• Non ci sono risultati.

Multimodel approach for accurate determination of industry-driven properties for Polymer Nanocomposite Materials

N/A
N/A
Protected

Academic year: 2021

Condividi "Multimodel approach for accurate determination of industry-driven properties for Polymer Nanocomposite Materials"

Copied!
11
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Journal

of

Computational

Science

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j o c s

Multimodel

approach

for

accurate

determination

of

industry-driven

properties

for

Polymer

Nanocomposite

Materials

Erik

Laurini

a,∗

,

Domenico

Marson

a

,

Maurizio

Fermeglia

a

,

Sabrina

Pricl

a,b

aMolecularSimulationEngineering(MOSE)Laboratory,DI3,PiazzaleEuropa1,UniversityofTrieste,34127Trieste,Italy

bNationalInteruniversityConsortiumforMaterialScienceandTechnology(INSTM),ResearchUnitMOSE-DEA,UniversityofTrieste,Trieste,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received7November2017

Receivedinrevisedform20February2018

Accepted4March2018

Availableonline12March2018

Keywords:

Molecularsimulations

Computationalrecipes

Polymernanocomposites

Materialpropertiesprediction

Experimentalvalidation

a

b

s

t

r

a

c

t

Theneedforeffectiveandefficientdesignandproductionofsophisticatedmaterialswithadvanced performancesonacompetitivetimescaleis stronglydrivingtheintegration ofmaterialmodeling andsimulationtechniquesintomaterialselectiondecisionprocesses.Specifically,forcomplex struc-turalmaterialssuchaspolymer-basednanocomposites(PNCs),thereisastrongindustrialdemandfor chemistry/physics-basedmodelsandmodelingworkflowsabletopredictrelevantmaterialpropertiesin anaccurateandreliableway.Underthisperspective,inthisworkwedescribetheapplicationofmultiscale molecularmodelingtechniquesforthechoiceofPNCmaterialsforaerospaceapplications.Theresults areobtainedintheframeworkoftheEuropeanprojectMulti-scaleCompositeMaterialSelectionPlatform withaSeamlessIntegrationofMaterialsModelsandMultidisciplinaryDesignFramework (COMPOSELEC-TOR),fundedbytheEuropeanCommissionwithintheH2020callAdvancingtheintegrationofmaterials modelinginbusinessprocessestoenhanceeffectiveindustrialdecisionmakingandincreasecompetitiveness. ©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Theintegrationofmodelingandsimulationstechniquesto sup-portmaterialselectionprocesses isoneofthemostcompelling needsinadvancingmaterialindustryandmanufactory,duetothe necessityofeffective/efficientdesignandproductionof sophisti-catedmaterials,componentsandsystemswithadvanced/extreme performanceonacompetitivetimescale.Inthisarenaand, specif-ically, for complex structural materialssuch as polymer-based nanocomposites(PNCs) there isa strongindustrial demand for chemistry/physics-basedmodelsandmodelingworkflowsableto predictrelevantmaterialproperties(akaKeyPerformance Indica-torsorKPIs)inanaccurateandreliableway[1,2].

Developmentsand improvementshave beentaking place in disparatecommunitiesconsideringdifferenttypesofmodelsand phenomenaonseveraldifferentlengthscales,withadvancements intheso-calledmultiscaleapproaches,multi-disciplinarydesign optimization,andvisualization[3–6].Importantlinkswithina hier-archyofprocessing,nano/microstructureproperties,andexpected performancearecurrentlyavailable[7–12].Nevertheless,theyare farfrombeingsufficientformaterialsdesignandselection, and

∗ Correspondingauthor.

E-mailaddress:erik.laurini@dia.units.it(E.Laurini).

sufferfromalackofintegrationacrossdifferenttypesofmodels andrelatedcommunities(especiallydiscrete/continuumand mod-eling/experimental couplingandvalidation). Materialsselection process(MSP)isfundamentallygoal-oriented,aimedat identify-ingmaterialstructuresandprocessingpathsthatdeliverrequired KPIs.Tobereliable,MSPmustbebuiltuponphysicaland engineer-ingframeworksandbasedonmethodsthataresystematic,effective andefficientinmodelingcomplex,hierarchicalmaterialssuchas PNCs.Formaterialdesignandselection,understandingand quan-tifyingthelinksbetweenmaterialstructureatthenanoscaleand theirmacroscopiceffectsis,therefore,essential.As manufactur-ingandtestingisverytime-consuming,expensiveandsometimes unfeasible, the adoption of materials modeling and simulation approachesisthereforeimperative.Thisimpliestheneedfor devel-opmentandintegrationofmodelsfor thereliablepredictionof materialbehavioratdifferentscalesaswellasthederivationof efficientmaterial-processing-propertyrelationships.

Forseveralreasons,currentevaluationandselection method-ologiesforcomposites(and,thus,compositesstructuraldesign)do notyetmakeextensiveuseofmaterialsmodelingtools,largely rely-ingonempiricalmethods.Ontheonehand,sinceproductshave becomemoreandmorecomplexandsustainabilityissuescoupled withaworldwidefierceeconomiccompetitionaresoaring, mod-elingandsimulation–fromdesignthroughmaterialselectionand productionprocess–aremorethaneverneeded.Theirultimate

https://doi.org/10.1016/j.jocs.2018.03.002

(2)

goalsareshorterlead-time,betterproductquality,more compet-itivecost, andhigher customersatisfaction. Ontheotherhand, thecomplexityofactualtechnologiescombinedwiththelackofa continuativeandsolidconnectionbetweenindustryandacademia presentsaconditioninwhichanear-deadlocksituationseemsto emerge.

Inthisarea,thisworkaimsatdemonstratingtheusein COM-POSELECTORofamulti-disciplinary,multi-modelapproachforthe accurate,reliable,efficientandcost-effectiveindustry-drivenKPIs determinationforPNCmaterials,therebyfillingthegapbetween businessprocessesandmaterialsscience/engineeringworkflows. Specifically,the resultsobtainedfor a case studypertaining to aerospaceapplicationsandtherelevantKPIsdetermination (i.e., mechanical, viscoelasticand interfacialproperties) willbe pre-sented and discussed. The high degree of modeling and data predictionintegrationintoMSPswillthenprovidevaluable infor-mationabout current“holes inproperty space”,enable what-if scenariosandprovidemechanisticinsightsintothehigh perfor-manceofthesefascinatingmaterials.

2. Theoryandcomputationalmethodologies

2.1. Theindustrialcase

Whiletheuseoftheso-called“reinforced”plastics(RPs) has become a mainstay in aircraft production, the choice of poly-mericmatrixand,especially,(nano)fillers/fibersremainsalargely unexploredscenario.Currently,manyindustrialaircraft manufac-turesareconsideringsubstitutingthermosetRPs–mostcommonly employedin theair transport sector –with thermoplasticRPs. Thislastfamilyofmaterialsoffersseveralkeyadvantagesoverthe former,includingexcellentfatigueanddamagetolerance proper-ties,shortermanufacturingcycles,lowermoistureabsorption,and almostcomplete recyclability.Thislastpropertymakes thermo-plasticcompositesinaerospaceapplicationsveryattractivesince anymajoraircraftindustryandtheirsuppliersproducehundreds oftonsofwastematerialeachyear[13].Inthequestofnew nano-RPsforaircraftspecificapplications,inCOMPOSELECTORtwomain materialgoalsarepursued:a)theuseofpoly(etherethylketone) (PEEK)asthermoplasticpolymericmatrixinplaceofthewidely employedthermosetting(e.g.,epoxy)resins;b)thereplacement ofactualcarbonfiberswithmultiwallcarbonnanotubes (MWC-NTs).Accordingly,thefollowingindustrialKPIsdeterminationwere identifiedastestscasesforMSPimplementation:i)glass transi-tiontemperature(Tg),ii)mechanicalmoduli,andiii)viscoelastic

propertiesofthePEEK/MWCNTnanocompositesystemsas func-tionofthefillercontent.Furthermore,sincetheinterfacialstress transferbetweentheCNTandthepolymermatrixinthe nanocom-positemainlydependsonthejoiningstrengthamongthenanofiller andthepolymer,andthepulloutofCNTsfromthematrixisoneof themaininterfacialmechanismsexperimentallyobserved,an addi-tionalKPIwasselected,namelytheestimationofthepullingforces ofaCNTfromthePEEKmatrix.Accordingly,computationalmodels ondifferentscalesweredevised,run,andthepredictvaluesforthe aboveKPIswherevalidatedagainstexperimentaldata,asdescribed below.

