationbetweenacutehospitalprovidersand
com-munitycareservicesinthetworegions,mightcontributetoexplain
thesupply-sideofvariationinexpenditureand,moregenerally,the
valueformoneythatisproduced.
Targetpolicieswhichfavouroutcomegoalsandfacilitate
con-tinuityofcarebetweenhospitalandpost-hospitalizationsettings
canincentivizehospitalstowardsamoreefficientuseoftheirinput
resources (i.e.hospital beds), allowto efficiently reallocate the
resourceswhereservicesmayprovidemorevalueforpatientsand
toguaranteeinganappropriatesupporttopatientsfromonehealth
caresettingtoanother[69].
TheperformanceevaluationsystemadoptedinTuscany[40,70]
allowsphysicianstobemoreawareoftheimpactoftheirchoices
ontheuseofresourcesthankstotheanalysisofadministrative
datathroughthepatients’clinicalpathperspective.Additionally,
benchmarkingandpublicdisclosureofoutcomeresultsand the
participationofphysiciansinmeeting,stronglyenhancedbythe
regionalgovernment,aimedatidentifyingandsharingbest
prac-ticehelpingTuscanclinicianstouniformbehaviorsatregionallevel
puttingreputationtowork[71].
Asmatter of fact,in 2016 theLombardyRegion hasstarted
overcom-ingthequasimarketgovernancesysteminfavouroftheintegration
betweenhospital and primary care, reducing readmissionsand
increasingtheappropriateness.Moreover,Lombardydecidedtobe
partofanetworkof10ItalianRegionsthatadoptaunique
per-formanceevaluationsystem,basedontargetsetting,competitive
benchmarking,andpublicdisclosureofdata[75].Thisisaimedat
improvingqualitydeliveredandatcontainingtheexpenditure.
Thestudysuffersfromsomerelevantlimitationsmanyofwhich
related to the data and design of the study. First, as with all
observationaldata,weareunabletomakeinferencesabout
causa-tion,therefore,effectestimatesshouldbecautiouslyinterpreted.
Second,aswithotherstudiesusingadministrativedata[72,73],
informationwaslackingonpotentialconfoundingvariablessuch
asAMIseverity,lifestylefactors,treatmentadherence,and
proce-duralcharacteristics.Moreover,thetypeofdatadonotallowto
carefullyevaluatetheappropriatenessofstrategiesbothadopted
inthetworegionsfortheAMItreatmentbothattheindexandinthe
31–365hospitalizations.However,theuseofadministrativedata
hasbeenwidelyadoptedbyhealthcareagenciesandother
stake-holderstomeasurehospitalperformance.Thisisbecausesuchdata,
comparedtoclinicalregistries,areeasilyaccessible,relatively
inex-pensivetouse,andenableinformationtobecollectedontheentire
populationofconcern[74].
Othervariablesthat areimportanttothecomparisonsbeing
mademighthavebeingomittedorunmeasuredinthisstudysuchas
informationonAMIpatientsthatmaydiebeforereachingthe
hos-pital,whichcouldprovideindicationonwhetherhospitalpatient
populationsdifferacrossthetworegions.
Finally,atthisstageoftheanalysis,wefocusedourstudyonthe
treatmentofAMIonlyandwerecognizedthatfindingsmightnot
extendtotherestofhealthcare.Also,wewereonlyableto
con-siderhospitalizationspendingandcouldnotincludenon-clinical
outcomes.
Despitetheselimitations,ourstudyhasseveralstrengths.Tothe
bestofourknowledge,thisisthefirststudythathasanalysed
geo-graphicaldifferencesinhealthcarespendingbetweentworegional
healthcaresystemsinItaly,inalongertimeframethanthe
arbi-trary30daysoftheacutecarephase.Inaddition,comparedtothe
otherstudies,theopportunitytocomparetheregionalhealthcare
systemsinItalyallowsustoanalysegeographicvariationbetween
tworegionsthataresimilarintermsofbothsocio-economicfigures
andcitizens’standardoflivingbutdifferintermsofthegovernance
andfundingmodelsoftheirhealthcaresystems.Thismight
facili-tatetheidentificationofsupply-sidefactorsthatcouldpotentially
explainsysteminefficiencies.
