Problem 12124
(American Mathematical Monthly, Vol.126, June-July 2019) Proposed by M. Omarjee (France).
Let p >1, and let a1, a2, . . . be a sequence of positive real numbers. Prove that if
n
X
k=1
1 1 + apk = O
1
1 + apn
,
then n
X
k=1
1 1 + ak
= O
1
(1 + apn)1/p
.
Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.
Solution. We will prove a more general result.
Let p >0 and let (xn)n,(yn)n be two sequences of positive real numbers, such that ynp ≤xn for all n ≥1. Then
n
X
k=1
xk = O (xn) =⇒
n
X
k=1
yk = O x1/pn
.
If p > 1, xn = 1+a1p
n and yn = 1+a1
n, then ypn ≤xn if and only if 1 + apn ≤(1 + an)p which holds and we are done.
By definition,Pn
k=1xk = O (xn) implies that there is C > 1 such that for n ≥ 1, Sn :=
n
X
k=1
xk < Cxn= C(Sn−Sn−1) =⇒ Sn−1< qSn where q = 1 − 1
C ∈(0, 1).
Hence , for 1 ≤ k ≤ n,
ypk≤xk ≤Sk≤qSk+1≤ · · · ≤qn−kSn< qn−kCxn =⇒ yk<(qn−kCxn)1/p. Finally
n
X
k=1
yk<(Cxn)1/p
n
X
k=1
q(n−k)/p<(Cxn)1/p
∞
X
k=0
qk/p= C1/p 1 − q1/px1/pn that isPn
k=1yk = O x1/pn
.