2.2. Computationalrecipes 2.2.1. Generaldetails

Allsimulationswerecarriedoutusingtheparallelversionof theopensourcecodeLAMMPS(http://lammps.sandia.gov/), run-ningonourownCPU/GPUcluster,usingtheCOMPASSforcefield [14].StartingfromtheoptimizedPEEKmonomerunit,3 indepen-dentconfigurationsofaPEEKchainwerebuiltusingtheRotational

Fig.1.SimulationcellofPEEK/MWCNTnanocompositesystems.ThePEEKchains

areshownasatom-coloredspheres(C,darkgray,O,red,H,lightgray)whilethe

MWCNTisportrayedasdimgraysticks-and-balls.(Forinterpretationofthe

refer-encestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthis

article.)

IsomericState(RIS)method[15]ateachdesiredtemperature.For eachofthesechains,athree-dimensional(3D)simulationboxwith periodicboundaryconditions(PBCs)wasbuilt,eitherusingonly PEEKchainsor1multi-wallcarbonnanotubesurroundedbya num-berofPEEKchainsrequiredtoachieveaspecificweightfraction (videinfra),andtheresultingcellwasrelaxedbyenergy minimiza-tion.Accordingly,3different3Dsimulationboxeswereobtained foreachRISgeneratedPEEKchain,andthecomputationalrecipe forthedeterminationofagivenpropertywasappliedtoeachof theseboxes(seeFig.1).

Thus,eachresultingpropertyisexpressedastheaveragevalue over 3 distinct simulations.The Berendsen thermostat/barostat [16]withcouplingtimeconstantsT=0.1sand␶P=0.5ps,wasused

fortemperatureandpressurecontrolduringMDruns.Short-range intermolecularinteractionsoffullatomisticpolymermodelswere accountedfor bytheLennard-Jones9-6 potentialfunctionwith geometricmeancombinationrules.Long-rangeelectrostatic inter-actionsofpolymermodelswerehandledwiththeparticlemesh Ewald(PME)[17]method(accuracy0.001kcal/mol).Thecut-off distance for truncationof all non-bonding interactions was set equaltohalfofthesimulationcelllength.InallMDsimulations, integrationofNewton’sequationsofmotionwasachievedusingthe velocityVerletalgorithmwithanintegrationtimestepof1fs,ifnot otherwisestates.ThelengthofeachMDsimulationandthe num-berofframescollectedalongeachMDtrajectoryvarieddepending onthespecificsystemandtherelevantpropertytobeestimated. Therefore,detailswillbegiveninthespecificsectionsbelow. 2.2.2. Computationalrecipeforthepredictionofglasstransition temperatureinPEEK/MWCNTnanocomposites

TheestimationoftheTgforthepurePEEKmatrixanditsMWCNT

(3)

weightfractionswererealizedbyvaryingthenumberofpolymer chainswithrespecttothefixednanotubecontent.Theresulting cellconfigurationswereoptimizedviathefollowingrefinement protocol: i) initialsystem energy relaxation ii) briefMD simu-lationrun(0.5ns)intheconstantvolume-constanttemperature (i.e.,thecanonicalorNVT)ensembleat298K,andiii)finalenergy minimizationviacombinedconjugategradient/Newton-Raphson methodsusing10−3kcal/(molÅ)astheconvergencecriterionfor theenergygradient.Therelaxedsimulationboxeswerethen sub-jectedtoMDrunsintheisochoric-isothermal(NPT)ensemblefor 2.5nstoreachrealisticdensityvaluesatthedesiredtemperature andpressure(1atm).Thesimulationcellwasfurtherrelaxedby carryingoutanNPT-basedMDsimulationannealingprotocolas follows:eachsystemwasfirstheatedfromthedesired temper-atureT(e.g.,298K)tothetemperatureT+200K (e.g.,498K)in incrementsof20K,andthencooledbacktotheinitialtemperature withthesametemperaturevariationscheme.Thetotalduration oftheannealingprocesswas0.2ns.Attheend oftheannealing process,eachcellwasagainenergyminimized,accordingtothe fol-lowingprotocol:first,acombinationofsteepestdescent/conjugate gradientmethodswasapplieduntiltheenergyderivativeonany atomdecreasedto1000kcal/molÅ.Next,Newton-Raphson mini-mizationwasperformeduntiltheenergyderivativebecameless than0.1kcal/molÅ.Forthefinal equilibriumdensity determina-tion,starting fromthewell-relaxed simulationcellsobtainedat theendofthesimulatedannealingprocessfurther1nsNPTMD simulationrunwasperformedfordataacquisitionatthedesired temperature.Thefirst0.5nswerediscardedandonlythelast0.5ns oftheequilibratedNPTMDtrajectorywereretainedfordata analy-sis.MDframesweresavedevery5ps,foratotalnumberofframesof 100.Theentiresequencedescribedabove,fromPEEKchain gener-ationviaRIStodataproductionNPTruns,wasrepeatedtoestimate thedensityvaluesforallPEKsystemsinthetemperaturerangeof interest(i.e.,298–500K).Fromtheequilibriumdensityvalues,the specificvolume(reciprocalofdensity,Vsp)ateachtemperaturewas

nextdetermined,andthecorrespondingTgwasestimatedfromthe

intersectionofthelinearregressionsoftheVspvs.Tcurvesinthe

two(glassyandrubbery)regimes.

2.2.3. Computationalrecipeforthepredictionofmechanical moduliofPEEK/MWCNTnanocomposites

Todeterminestress-strainrelationshipforthedifferent PEEK-MWCNT PNC systems, starting from the equilibrated systems obtainedasdescribedinSection2.2.2,thefirststeprequires achiev-ingtheminimuminitialstressstateforthecorrespondingperiodic box.Tothepurpose,eachsimulationboxwasconsecutively sub-jectedtoMDsimulationsinthecanonical(NVT)andmicrocanonical (constantvolume-constant energy,NVE)ensemblesfor5nsand 2ns,respectively.Next,eachunitcellsizewasadjustedto mini-mizetheinitialstressesusingNPTMDsimulations(simulationtime uptoseveralthousandsteps,dependingonthemolecularmodel andcellsize),followedbyfurtherequilibration(2ns)intheNVE ensemble.

Foreachequilibratedsystem,auniformstrainfield(0.5%)along therequireddirectionswasappliedbyproportionatelyscalingthe correspondingunitcellandtheatomicpositionsofthePEEKchains, whilekeepingthepositionsoftheMWCNTunchanged,inorder topreserveanun-deformedshapeofthenanotubes.Byapplying thiscomputationaltechnique,eachsimulation cellwasstrained tocalculatedunidirectionaltension/compressionandhydrostatic tension/compression, respectively. In the first case, strain was appliedalongonedirectionatime,andtheprocedurewasrepeated forthetwootherdirectionsstartingfromtheunstrainedcell.In thecaseofhydrostatictension/compressionsimulations,thesame strainfieldwasappliedsimultaneouslytoallnormaldirections.

Attheatomiclevel,stressisexpressedinavirialform:

ij=−V1



a



Mava ivaj + 1 2



b/=aF ab i rabj



(1)

inwhichVisthevolumeofthesimulationcell,givenbythesumof eachatomvolumeVa.va

i andv a

j arethei-thandj-thcomponents ofthevelocityofatoma,Fiab isthei-thcomponentoftheforce betweenatomsaandb,andrab

j isthedistancebetweenthesame twoatoms.Thenegativesignistointroducedtoexpresstensile stressasapositivequantity.