6. Conclusions
Health systems arelooking forways toshifttovalue-based
healthcare.Ourstudysuggeststheimportanceofconsideringthe
impactofthegovernancesystemasoneofthepossible
determi-nantsofgeographicvariationwhencomparingdifferentregional
healthcaresystems.Althoughthedifferentregionalorganizational
modelsmaynotleadalonetoreductionsinunwarrantedvariations
inspending,thechoicetointroducequasi-marketmechanismsto
promote bothefficiencyand efficacyseemstobelessfavorable
thentheintroductionofgovernancebasedonplanning,target
set-tingandcompetitivebenchmarkingonqualityofcare,moreoverif
partneredwithastrongintegrationbetweenacuteandpost-acute
services.
Conflictofinterest
Theauthorsdonothaveanyconflictsofinteresttodeclare
Acknowledgements
Wewouldliketothanktheregionalandlocalrepresentatives
ofbothregionsandalltheresearchersandcolleagues(inparticular
fromtheMeS-LabandtheDartmouthInstitute)fortheirvaluable
support.WewouldalsoliketothanktheScientificCommittee,Prof.
VeronicaGrembiandalltheparticipantsofthe5thHealth
Econo-metricsWorkshop-Bari(Italy)andTheWennbergInternational
Collaborativecommunityfortheircommentsandsuggestions.
References
[1]Paul-ShaheenP,ClarkJD,WilliamsD.Smallareaanalysis:areviewand analy-sisofthenorthAmericanliterature.JournalofHealthPolitics,PolicyandLaw 1987;12(4):741–809.
[2]Wennberg JE. Time to tackle unwarranted variations in practice. BMJ 2011;342:d1513.
[3]FisherES,WennbergDE,StukelTA,GottliebDJ,LucasFL,PinderEL.The impli-cationsofregionalvariationsinmedicarespending.Part1:thecontent,quality, andaccessibilityofcare.AnnalsofInternalMedicine2003;138(4):273–87. [4]FisherES,WennbergDE,StukelTA,GottliebDJ,LucasFL,PinderEL.The
impli-cationsofregionalvariationsinmedicarespending.Part2:healthoutcomes andsatisfactionwithcare.AnnalsofInternalMedicine2003;138(4):288–98. [5]SkinnerJ,FisherE.Reflectionsongeographicvariationsinushealthcare.
Dart-mouthInstituteforHealthPolicyandClinicalPractice2013;12(May). [6]WennbergJE,FisherES,SkinnerJS.Geographyandthedebateovermedicare
reform.HealthAffairs2002:W96–114.Jul-Dec;SupplWebExclusives. [7]MedicarePaymentAdvisoryCommission(MedPAC),FebruaryRegional
varia-tioninMedicarePartA,PartB,andPartDspendingandserviceuse;2017. [8]InstituteofMedicine.Interimreportofthecommitteeongeographic
varia-tioninhealthcarespendingandpromotionofhigh-valuecare:preliminary committeeobservations.Washington,DC:TheNationalAcademiesPress;2013. [9]CoralloAN,CroxfordR,GoodmanDC,BryanEL,SrivastavaD,StukelTA.A sys-tematicreviewofmedicalpracticevariationinOECDcountries.HealthPolicy 2014;114(1):5–14.
[10]McPhersonK,GonG,ScottM,OECDHealthWorkingPapersNo.61International variationsinaselectednumberofsurgicalprocedures.Paris:OECDPublishing; 2013.
[11]OECD.Geographicvariationsinhealthcare:whatdoweknowandwhatcan Bedonetoimprovehealthsystemperformance?OECDPublishing;2014. [12]Wennberg International Consortium (WIC) (2016). http://
wennbergcollaborative.org/index.php.
[13]HeijinkRichard,EngelfrietPeter,RehnbergClas,KittelsenSverre,Hakkinen Unto.Awindowongeographicvariationinhealthcare:insightsfrom Euro-HOPE.HealthEconomics2015;24(Suppl.2):164–77,http://dx.doi.org/10.1002/ hec.3287.
[14]Medicare Payment Advisory Commission (MedPAC), January Report to congress:regionalvariationinmedicareservicesuse;2011.
[15]CutlerD,SkinnerJ,SternAD,WennbergD.Physicianbeliefsandpatient prefer-ences:anewlookatregionalvariationinhealthcarespending(No.w19320). NationalBureauofEconomicResearch;2013.
