• Non ci sono risultati.

Let a, b, c, and d be positive real numbers

N/A
N/A
Protected

Academic year: 2021

Condividi "Let a, b, c, and d be positive real numbers"

Copied!
1
0
0

Testo completo

(1)

Problem 12115

(American Mathematical Monthly, Vol.126, May 2019) Proposed by M. Dr˘agan (Romania).

Let a, b, c, and d be positive real numbers. Prove

(a3+ b3)(a3+ c3)(a3+ d3)(b3+ c3)(b3+ d3)(c3+ d3) ≥ (a2b2c2+ a2b2d2+ a2c2d2+ b2c2d2)3.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We will show a more general inequality: if p ≥ 2 and a, b, c, d ≥ 0 then

(ap+ bp)(ap+ cp)(ap+ dp)(bp+ cp)(bp+ dp)(cp+ dp) ≥ 26−2p(a2b2c2+ a2b2d2+ a2c2d2+ b2c2d2)p. By the Power Mean Inequality, if x, y ≥ 0 then xp+ yp≥21−p/2(x2+ y2)p/2 and it follows that the left-hand side is greater or equal to

26−3p (a2+ b2)(a2+ c2)(a2+ d2)(b2+ c2)(b2+ d2)(c2+ d2)p/2

. Hence it remains to show that

(a2+ b2)(a2+ c2)(a2+ d2)(b2+ c2)(b2+ d2)(c2+ d2) ≥ 4(a2b2c2+ a2b2d2+ a2c2d2+ b2c2d2)2 that is the generalized inequality for p = 2.

After expanding both sides multiplied by 3, it reduces to 3X

sym

a6b4c2d0+X

sym

a6b2c2d2≥3X

sym

a4b4c2d2+X

sym

a4b4c4d0

which holds because, by Muirhead’s inequality, X

sym

a6b4c2d0≥X

sym

a4b4c2d2 and X

sym

a6b2c2d2≥X

sym

a4b4c4d0.



Riferimenti

Documenti correlati

We can now conclude with a brief summary on how the previous Lemmas provide the proof of the various cases stated in Theorem 4.1 (for each case we point out an example as

We denote with A, B, and C the position vectors of the vertices of the given

[r]

[r]

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit` a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.. If M is finite then the

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit` a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy. Let N b (k) be the set of

Fon-Der-Flaass (Russia)

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.. For k