Intheframework of continuummechanics,theassumptions thati)boththepolymericmatrixandtherelevantnanocomposites areendowedwithmaterialsymmetryandii)therelationbetween stressandstrainislinearbothhold.Accordingly,thegeneralized constitutiverelationoftheequivalentcontinuumreads:

11 22 33

=

C11 C12 C12 C12 C11 C12 C12 C12 C11

ε11 ε12 ε13

(2)

inwhich␴ijand␧ijarethestressandstraincomponents,

respec-tively,andCijaretheelasticconstants.

Asmentioned aboveand inlinewithotherworksonsimilar systems[18–20],topredictstress-strainbehaviorunder unidirec-tionaltensionor compression,a 0.5%strainwasappliedtothe un-deformedcellalongonedirectionatime.Underthiscondition, andtakingdirection1asthefirstchoice,theonlynon-zerostrain componentis␧11.ExpandingthefirstrowofEq.(2),weget:

11=C11ε11 (3)

Utterlysimilar expressionscan bewrittenbydeformingthe cellalong direction2or3.Hence,foreachsimulatedtensionor compressionthreedifferentvaluesoftheelasticconstantC11are

obtained.Sincethestrainisapplieduniformlyineach direction (␧11=␧22=␧33),C11canbefurtheraveraged.

Underconditionsofhydrostatictensionandcompression,the elasticbulkmodulusKisgivenbyEq.(4):

K=13



11+22+33

ε11+ε22+ε33



(4) Accordingly,byrecallingthat,inthiscase,␧ii=0.05inall

direc-tions,KcanbeeasilyevaluatedbymeansofEq.(4)byinsertingthe normalcomponentsofstressasderivedfromthecorresponding simulations.

Finally,thefundamentalrelationshipsthatlinkthebulk mod-ulusKandtheelasticconstantC11tothePoisson’sratio␯andthe

elastic(Young)modulusE,i.e.,

C11= (1−) E

(1+) (1−2) (5)

K= E

3 (1−2) (6)

allowthedeterminationofthevalueof␯andEonceKandC11

areknownasaresultofthesimulationproceduresreportedabove. 2.2.4. Computationalrecipeforthepredictionoftheviscoelastic behaviorofPEEK/MWCNTnanocomposites

(4)

smallmoleculesorextensivemolecularfragments,whichinteract bypairwiseadditiveforcesexpressedbyaconservative, dissipa-tive,and randompotential.Theoverallforceactingona beadi canbeexpressedasFi=



j/=i(F C

ij+FDij+FRij)andiscalculatedby summationoverallotherparticleswithinacertaincut-offradius, rc,whichrepresentstheintrinsiclengthscaleoftheDPDmodel.

Theconservativeforcerepresentstheexcludedvolume interac-tionsbetweenparticlesiand jin thedimensionless formFC

ij=

aij



1−rij



ˆrij,where rij=rirj,rij=|rij|, ˆrijij= rij/rij,andaijis

themaximumrepulsionbetweenparticlesiandj.Thedissipative (FDij =−ω



rij



2



ˆrij·vij



rij) andrandom(FD ij=



rij



ˆrij/(t)−1/2)forcesactasheatsink

andsource,respectively,andthecombinedeffectofthetwoforces performsasathermostat,where␥isafrictioncoefficientrelated tothethermalnoiseamplitude␴viathefluctuation-dissipation theorem,2=2␥k

BT.␻(r)isaweightfunction,␨isanormally dis-tributedrandomvariablewithzeromeanandunitvariancethat is uncorrelated for differentparticle pairs, t is the time step of anintegrationscheme,and

v

i=vi

v

j is therelative velocity oftheithandthejthparticles.Theequationsofparticlemotion,

dri/dt=

v

ianddvi/dt=Fi,aresolvedusingasintegrationschemethe velocity-Verletalgorithm.Whenmodelingpolymerchainsor com-plexmolecules,typicallytwoadditionalforcesareactingbetween bondedbeads:aharmonicspringconnecting twoadjacent par-ticlesiandj:FB

ij=kb



rijr0



ˆrij,wherekb isaspringconstant

andr0theequilibriumdistancebetweentheparticles,andFAijz=

1/2ksin



0−0



,wherekisaspringconstantand␪0the

equi-libriumanglebetweenadjacentbeadstriplesijzinarow. 2.2.4.2. Coarse-grainedmolecularmodelsofPEEKandMWCNTs. The firstnecessarystepofacoarse-grain(CG)calculationisthe con-structionof therequired CG models.This is usuallyperformed takingintoaccounttherelevantstructural/thermodynamic proper-tiesofthemoleculesunderinvestigationandmatchingthesewith thecorrespondingatomisticfeaturesinordertoassuretheability oftheCGsimulationtoreproducethem.Accordingly,inthiswork PEEKandMWCNTCGmodelswerederivedbyadirectcomparison oftheappropriateatomisticandDPDpair–paircorrelation func-tions,accordingtoaprocedureextensivelyreportedinourprevious work[10,22–31].The next,importantissuein DPDsimulations istocapturetheessentialintra-andinter-molecularinteractions takingplaceamongallmolecularactorsofthemesoscopic simula-tionsasexpressedbythevaluesoftheconservativeparameteraij.

Thisquantityaccountsfortheunderlyingchemistryofthesystem considered.Inthiswork,weemployedawell-validatedstrategy that correlatestheinteractionenergies estimatedfroma lower scale(atomisticMD)simulationstothemesoscaleaijparameter

values.Followingthiscomputationalrecipe,theinteraction ener-giesamongthePEEK/MWCNTsystemcomponentsestimatedfrom MDsimulationswererescaledontothecorrespondingmesoscale segmentsadaptingtheproceduredescribedinourwork[22–36]. 2.2.4.3. DPDsimulationinputparameters. Tostudythe viscoelas-ticpropertiesof PEEK/MWCNTnanocompositesystemsbyDPD, thevaluesofthesimulationparameterswereassignedasfollows. ThebondlengthbetweeneachDPDbeadwassetto0.5DPDunits, whileabondharmonicconstantof100kbT(withkbT=1inDPD)

wasattributedbothtotheCNTandthepolymer.Toincorporate anappropriatedegreeofbendingrigidityintheCNT,bothbond andangleconstantsweresetequalto100kbT.Thisangleconstant

shouldallowtocorrectlyaccountforbendingstiffnessandYoung ModulusofrealCNT/Polymer-basedsystem.Thevalueofthe fric-tioncoefficient␥wassetto6.75[37].Tosimulaterealisticsystems

Table1

Composition of DPD systems used to predict the viscoelastic properties of

PEEK/MWCNTnanocompositesystems.EachPEEKchainismadeupof60DPDbeads,

whilethenanotubeiscomposedof20DPDbeads.

NumberofDPDchains

Component 3%wt 6%wt 9%wt 12%wt 15%wt

PEEK 3880 3760 3640 3520 3500

Carbonnanotube 360 720 1080 1140 1500

withdifferentcontentofMWCNTsbyweight,eachMWCNTand

PEEKchainweremodelledas20and60DPDbeads,andthe

num-berofchainsandMWCNTsineachsystemwasvaried,asshownin

Table1.

Therepulsionparametersforequalbeads(aii)wassetto25;the

correspondingtheinteractionparameterbetweenunequalbeads, aij,obtainedfromtheproceduredescribedabove,wasfoundtobe

equalto34.

Thecut-offradiusrcisrelatedtothevolumeofaDPDbeadbythe

relationshiprc=(␳Vb)1/3,inwhichDPDnumberdensity␳=3and

Vb=614Å3isthevolumeofaPEEKmonomerasusedinatomistic

MDsimulations.Thisyieldsrc=1.23nm.AstheaDPDsimulation

celllengthof44DPDunits,thecorrespondingrealspace dimen-sionoftheboxsidewas∼54nm.Finally,therelationbetweena DPDtimeunit ␶anda realtime unittisgivenbythe

relation-ship ∼25.7N5m/3 [38,39], in which Nm is the number of water

molecules(VH2O=29.7Å3)fillingupaDPDbead.Accordingly,in

oursystemNm ∼ 21, sothat␶ ∼ 4108ps. Thesimulation time

stepadoptedwas0.02␶,thatis82.2ps,andeachDPDsimulation wasrunfor20×106steps.Accordingly,eachtotalsimulationrun

correspondedto1.640ms.

