• Non ci sono risultati.

be a sequence of positive real numbers

N/A
N/A
Protected

Academic year: 2021

Condividi "be a sequence of positive real numbers"

Copied!
1
0
0

Testo completo

(1)

Problem 12124

(American Mathematical Monthly, Vol.126, June-July 2019) Proposed by M. Omarjee (France).

Let p >1, and let a1, a2, . . . be a sequence of positive real numbers. Prove that if

n

X

k=1

1 1 + apk = O

 1

1 + apn

 ,

then n

X

k=1

1 1 + ak

= O

 1

(1 + apn)1/p

 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We will prove a more general result.

Let p >0 and let (xn)n,(yn)n be two sequences of positive real numbers, such that ynp ≤xn for all n ≥1. Then

n

X

k=1

xk = O (xn) =⇒

n

X

k=1

yk = O x1/pn 

.

If p > 1, xn = 1+a1p

n and yn = 1+a1

n, then ypn ≤xn if and only if 1 + apn ≤(1 + an)p which holds and we are done.

By definition,Pn

k=1xk = O (xn) implies that there is C > 1 such that for n ≥ 1, Sn :=

n

X

k=1

xk < Cxn= C(Sn−Sn−1) =⇒ Sn−1< qSn where q = 1 − 1

C ∈(0, 1).

Hence , for 1 ≤ k ≤ n,

ypk≤xk ≤Sk≤qSk+1≤ · · · ≤qn−kSn< qn−kCxn =⇒ yk<(qn−kCxn)1/p. Finally

n

X

k=1

yk<(Cxn)1/p

n

X

k=1

q(n−k)/p<(Cxn)1/p

X

k=0

qk/p= C1/p 1 − q1/px1/pn that isPn

k=1yk = O x1/pn

. 

Riferimenti

Documenti correlati

They build the constructive reals as equivalence classes of fundamental (Cauchy) sequences of rationals; then they introduce the primitive strict order relation (&lt;) and

[r]

[r]

[r]

[r]

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit` a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.. If M is finite then the

Fon-Der-Flaass (Russia)

) be a sequence of nonnegative