[16]ZuckermanS,WaidmannT,BerensonR, etal. Clarifyingsourcesof geo-graphicdifferencesinMedicarespending.NewEnglandJournalofMedicine 2010;363(July(1)):54–62.
[17]ReschovskyJD,HadleyJ,RomanoPS.Geographicvariationinfee-for-service medicarebeneficiaries’medicalcostsislargelyexplainedbydiseaseburden. MedCareResRev2013;70(5):542–63.
[18]YasaitisL,FisherES,SkinnerJS,ChandraA.Hospitalqualityandintensityof spending:isthereanassociation?HealthAffairs(Millwood)2009;28:w566–72. [19]SirovichBE,GottliebDJ,WelchHG,FisherES.Regionalvariationsinhealth careintensityandphysicianperceptionsofqualityofcare.AnnalsofInternal Medicine2006;144:641–9.
[20]BaickerK,ChandraA.Medicarespending,thephysicianworkforce,and ben-eficiaries’qualityofcare.HealthAffairsWebExclusives2004(January–June): W4-184–W4-197.
[21]OngMK,MangioneCM,RomanoPS,ZhouQ,AuerbachAD,ChunA,etal. Look-ingforward,lookingback:assessingvariationsinhospitalresourceuseand outcomesforelderlypatientswithheartfailure.Circulation:Cardiovascular QualityandOutcomes2009;2:548–57.
[22]BarnatoAE,ChangCCH,FarrellMH,LaveJR,RobertsMS,AngusDC.Issurvival betterathospitalswithhigher“end-of-life”treatmentintensity?MedicalCare 2010;48(2):125.
[23]RomleyJA,JenaAB,GoldmanDP.Hospitalspendingandinpatientmortality: evidencefromCalifornia:anobservationalstudy.AnnalsofInternalMedicine 2011;154:160–7.
[24]SilberJH,KaestnerR,Even-ShoshanO,WangY,BresslerLJ.Aggressive treat-mentstyleandsurgicaloutcomes.HealthServicesResearch2010;25:1872–92. [25]DoyleJrJJ,GravesJA,GruberJ,KleinerSA.Measuringreturnstohospital care:evidencefromambulancereferralpatterns.JournalofPoliticalEconomy 2015;123(1):170–214.
[26]GöpffarthD,KopetschT,SchmitzH.Determinantsofregionalvariationin healthexpendituresinGermany.HealthEconomics2016;25(7):801–15.
[27]SchreyöggJ,StargardtT,TiemannO.Costsandqualityofhospitalsindifferent healthcaresystems:amulti-levelapproachwithpropensityscorematching. HealthEconomics2011;20(1):85–100.Jan.
[28]GutackerN,BojkeC,DaidoneS,DevlinNJ,ParkinD,StreetA.Truly ineffi-cientorprovidingbetterqualityofcare?Analysingtherelationshipbetween risk-adjustedhospitalcostsandpatients’healthoutcomes.HealthEconomics 2013;22(Aug(8)):931–47.
[29]HäkkinenU,RosenqvistG,PeltolaaM,KapiainenS,RättöH,CotsF,etal. Qual-ity,cost,andtheirtrade-offintreatingAMIandStrokepatientsinEuropean hospitals.HealthPolicy2014.
[30]KittelsenSAC,AnthunKS,GoudeF,HuitfeldtIMS,H ¨akkinenU,KruseM,etal. CostsandqualityatthehospitallevelinNordiccountries.HealthEconomics 2015;24(Suppl.2):140–63.
[31]BrennaE.Quasi-marketandcost-containmentinBeveridgesystems:the Lom-bardymodelofItaly.HealthPolicy2011;103(2):209–18.
[32]BertaP,BossiM,VerzilloS.%Cem:asasmacrotoperformcoarsenedexact matching.JournalofStatisticalComputationandSimulation2017;87(2):1–12. [33]BertaP,SeghieriC,VittadiniG.Comparinghealthoutcomesamong hospi-tals:theexperienceoftheLombardyRegion.HealthCareManagementScience 2013;16(3):245–57.
[34]NutiS,VolaF,BoniniA,VainieriM.Makinggovernanceworkinthehealthcare sector:evidencefroma‘naturalexperiment’inItaly.HealthEconomics,Policy andLaw2016;11(01):17–38.