2.2.4.4. Calculationoftheviscoelasticproperties. Thecalculationof thefrequency-dependentstoragemodulusG’(␻)andlossmodulus G”(␻)wasobtainedconvertingthetime-dependentshearmodulus G(t)intoits(␻)-dependentform[40].Inturn,G(t)wascomputed fromthestressautocorrelationfunctiongivenbyEq.(7):

G (t) = V

kBT␣ˇ(t)␣ˇ(0) (7)

inwhichVisthevolumeofthesimulationbox,theangle brack-etsrepresentensembleaverage,and␴␣ˇ(with␣ /=␤)isthe␣-␤

componentofthestresstensor,whichisgivenbythevirial expres-sion: ˛ˇ=V1





N 1mivi˛viˇ+



N−1 1



N

j=i+1rij˛Fijˇ



(8)

wheremi,mi␣,andvj␤arethemassandthe␣-and␤-velocity

componentsofbeadi.Therij␣andFij␤inEq.(8)representthe ␣-componentseparationdistanceandthe␤-componentforceacting betweenbeadsiandj,respectively.Toobtainmoreaccurateresults, i)smootherestimatesofthestressautocorrelationfunctionswere obtainedbyaveragingtheindividualcurvesfromthethreestresses, giventheequivalencyoftheoff-diagonalelementsofthestress tensorandii)stressvalueswereacquiredeverysimulationtime step.

Performing theFourier transformof G(t)(Eq.(7))yieldsthe frequency-dependentshearmodulusG*(␻)as:

G∗(ω) =iω

0



(5)

Fig.2.InterfacemodelsfordeterminingFcoh(left)andFpo(right)inseparatinga

MWCNTfromthePEEKmatrixinnormalandsheardirections,respectively.Color

legendasinFig.1.

Accordingly,G’(w)andG”(w)aregivenby:

G’ (ω) =ω 0



G (t) sin (␻t) dt (10) G" (ω) =ω 0



G (t) cos (␻t) dt (11)

OnceG’andG”areknownfromEqs.(10)and(11),the correspond-ingdissipativefactortan␦canbesimplyobtainedastheratioG”/G’. Inordertoobtainreliableestimatesoftherheologicalproperties ofthePEEK/MWCNTnanocompositesystems,threeindependent simulationrunswereconducted,eachstartingfromindependent configurations,and thevalues ofG’andG”reportedasaverage values.

2.2.5. Computationalrecipeforthepredictionoftheinterfacial behaviorinPEEK/MWCNTnanocomposites

Twodifferentinterfacemodelswerepreparedtoinvestigatethe loadtransferbetweenaMWCNTandthePEEKchains,asshownin Fig.2.Accordingly,bothnormalandshearseparationforcescan becalculateduponslowlydisplacingtheMWCNTinnormaland sheardirections,respectively.Indeed,oncethenanofillerismoved awayfromthepolymermatrix,itexperienceseithernormal(or cohesive)forcesFcoh,orshear(akapullout)forcesFpo,depending

onthemotiondirectionoftheMWCNT.Inthefirstcase,the poly-mericchainsareplacedontopoftheMWCNT(Fig.2A)whereasin shearseparationthenanofillerisembeddedwithinthepolymeric

Fig.3.(A)SpecificvolumeVspofpurePEEKandofaPEEK/MWCNTsnanocomposite

(6%wtasafunctionoftemperatureT.Onlythesetwocurvesareshownforclarity.

(B)Comparisonofsimulated(patternedbars)andexperimentalvalues(filledbars)

ofTgforpurePEEKandPEEK/MWCNTnanocompositesasafunctionofMWCNTs

concentration(%wt).Experimentaldatafrom[37–39].

matrixFig.2B).Accordingly,thenanotubeispulledinthez direc-tionfornormalseparationwhereasmovementalongthexdirection isrealizeshearseparation.

Aftereachmolecularsystembuilding,1nsequilibrationofMD simulationsintheNVTensemblewasperformed.Aftereachsystem equilibrationwasachieved,inordertorealizethetwodifferent MWCNTmovement,anaveragedisplacementrateof10−4–10−5Å fs−1 fornormalseparationand10−3Åfs−1 forshearseparation, respectively,wereadopted.

3. Resultsanddiscussion

3.1. PredictionofTgforPEEK/MWCNTsnanocompositesystems

Fig.3Ashowsthebehaviorofthespecificvolumeasafunction oftemperatureTforthepurePEEKandthecorrespondingPNC with6%wtofMWCNTsasanexample.Theproceduretodetermine Tgisinitiallybasedonvisualdatainspection,toidentifythekink

pointintheVspvs.Tcurves,followedbythecurvedivisioninto

twoparts,correspondingtotheregionsT<Tg(glassyregime)and

T>Tg(rubberystate).Next,eachdatasetisfittedtoastraightline

bylinearregression,andTgisdeterminedfromtheintersections ofthetwo lines(Fig.3A).ThevalueofTgforallPEEK/MWCNTs

(6)

Table2

ValuesoftheelasticconstantC11andbulkmodulusKforthepristinePEEKmatrixasderivedfromunidirectionalcompression/tensionandhydrostaticcompression/tension

simulations,respectively.Allsimulationswererunintriplicate.ExperimentaldatarangeforKvalueis5.475–5.749[46,47].

Simulationmethod C11(GPa) Simulationmethod K(GPa)

Unidirectionalcompression 7.509±0.481 Hydrostaticcompression 5.656±0.193

Unidirectionaltension 7.227±0.345 Hydrostatictension 5.428±0.229

AscanbeseeninFig.3B,thepredictedglasstransition temper-atureofthethermoplasticPEEK(Tg,sim(PEEK)=414±18K,Tg,exp

(PEEK)=416K) is unaffected by the MWCNT dispersion up to nanofillerweightfractionof15%,inagreementwithexperimental observations[41–43].Thesedatahighlightafirst,important dif-ferencebetweenthecurrentlyemployedthermosettingpolymeric matricesandthethermoplasticPEEK.In fact,inthermoset(e.g., epoxy)polymersTg isseentoincreasewithincreasingMWCNT

concentration[44,45].Thisoppositebehaviorismainlyascribable totheformationofpartialcovalentbondingphenomenabetween thecrosslinkingpolymerandthefunctionalgroupspopulatingthe surfaceofthecarbonnanotubes.Ultimately,thisevidencesupports thenotionthatlittle(ifany)chemicalinteractionsdevelopbetween thethermoplasticPEEKmatrixandthedispersedMWCNTs,their mutualinterfacebeingdominatedalmostexclusivelybyvander Waalsforces.

3.2. Predictionofstress-strainbehaviorforPEEK/MWCNTs nanocompositesystems

Thelinearelasticstress-strainrelationsforthepurePEEKmatrix arereportedinTable2.

TheresultsinTable2allowfor someconsiderations.Firstof all,thesimulatedvaluesofthebulkmodulusKnicelyfallinthe rangeofavailableexperimentaldataforpurePEEKmaterial[46,47]. Next,bothKandC11valuesderivedfromcompressionmethods

areslightlyhigherthanthoseobtainedwiththealternative, ten-siontests.Tofurthercheckthevalidityoftheresultspresented inTable2,thecorrespondingvaluesoftheYoungmodulusEand thePoisson’s ratio␯ have been calculated viaEqs. (5) and (6). Accordingly,usingtheC11andKvaluesobtainedfrom

compres-siontests(7.509GPaand5.656GPa,Table2),themagnitudesofE and␯are3.869GPaand0.386,respectively;concomitantly,those obtainedusingC11andKvaluesderivedfromtensionsimulations

(7.227GPaand5.428GPa,Table2)areequalto3.745GPaand0.385 forEand␯,respectively.BothsetsofEand␯valuesareagainin excellentagreementwiththecorrespondingliteraturerange val-uesof3.76−3.95GPaforEand0.3779–0.3931for␯[46,47].Overall, theseresultsconfirmthatanicecorrelationexistsbetween val-uesobtainedfromunidirectionalandhydrostaticsimulations,and thatbothcomputationalproceduresyieldmechanicalmoduliin linewithexperimentaldata.Additionally,despiteanappliedstrain of0.5%, whichis relativelyhighifcompared withstrain values adoptedinrealexperiments,thebehaviorofPEEKstillfallswithin thelinearelasticregime.

