• Non ci sono risultati.

Let a, b, c, and d be positive real numbers

N/A
N/A
Protected

Academic year: 2021

Condividi "Let a, b, c, and d be positive real numbers"

Copied!
1
0
0

Testo completo

(1)

Problem 12115

(American Mathematical Monthly, Vol.126, May 2019) Proposed by M. Dr˘agan (Romania).

Let a, b, c, and d be positive real numbers. Prove

(a3+ b3)(a3+ c3)(a3+ d3)(b3+ c3)(b3+ d3)(c3+ d3) ≥ (a2b2c2+ a2b2d2+ a2c2d2+ b2c2d2)3.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We will show a more general inequality: if p ≥ 2 and a, b, c, d ≥ 0 then

(ap+ bp)(ap+ cp)(ap+ dp)(bp+ cp)(bp+ dp)(cp+ dp) ≥ 26−2p(a2b2c2+ a2b2d2+ a2c2d2+ b2c2d2)p. By the Power Mean Inequality, if x, y ≥ 0 then xp+ yp≥21−p/2(x2+ y2)p/2 and it follows that the left-hand side is greater or equal to

26−3p (a2+ b2)(a2+ c2)(a2+ d2)(b2+ c2)(b2+ d2)(c2+ d2)p/2

. Hence it remains to show that

(a2+ b2)(a2+ c2)(a2+ d2)(b2+ c2)(b2+ d2)(c2+ d2) ≥ 4(a2b2c2+ a2b2d2+ a2c2d2+ b2c2d2)2 that is the generalized inequality for p = 2.

After expanding both sides multiplied by 3, it reduces to 3X

sym

a6b4c2d0+X

sym

a6b2c2d2≥3X

sym

a4b4c2d2+X

sym

a4b4c4d0

which holds because, by Muirhead’s inequality, X

sym

a6b4c2d0≥X

sym

a4b4c2d2 and X

sym

a6b2c2d2≥X

sym

a4b4c4d0.



Riferimenti

Documenti correlati

We denote with A, B, and C the position vectors of the vertices of the given

[r]

[r]

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit` a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.. If M is finite then the

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit` a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy. Let N b (k) be the set of

Fon-Der-Flaass (Russia)

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.. For k

We can now conclude with a brief summary on how the previous Lemmas provide the proof of the various cases stated in Theorem 4.1 (for each case we point out an example as