[35]Likosky DS, Zhou W,Malenka DJ, Borden WB, Nallamothu BK, Skinner JS. Growthin medicareexpenditures forpatients with acutemyocardial infarction: acomparisonof1998through1999 and2008.JAMAInternal Medicine 2013;173(22):2055–61,http://dx.doi.org/10.1001/jamainternmed. 2013.10789.Dec9–23.
[36]ChandraA.Economicsmeetsthegeographyofmedicine;2013. [37]BeveridgeW.Socialinsuranceandalliedservices.London:HMSO;1942. [38]FerréF,DeBelvisAG,ValerioL,LonghiS,LazzariA,FattoreG,etal.Italy:health
systemreview.HealthSystemsinTransition2014;16(4):1–168. [39]GrayM.Valuebasedhealthcare.BMJ2017;356:j437.
[40]NutiS,DeRosisS,BoncianiM,MuranteAM.Re-thinkinghealthcare perfor-manceevaluationsystemstowardsthepeople-centerednessapproach:their pathways,theirexperience,theirevaluation.HealthcarePapers2017. [41]PianoNazionaleEsiti(NationalOutcomeProgram)(2015).http://95.110.213.
190/PNEed15/index.php.
[42]Anessi-PessinaE,Cantu `E,JommiC.Phasingoutmarketmechanismsinthe italiannationalhealthservice.PublicMoney&Management2004:309–16. [43]BertaP,MartiniG,MosconeF,VittadiniG.Theassociationbetweenasymmetric
information,hospitalcompetitionandqualityofhealthcare:evidencefrom Italy.JournaloftheRoyalStatisticalSociety:SeriesA(StatisticsinSociety) 2016;179(4):907–26.
[44]BertiS.Infarto,lareteIMAfa“90”,Sole24OreSanità;2014.p.14–20.Ottobre. [45]RegioneToscana,Availableonline:D.G.R.n.1380del27–12;2016http://www.
regione.toscana.it/bancadati/atti/?redirect=/bancadati/atti/DettaglioAttiG. xml%3fcodprat=2016DG00000001707.
[46]MarzegalliM,FontanaG,SesanaG,GriecoN,LombardiF,ElenaC,etal.Le retidell’emergenzainCardiologia:l’esperienzalombarda.GiornaleItalianodi Cardiologia2008;9(Suppl.1–10).
[47]RegioneLombardia,decreton.10446,15OttobreDirezioneSanitaria, Deter-minazioniinmeritoalla “reteperiltrattamento deipazienticoninfarto miocardicocontrattoSTelevato(STEMI)”;2009.
[48]KrumholzHM,NormandS,KeenanP,etal.Hospital30-dayacutemyocardial infarctionreadmissionmeasure:methodology.ReportpreparedfortheCenters forMedicare&MedicaidServices;2008.
[49]KrumholzHM,LinZ,KeenanPS,ChenJ,RossJS,DryeEE,etal.Relationship between hospital readmission and mortality rates for patients hospital-ized withacutemyocardialinfarction,heartfailure,orpneumonia.JAMA 2013;309(6):587–93.
[50]Mullahy J.Much adoabouttwo: reconsideringretransformation andthe two-part model in health econometrics. Journal of Health Economics 1998;17(3):247–81.
[51]MullahyJ.Econometricmodelingofhealthcarecostsandexpenditures:a surveyofanalyticalissuesandrelatedpolicyconsiderations.MedicineCare 2009;47(7Supplement1):S104–8.
[52]ManningW.Dealingwithskeweddataoncostsandexpenditures.In:Theelgar companiontohealtheconomics.Cheltenham:Elgar;2006.
[53]ManningWG,MullahyJ.Estimatinglogmodels:totransformornotto trans-form?JournalofHealthEconomics2001;20(4):461–94.
[54]HosmerJR,LemeshowS.Appliedlogisticregression.JohnWiley&Sons;2004. [55]TianL,HuangJ.Atwo-partmodelforcensoredmedicalcostdata.Statisticsin
Medicine2007;26(23):4273–92.
[56]GlickHA,DoshiJA,SonnadSS,PolskyD.Economicevaluationinclinicaltrials. OUPOxford;2014.