Considering the same PEEK-MWCNT composite systems for whichtheglass transitiontemperaturehasbeendeterminedin Section 3.1, compared with pure PEEK a progressive addition of MWCNTs results in a corresponding increase of the elastic propertiesinbothtype(i.e.,unidirectionalandhydrostatic)of sim-ulations.Specifically,theaveragevalueoftheelasticconstantC11

(C11=7.368GPa,asobtainedbyaveragingthetwo C11 valuesin

Table2)increasesfromthatofthepristinePEEKmatrixby approx-imately0.4,14,36,62,and146%withtheadditionof3,6,9,12,and 15%byweightofMWCNTs(seeTable2),whiletheaveragevalueof thebulkmodulus ¯K (=5.542GPa,Table2)growsapproximatelyby 10,24,46,64,and132%withthesameamountofaddednanofiller, asseenfromTable3.

Table3

Values oftheaverageelastic constantC11, averagebulkmodulus , average

Poissonmodulus¯ andaverageYoungmodulusforthepristinePEEKmatrix

andPEEK/MWCNTsnanocompositesasafunctionofthenanofillerconcentration

asderivedfrom unidirectional compression/tensionand hydrostatic

compres-sion/tensionsimulations,respectively.Allsimulationswererunintriplicate.

MWCNTs(wt%) C11 (GPa) (GPa) ¯(−) (GPa)

0 7.368±0.592 5.542±0.299 0.386 3.807 3 7.393±0.477 5.872±0.288 0.379 4.263 6 8.426±0.501 6.079±0.273 0.368 4.815 9 10.02±0.599 7.283±0.256 0.371 5.637 12 11.96±0.548 8.892±0.301 0.381 6.349 15 18.14±0.621 13.85±0.354 0.392 8.972

ThelasttwocolumnsofTable3listthevaluesoftheaverage

Youngmodulus ¯E andoftheaveragePoissonratio¯,calculated insertingthecorrespondingvaluesofC11and ¯KinEqs.(5)and(6).

Aswesee, ¯E alsoincreasesbyincreasingMWCNTconcentration inthenanocomposite,reachinganimprovementofnearly136%at 15%wtwithrespecttothepurepolymericmatrix.Acomparison withavailableexperimentaldatarevealsanexcellentagreement betweensimulatedandmeasuredvaluesof ¯E [42],asshownin Fig.4A.

Finally,thechangeofPoisson’sratioasafunctionoftheMWCNT weightfractionisshowninFig.4B,fromwhichwecannoticethat thereisnospecifictrendfortherelationbetweenthePoisson’sratio andtheconcentrationofthenanofillers.

3.3. InterfacebehaviorinPEEK/MWCNTsnanocompositesystems Inpolymer-basednanocomposites,interfacesplaya determi-nant role in loadtransfer mechanisms between the polymeric matrixchainsandthedispersednanoparticles.Inorderto inves-tigatethesephenomenainPEEK/MWCNTbasednanocomposites, boththenormalandsheardisplacementattheinterfacebetweena MWCNTandPEEKchainsweresimulateduponstrainapplication. Asmentionedin Section2.2.5,displacingtheMWCNTina nor-maldirectionyieldsinformationonthecohesiveforcesbetween thenanofillerandthepolymer,whileshear displacement mim-icsarealpulloutexperiment.Byconductingmoleculardynamics experimentsunder controlleddisplacement,thesystems devel-opsareactionforceatthepolymer/MWCNTinterfacebyvirtueof underlyingnon-bondedinteractions,whichvariesasthenanofiller driftsawayfromthepolymericmatrix.Fig.5Ashowsthebehavior ofthecohesiveforceFcohatthepolymer/nanofillerinterfaceasthe

MWCNTisdisplacedawayfromthePEEKchainsalongthenormal direction.

Asseenfromthegraph,theinitialbehaviorof Fcoh islinear,

thenitreachesapeakandfinallyslowlydeclines.Thevalueofthe maximumintheFcoh/displacementcurveisestimatedtobeequal to1131pNatthecorrespondingdisplacementof0.0019nm.The correspondingprofileofthepulloutforceFpovs.displacementis

reportedinFig.5B:themaximumvalueofFpolocatesata

(7)

Scheme1.Replacementofagivenmaterial(red)withanewone(green)foraspecificapplicationrequirestheconcerteddetermination/optimizationofseveralkey

performanceindicators(KPIs),includingmaterialproperties,materialprocessconditions,overallcosts,lifecycleassessment,andmaterialandprocesssustainability.(For

interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig.4. (A)ComparisonbetweentheaveragevalueoftheYoungmodulus,

calcu-latedusingdatainTable2(patternedbars),andthecorrespondingexperimental

measureddata(filledbars)forpurePEEKandPEEK/MWCNTnanocompositesasa

functionofMWCNTconcentration(%wt).Experimentaldatafrom[38].(B)

Aver-agePoisson’sratio¯values,calculatedusingdatainTable2forpurePEEKand

PEEK/MWCNTnanocompositesasafunctionofMWCNTconcentration(%wt).

3.4. ViscoelasticpropertiesofPEEK/MWCNTsnanocomposite systems

In silico dynamic frequency sweep tests were performed to investigatetheviscoelasticpropertiesofneatPEEKanditsMWCNT

Fig.5.(A)Fcohand(B)FpoasfunctionofdisplacementforaPEEK/MWCNT

nanocom-positesystem.

nanocomposite systems. The results of these simulations are reportedinFig.6.

(8)

Fig.6.Predictedvaluesof(A)StoragemodulusG’(␻)and(B)lossmodulusG”(␻)

ofPEEK/MWCNTnanocompositesystemsasafunctionoftheMWCNTcontent

(%wt).Symbollegend:circles,purePEEK;squares,3%;triangles,6%;diamonds;9%;

hexagons,12%;invertedtriangles,15%.Correspondingerrorbarsarealsodisplayed

forallcases(inmanyinstances,theerrorsaretoosmalltobevisible).

characterizedbyslopevaluesof2and1,respectively[40]. Nonethe-less,polymermatricesfilledwithnanoparticlesoftendeviatesfrom thisidealbehavior.FromFig.6weseethatthesimulateddatafor thepristinePEEKmatrixindeedfollowthelinearviscoelastic scal-inglaws.Yet,forMWCNTcontentof3%wtonwardthisterminal behaviordisappears,andbothmodulitendtowardaplateau-like regime, indicative of a transition from liquid-like to solid-like behavior.Accordingtothesedata,aMWCNTconcentrationof3% wtcanconstitutetheso-calledrheologicalpercolationthreshold, i.e.,theconcentrationatwhichacontinuous,three-dimensional networkofnanotubesoriginates.Abovethisthreshold,filler–filler interactionsprevailoverpolymer-fillerinteractions,anda3Dfiller networkisfullyestablished.Thesedataareinagreementwiththe experimentalevidenceprovidedforPEEK/MWCNT nanocompos-itesinaconcentrationrangeencompassingthevaluesconsidered inthiswork[48].Forsuchrealsystems,thebehaviorofG’(␻)and G”(␻)isinexcellentqualitativeagreementwiththesimulateddata reportedinFig.6;thepercolationthresholdinthatcasewasfound tobeequalto1%wt,againingoodagreementwiththeone pre-dictedbythepresentDPDsimulations.

4. Outlook

Inparallel,highperformancematerialsdesignnotonlyrequires comprehensivematerialpropertiesmodelingbutalso understand-ing of risks, costs, and business opportunities for a range of decisions,frommaterialselectiontodesigningfunctional struc-turalcomponentsandsystemsandprocessoptimization.Lastbut

notleast,designandselectionofnanocompositesmustalso accom-modatesocietalrequirementsfor health and sustainability(see Scheme1).

TheultimateobjectiveoftheprojectCOMPOSELECTOR,started January2017andfundedbytheEuropeanCommissionwithinthe Horizon2020(H2020)Program(undertheCallNMBP-23-2016− Advancingtheintegrationofmaterialsmodelinginbusinessprocesses toenhanceeffectiveindustrialdecisionmakingandincrease compet-itiveness),istoaddressalltheseaspectsbydevelopingandtesting anintegratedsoftwareplatform−basedonamulti-disciplinary, multi-modelandmulti-fieldapproach−fordecision-makinginthe selection,designandfabricationofPNCmaterials.Oneofthemost innovativeandambitiousfeaturesofCOMPOSELECTORisthe estab-lishmentofanewparadigminPNCsselectionaccordingtowhich thecornerstoneofsuccessfulnew,high-performance nanocompos-itematerialsforadvancedapplicationsistheidentificationofall concurrentmaterial-selectingfactorsalongtheentirevaluechain. Inparticular,theadoptionofanapproachthatadvocatestheheavy useofcomputationalmaterialsscienceand physicsratherthan, e.g.,propertycross-plotswhich,albeitcommonlyused,leadtoless competitiveproducts,isthekeyfactortoreachCOMPOSELECTOR finalgoals.

The available setof composite materials and related manu-facturing processes is growingin number and type. Therefore, fornanocompositematerialsdesignersandmanufacturers under-standing and evaluating multiple materials and processing scenarios intheearlystages of productselection/designare no longeranoption.Informationgainedduringtheconceptualphase createsaproductknowledgefoundationforimproved decision-making,therebyincreasingthepotentialofinnovationwithinnew materialandstructureconcepts,assketchedinScheme2.

Inthisscenario,theEuropeanCommission,withintheH2020 Framework Programme, has dedicated substantial economical effortstofosterresearchprojectsaimingatadvancingthe inte-gration ofmaterialmolecularsimulationsin industrialbusiness decisionprocesses.Inparticular,theEUfullyrecognizestheneed foraBusinessDecisionSupportSystem(BDSS)thatsupportsthe selectionoftheoptimalmaterialandprocesstakingintoaccount theimplementationcostsbutalsotheassociatedrisks, uncertain-tiesandcostsrelatedtothemodelingandsimulation;apriority, especiallyforsmallmediumenterprises(SMEs).SuchaBDSSshould enabletheintegrationofmaterialsmodelingandbusinesstools anddatabasesintoa singlework-flow,allowingforflexibilityof application todifferentindustrial sectors. Specifically,it should bebasedona frameworkthatallows theflexible integrationof existingorfuturediscreteandcontinuummaterialsmodelswith structuredandunstructureddatafrommultipledatabases con-tainingmaterialsdata,commercialdataandinformationonmarket trends,pricing,customerneedsanddemands. TheBDSSshould theni)enableamulti-criteriaoptimizationoverallstagesof prod-uctdevelopmentbyallowingtheend-usertomirrortheoperational frameworkoftheircompany,ii)bestructuredinsuchawaytoallow back-engineeringfromtheend-goal,andiii)bedesignedsuchasto optimizetheintegrationofhumansinnewmorecomplexindustrial environments.TheresultsyieldedbytheBDSSshouldultimately bevalidatedagainstmeasurements,existingdataandrealfinancial arguments.

5. Conclusions

(9)

Scheme2.ImplementationviewoftheintegratedCOMPOSELECTORbusiness-decisionsupportsystem(BDSS).TheBDSSgathersinformationalongtheentireprocessto

generateuserinformeddecisions.

usedintwomodes:i)thediscoverymode,inwhichnewphenomena arepredictedthathavenotyetbeenobservedexperimentally,or explanationsaresoughtforknownphenomenathatarenot under-stood,andii) thedatamode, whichsubstantially consist inthe accuratepredictionofmaterialspropertiesrelyingonlittleorno experimentalinformation.Theformerwayofperforming molecu-larsimulationshasbenefittedseveralindustrialsectors,including theaerospaceandnuclearpowerindustries.Thealternativemode hasanalreadyestablishedreturnoninvestmentinindustry.The perhapsmostwidelyquotedexampleisthatmeasuringtheheat offormationforasinglemoleculecost$100,000 in2000,about 50times thecost ofan accuratequantumchemical calculation [2]. Nonetheless,asmentioned intheintroduction,the integra-tionofmodelingandsimulationstechniquestosupportmaterial selectionprocessesremainsoneofthemostcompellingneedsin advancingmaterialindustryandmanufactory,duetothenecessity ofeffective/efficientdesignandproductionofsophisticated materi-als,componentsandsystemswithadvanced/extremeperformance onacompetitivetimescale.Andthisisparticularlytrueinthecase ofthedesignandoptimizationofhighperformancepolymer-based nanocompositesforadvancedapplications.

Accordingly,inthispaperwepositionedourselvesinthe Mate-riallayeroftheCOMPOSELECTORBDSS(Scheme2),anddeveloped aseriesofmolecularsimulationrecipesforthefastandreliable predictionofsomepolymernanocompositekeyperformance prop-erties(KPIs)intheaerospaceindustry,namelytheglasstransition temperature,Tg,themechanicalmoduli(K,E,C11),theinterface

forcesFcohandFpo,andtheviscoelasticpropertiesG’(␻)andG”(␻)

asa functionof theaddednanofiller concentration.Theresults ofsuchpredictions,validatedagainstavailableexperimentaldata, willbefedbothtoaMaterialData Baseand,mostimportantly,

tothebusinesslayerwheretheyconcur,togetherwithallother relevantrequiredinformation(e.g.,processparameters,costs, sus-tainability,etc.),togenerateuserinformeddecisions.

Specifically,inthisworkweestimatedthesepropertiesfora high-valuepolymer,PEEK,andtherelevantMWCNTcomposites. Atomistic-basedsimulations wereemployedtopredictthefirst threesetsofKPIs,whereasamultiscaleapproach,involvingboth atomisticandmesoscalecalculations,wasadoptedtoinvestigate theviscoelasticbehavior ofthesematerials.Thedirect compar-isonofcomputer-basedpredictionswithavailableexperimental data,whereavailable,hasrevealedagoodtoexcellentagreement, therebyvalidatingtheseinsilicoexperimentsandenablingthem tobeincludedasatooltosupportbusinessdecision processin thedevelopmentoffurther,newpolymer-basednanocomposite materials.

Acknowledgment

ThisprojecthasreceivedfundingfromtheEuropeanUnion’s Horizon 2020 research and innovation programme under the GrantAgreementNo.721105(Projectacronym:COMPOSELECTOR; projectidentifier:NMBP-23-2016–Advancingtheintegrationof Materials Modellingin Business Processes toenhance effective industrialdecisionmakingandincreasecompetitiveness).

References

[1]K.E.Gubbins,J.D.Moore,Molecularmodelingofmatter:impactandprospects inengineering,Ind.Eng.Chem.Res.49(2010)3026–3046.

[2]G.Goldbeck-Wood,TheEconomicImpactofMolecularModeling:Impactof

theFieldonResearch,IndustryandEconomicDevelopment,2012(available

(10)

[3]M.Fermeglia,S.Pricl,Multiscalemodelingforpolymersystemsofindustrial interest,Progr.Org.Coat.58(2007)187–199.

[4]E.B.Tadmor,R.E.Miller,ModelingMaterials:Continuum,Atomisticand MultiscaleTechniques,CambridgeUniversityPress,Cambridge,UK,2011.