[57]BasuA,PolskyD,ManningWG.Estimatingtreatmenteffectsonhealthcare costsunderexogeneity:isthereamagicbullet?HealthServicesandOutcomes ResearchMethodology2011;11(1-2):1–26.
[58]IacusSM,KingG,PorroG.Multivariatematchingmethodsthatare mono-tonicimbalancebounding.JournaloftheAmericanStatisticalAssociation 2011;106(493):345–61.
[59]IacusSM,KingG,PorroG.Causalinferencewithoutbalancechecking: coars-enedexactmatching.PoliticalAnalysis2012;20(1):1–24.
[60]McManusDD,GoreJ,YarzebskiJ,etal.Recenttrendsintheincidence, treat-ment,andoutcomesofpatientswithstemiandnstemi.TheAmericanJournal ofMedicine2011;124(1):40–7.
[61]Gottlieb DJ, Zhou W, Song Y, Andrews KG, Skinner JS, Sutherland JM. Prices don’t drive regional medicarespending variations. Health Affairs 2010;29(3):10–377.
[62]CostaAP,PossJW,PeirceT,HirdesJP.Acutecareinpatientswithlong-term delayed-discharge:evidencefromaCanadianhealthregion.BMCHealth Ser-vicesResearch2012;12(172).
[63]WeeksWB,ParaponarisA,VentelouB.Geographicvariationinratesofcommon surgicalproceduresinFrancein2008–2010,andcomparisontotheUSand Britain.HealthPolicy2014;118(2):215–21.
[64]Emanuel EJ, Fuchs VR. The perfect storm of overutilization. JAMA 2008;299(23):2789–91.
[65]AmericanCollegeofCardiology,availableonlineatAmericancollegeof cardiol-ogythemanagementofMVDinSTEMI:thescienceandartofdecision-making inSTEMI;2018https://www.acc.org/latest-in-cardiology/articles/2018/02/07/ 07/45/the-management-of-mvd-in-stemi.
[66]LiZ,ZhouY,XuQ,ChenX.Stagedversusone-timecompleterevascularization withpercutaneouscoronaryinterventioninSTEMIpatientswith multives-seldisease:asystematicreviewandmeta-analysis.PLoSOne2017;12(1), e0169406.
[67]CongressionalBudgetOffice.Geographicvariationinhealthcarespending,Vol. 2008.Washington,DC:CongressoftheUnitedStates,CBO;2008.
[68]WennbergDE,DickensJrJ,SouleDN,KellettJrM,MalenkaD,RobbJ,etal.The relationshipbetweenthesupplyofcardiaccatheterizationlaboratories, cardi-ologistsandtheuseofinvasivecardiacproceduresinnorthernNewEngand. JournalofHealthServicesResearch&Policy1997;2(2):75–80.
[69]NutiS,VainieriM,BoniniA.Disinvestmentforreallocation:aprocesstoidentify priorityinhealthcare.HealthPolicy2010;95:137–43.
[70]NutiS,NotoG,VolaF,VainieriM,ManagementDecisionLet’splaythepatients’ music:anewgenerationofperformancemeasurementsystemsinhealthcare; 2018.
[71]BevanG,EvansA,NutiS.Reputationscount:whybenchmarkingperformance isimprovinghealthcareacrosstheworld.HealthEconomics,PolicyandLaw 2018.
[72]KhawajaFJ,ShahND,LennonRJ,SlusserJP,AlkatibAA,RihalCS,etal. Fac-torsassociatedwith30-dayread-missionratesafterpercutaneouscoronary intervention.ArchivesofInternalMedicine2012;172(2):112–7.
[73]LindenauerPK,LaguT,RothbergMB,AvruninJ,PekowPS,WangY,etal.Income inequalityand30dayoutcomesafteracutemyocardialinfarction,heartfailure, andpneumonia:retrospectivecohortstudy.BMJ2013;346:f521.
[74]AustinPC,TuJV.Comparingclinicaldatawithadministrativedataforproducing acutemyocardialinfarctionreportcards.JournaloftheRoyalStatisticalSociety 2006;169(1):115–26.
[75]NutiS,BiniB,RuggieriTG,PiaggesiA,RicciL.Bridgingthegapbetween the-oryandpracticeinintegratedcare:thecaseofthediabeticfootpathwayin Tuscany.InternationalJournalofIntegratedCare2016;16(2):1–14.