[5]J.A.Elliott,Novelapproachestomultiscalemodelinginmaterialsscience,Int. Mater.Rev.56(2011)207–225.

[6]E.Laurini,P.Posocco,M.Fermeglia,S.Pricl,MoDeNananotoolsanintegrated multiscalesimulationworkflowtopredictthermophysicalpropertiesof thermoplasticpolyurethanes,J.Comp.Sci.15(2016)24–33.

[7]M.Fermeglia,S.Pricl,Multiscalemolecularmodelinginnanostructured materialdesignandprocesssystemengineering,Comput.Chem.Eng.33 (2009)1701–1710.

[8]S.P.Pereira,G.Scocchi,R.Toth,P.Posocco,D.Romero,S.Nieto,M.Pricl,S.P. Fermeglia,G.Scocchi,R.Toth,P.Posocco,D.Romero-Nieto,S.Pricl,M. Fermeglia,Multiscalemodelingofpolymer/claynanocomposites,J.Multiscale Mod.3(2011)151–176.

[9]M.Fermeglia,P.Posocco,S.Pricl,Nanotoolsformacroproblems:multiscale molecularmodelingofnanostructuredpolymersystems,Compos.Interface 20(2013)379–394.

[10]R.Toth,F.Santese,S.P.Pereira,D.Romero-Nieto,S.Pricl,M.Fermeglia,P. Posocco,Sizeandshapematter!Amultiscalemolecularsimulationapproach topolymernanocomposites,J.Mater.Chem.22(2012)5398–5409.

[11]E.Laurini,M.Fermeglia,S.Pricl,Materialsbydesign:multiscalemolecular modelingforthedesignofnanostructuredmembranes,in:E.Drioli,G. Barbieri,A.Brunetti(Eds.),MembraneEngineeringfortheTreatmentofGases, Vol.1,2nded.,RoyalSocietyofChemistry,London,UK,2017,pp.28–49.

[12]P.Ferkl,M.Toulec,J.Kosek,E.Laurini,S.Pricl,M.Fermeglia,S.Aufarth,B. Eiling,V.Settels,Multi-scalemodelingofheattransferinpolyurethanefoams, Chem.Eng.Sci.172(2017)323–334.

[13] http://www.airbus.com/newsroom/news/en/2015/01/airbus-focus-on- thermoplastic-composite-materials-brings-environmental-and-production-improvements.html.

[14]H.Sun,COMPASS:anabinitioforce-fieldoptimizedforcondensed-phase applicationsoverviewwithdetailsonalkaneandbenzenecompounds,J. Phys.Chem.B102(1998)7338–7364.

[15]C.A.Helfer,W.L.Mattice,Therotationalisomericstatemodel,in:J.E.Mark (Ed.),PhysicalPropertiesofPolymersHandbook,SpringerVerlag,NewYork, USA,2007,pp.43–57.

[16]H.J.C.Berendsen,J.P.M.Postma,W.F.vanGunsteren,A.DiNola,J.R.Haak, Moleculardynamicswithcouplingtoanexternalbath,J.Chem.Phys.81 (1984)3684–3690.

[17]A.Toukmaji,C.Sagui,J.Board,T.Darden,EfficientparticlemeshEwaldbased approachtofixedandinduceddipolarinteraction,J.Chem.Phys.113(2000) 10913–13927.

[18]A.Adnan,C.T.Sun,H.Mahfuz,Amoleculardynamicssimulationstudyto investigatetheeffectoffillersizeonelasticpropertiesofpolymer nanocomposites,Comp.Sci.Technol.67(2007)348–356.

[19]R.Zhu,E.Pan,A.K.Roy,Moleculardynamicsstudyofthestress-strain behaviorofcarbon-nanotubereinforcedEPON862composites,Mater.Sci. Eng.A447(2007)51–57.

[20]S.Wang,B.Yang,Y.Yuan,Y.Si,H.Chen,Large-Scalemolecularsimulationon themechanicalresponseandfailurebehavioroftheeffectivegraphene:cases of5–8-5defects,Sci.Rep.5(2015)14957.

[21]R.D.Groot,P.B.Warren,Dissipativeparticledynamics:bridgingthegap betweenatomisticandmesoscopicsimulation,J.Chem.Phys.107(1997) 4423–4435.

[22]G.Scocchi,P.Posocco,J.-W.Handgraaf,J.G.E.M.Fraaije,M.Fermeglia,S.Pricl, Acompletemultiscalemodelingapproachforpolymer-claynanocomposites, Chem.Eur.J.15(2009)7586–7592.

[23]R.Toth,D.-J.Voorn,J.-W.Handgraaf,J.G.E.M.Fraaije,M.Fermeglia,S.Pricl,P. Posocco,Multiscalecomputersimulationstudiesofwater-based

montmorillonite/poly(ethyleneoxide)nanocomposites,Macromolecules42 (2009)8260–8270.

[24]P.Posocco,M.Fermeglia,S.Pricl,Morphologypredictionofblockcopolymers fordrugdeliverybymesoscalesimulations,J.Mater.Chem.20(2010) 7742–7753.

[25]P.Posocco,Z.Posel,M.Fermeglia,M.Lisal,S.Pricl,Amolecularsimulation approachtothepredictionofthemorphologyofself-assemblednanoparticles indiblockcopolymers,J.Mater.Chem.20(2010)10511–10520.

[26]P.Posocco,C.Gentilini,S.Bidoggia,A.Pace,P.Franchi,M.Lucarini,M. Fermeglia,S.Pricl,L.Pasquato,Self-organizationofmixturesoffluorocarbon andhydrocarbonamphiphilicthiolatesonthesurfaceofgoldnanoparticles, ACSNano6(2012)7243–7253.

[27]Z.Posel,P.Posocco,M.Fermeglia,M.Lisal,S.Pricl,Modelinghierarchically structurednanoparticle/diblockcopolymersystems,SoftMatter.9(2013) 2936–2946.

[28]P.Posocco,A.Perazzo,V.Preziosi,E.Laurini,S.Pricl,S.Guido,Interfacial tensionofoil/wateremulsionswithmixednon-ionicsurfactants:comparison betweenexperimentsandmolecularsimulations,RSCAdv.6(2016) 4723–4729.

[29]P.Posocco,Y.M.Hassan,I.Barandiaran,G.Kortaberria,S.Pricl,M.Fermeglia, Combinedmesoscale/experimentalstudyofselectiveplacementofmagnetic nanoparticlesindiblockcopolymerfilmsviasolventvaporannealing,J.Phys. Chem.C120(2016)7403–7411.

[30]Z.Posel,P.Posocco,M.Lisal,M.Fermeglia,S.Pricl,Highlygrafted

polystyrene/polyvinylpyridinepolymergoldnanoparticlesinagoodsolvent: effectsofchainlengthandcomposition,SoftMatter.12(2016)3600–3611.

[31]M.Sologan,D.Marson,S.Polizzi,P.Pengo,S.Boccardo,S.Pricl,P.Posocco,L. Pasquato,Patchyandjanusnanoparticlesbyself-organizationofmixturesof fluorinatedandhydrogenatedalkanethiolatesonthesurfaceofagoldcore, ACSNano10(2016)9316–9325.

[32]M.Fermeglia,M.Ferrone,S.Pricl,Computersimulationofnylon-6/organoclay nanocomposites:predictionofthebindingenergy,FluidPhaseEquilib.212 (2003)315–329.

[33]M.Fermeglia,M.Ferrone,S.Pricl,Estimationofthebindingenergyinrandom polybutyleneterephtalate-co-thiodiethyleneterephtalatecopolyesters/clay nanocompositesviamolecularsimulation,Mol.Simul.30(2004)289–300.

[34]R.Toth,A.Coslanich,M.Ferrone,M.Fermeglia,S.Pricl,S.Miertus,E.Chiellini, Computersimulationofpolypropylene/organoclaynanocomposites: characterizationofatomicscalestructureandpredictionofbindingenergy, Polymer45(2004)8075–8083.

[35]G.Scocchi,P.Posocco,A.Danani,S.Pricl,M.Fermeglia,Tothenanoscale,and beyond!.Multiscalemolecularmodelingofpolymer-claynanocomposites, FluidPhaseEquilib.261(2007)366–374.

[36]M.Maly,P.Posocco,S.Pricl,M.Fermeglia,Self-assemblyofnanoparticle mixturesindiblockcopolymers:multiscalemolecularmodeling,Ind.Chem. Eng.Res.47(2008)5023–5038.

[37]R.D.Groot,T.J.Madden,Dynamicsimulationofdiblockcopolymer microphaseseparation,J.Chem.Phys.108(1998)8713–8724.

[38]R.D.Groot,K.Rabone,Mesoscopicsimulationofcellmembranedamage, morphologychangeandrupturebynonionicsurfactants,Biophys.J.81(2001) 725–736.

[39]R.D.Groot,Electrostaticinteractionsindissipativeparticle

dynamics—simulationofpolyelectrolytesandanionicsurfactants,J.Chem. Phys.118(2003)11265–11277.

[40]R.Lapasin,S.Pricl,RheologyofIndustrialPolysaccharides:Theoryand Applications,BlackieAcademicandProfessional,London,UK,1995.

[41]J.Sandler,P.Werner,M.S.P.Shaffer,V.Demchuk,V.Altstädt,A.H.Windle, Carbon-nanofiber-reinforcedpoly(etheretherketone)composites, Composites:PartA33(2002)1033–1039.

[42]F.Deng,T.Ogasawara,N.Takeda,Tensilepropertiesatdifferenttemperature andobservationofmicrodeformationofcarbonnanotubes-poly(etherether ketone)composites,Comp.Sci.Technol.67(2007)2959–2964.

[43]T.Ogasawara,T.Tsuda,N.Takeda,Stress–strainbehaviorofmulti-walled carbonnanotube/PEEKcomposites,Comp.Sci.Technol.71(2011)73–78.

[44]F.H.Gojny,K.Schulte,Functionalizationeffectonthethermo-mechanical behaviorofmulti-wallcarbonnanotube/epoxy-composites,Comp.Sci. Technol.64(2004)2303–2308.

[45]Y.Geng,M.-Y.Liu,J.Li,X.-M.Shi,J.-K.Kim,Effectsofsurfactanttreatmenton mechanicalandelectricalpropertiesofCNT/epoxynanocomposites, Composites:PartA39(2008)1876–1883.

[46]https://www.azom.com/properties.aspx?ArticleID=1882.

[47]D.Garcia-Gonzalez,M.Rodriguez-Millan,A.Rusinek,A.Arias,Investigationof mechanicalimpactbehaviorofshortcarbon-fiber-reinforcedPEEK

composites,Compos.Struct.133(2015)1116–1126.

[48]D.S.Bangarusampath,H.Ruckdäschel,V.Altstädt,J.K.W.Sandler,D.Garray, M.S.P.Shaffer,Rheologyandpropertiesofmelt-processedpoly(etherether ketone)/multi-wallcarbonnanotubecomposites,Polymer50(2009) 5803–5811.

ErikLaurini is assistant professorin tenure-trackof

Chemical Engineering, Molecular Simulations at the

University ofTrieste, Italy.The main research

activi-tiesare focusedon(i) computer-assisteddrugdesign

anddevelopmentfortargeted therapiesand

personal-izedmedicine,(ii)study,correlationandpredictionof

thestructure/propertyrelationshipsforviralproperties,

oncogenes,onco-suppressors,andpathologicallymutant

proteins,(iii)molecularmodelingofnanostructuredand

nanomaterialsformaterialscience.Dr.ErikLauriniisthe

authorofmorethan75scientificpublicationsonISIpeer

reviewedinternationaljournalsandover60conference

proceedingsinthefieldofmolecularmodelingand

com-putersimulationofcomplexsystems.

DomenicoMarsonisapost-docresearcheratthe

Molec-ularSimulationEngineeringlaboratory(Mose-Lab)ofthe

UniversityofTrieste.Degree(honors)inPharmaceutical

Chemistry(2011)andPhDinNanotechnology(2015)at

theUniversityofTriesteinMultiscaleMolecular

Model-ingofDendrimersandBiomacromolecules.Dr.Marsonis

focusedonthedevelopmentofmultiscalemolecular

mod-elingtechniquesasatoolforinsilicodesignandanalysis

ofnanostructuredmaterials.Hisresearchisparticularly

centeredonthemultiscalemodelingofnanostructured

complexbio/nonbiosystems.Heistheauthorofmore

than30scientificpublications,bookchaptersand

(11)

MaurizioFermeglia isfullprofessoratthe

Engineer-ingFacultyoftheUniversityofTrieste,whereheholds

thecourseinChemicalandBiochemicalReaction

Engi-neeringandDataBaseDesign.From2006–2012hewas

appointedasheadoftheDepartmentofIndustrial

Engi-neering&Informationand,from2010to2012heservedas

presidentoftheResearchboardoftheUniversityof

Tri-este.Atpresent,heistherectorofUniversityofTrieste.

Professor Fermegliaresearchinterestsare focusedon:

multiscalemodelingformaterialsdesignandlifescience,

phaseequilibriumandappliedthermodynamics,process

simulation,molecularsimulation,nanotechnology,and

nanomedicine.Prof.MaurizioFermegliahaspublished

210peerreviewedjournalarticlesandbookchaptersandhasgivenmorethan180

conferencepresentationsasinvitedplenary,keynote,andoralcommunications.He

alsogivesinvitedlecturesseminarsatnumerouscompaniesandacademic

insti-tutionsandorganizedseveralworkshopsontopicsrelatedtoprocessengineering,

nanotechnologyandmultiscalemodeling.

Sabrina PriclisassociateprofessorofChemical

Engi-neering,MolecularSimulations,andMolecularSimulation

TechniquesforthePharmaceuticalSciencesatthe

Uni-versity of Trieste,Italy.She isalso a memberofthe

ScientificBoardofthePhDSchoolinNanotechnology

oftheUniversityofTrieste.She isPrincipal

Investiga-tor(PI)andco-PIofseveralnationalandinternational

projectsinthefieldofnano-biotechnology(e.g.AIRC,

EU-Horizon2020,Era-NET,...).Sheregularlyholdscourses

andseminarsatnationalandinternationalUniversities

andScientificInstitutionsandconferencesontopicsas

biomacromolecularstructureandproperties,

thermody-namicsandmolecularmodelingandsimulation.Themain

researchactivitiesarefocusedon(i)computer-assisteddrugdesignand

develop-mentfortargetedtherapiesandpersonalizedmedicine,(ii)study,correlationand

predictionofthestructure/propertyrelationshipsforviralproperties,oncogenes,

onco-suppressors,andpathologicallymutantproteins,(iii)multiscalemodelingfor

advancedmaterialsdesign.Sheistheauthorof230scientificpublicationsonISI

peer-reviewedinternationaljournalsandover250conferenceproceedingsinthe

Riferimenti

Documenti correlati

In order to find the optimal location for the biogas power plant and to select heat receivers which should be connected a mixed integer nonlinear mathematical model has

Working capital is usually divided according to the period of the functioning of current assets into a constant (or system) capital and variable capital [6]. The first category

Such models are expedient to form and develop taking into account a wide range of features: the level of economy development, human capital and SEC; already existing knowledge

The goal of this work is to define a general approach based on the DSS concept for the management of complex systems in transportation and logistics and to apply it to three problems

The absence of a publication that analyses the decision-making process models made by scholars over the years and proposes an overall model, the large number of methods and tools

In our experiment internode length was significantly shortened in TE-treated plants at any applied TE rate one week after one application; from two to seven weeks

Zoledronic acid The Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly (HORIZON) trial enrolled 7765 postmenopausal women with osteoporosis and demonstrated a

Extensive epidemiological observations, clinical mechanistic studies, and basic laboratory research have suggested that the incidence of Cardiovascular Disease