• Non ci sono risultati.

Cohomological Dimension, Symbolic Powers and Matroids

N/A
N/A
Protected

Academic year: 2021

Condividi "Cohomological Dimension, Symbolic Powers and Matroids"

Copied!
153
0
0

Testo completo

(1)

Cohomological Dimension, Symbolic Powers and Matroids

Matteo Varbaro

Dipartimento di Matematica, Universit`a di Genova

April 4, 2011

Matteo Varbaro, Universit`a di Genova PhD thesis

(2)

PAPERS AND STRUCTURE OF THE THESIS

1 L. Sharifan, M. Varbaro, Graded Betti numbers and ideals with linear quotients, Le Matematiche, Vol. LXIII (2008), pp. 257-265.

2 B. Benedetti, A. Constantinescu, M. Varbaro, Dimension, depth and zero-divisors of the algebra of basic k-covers, Le Matematiche, Vol. LXIII (2008), pp. 117-156.

3 M. Varbaro, Gr¨obner deformations, connectedness and cohomological dimension, Journal of Algebra, Vol. 322 (2009), pp. 2492-2507.

4 B. Benedetti, M. Varbaro, Unmixed graphs that are domains, to appear in Communications in Algebra.

5 M. Varbaro, Arithmetical rank of certain Segre embeddings, to appear in Transactions of the American Mathematical Society.

6 A. Constantinescu, M. Varbaro, Koszulness, Krull dimension and other properties of graph-related algebras, to appear in Journal of Algebraic Combinatorics.

7 M. Varbaro, Symbolic powers and matroids, to appear in Proceedings of the American Mathematical Society.

8 L. D. Nam, M. Varbaro, Cohen-Macaulayness of generically complete intersection monomial ideals, to appear in Communications in Algebra.

9 A. Constantinescu, M. Varbaro, On the h-vectors of Cohen-Macaulay Flag Complexes, submitted.

10 W. Bruns, A. Conca, M. Varbaro, Relations among the Minors of a Generic Matrix, in preparation.

Matteo Varbaro, Universit`a di Genova PhD thesis

(3)

PAPERS AND STRUCTURE OF THE THESIS

1 L. Sharifan, M. Varbaro, Graded Betti numbers and ideals with linear quotients, Le Matematiche, Vol. LXIII (2008), pp. 257-265.

2 B. Benedetti, A. Constantinescu, M. Varbaro, Dimension, depth and zero-divisors of the algebra of basic k-covers, Le Matematiche, Vol. LXIII (2008), pp. 117-156.

3 M. Varbaro, Gr¨obner deformations, connectedness and cohomological dimension, Journal of Algebra, Vol. 322 (2009), pp. 2492-2507.

4 B. Benedetti, M. Varbaro, Unmixed graphs that are domains, to appear in Communications in Algebra.

5 M. Varbaro, Arithmetical rank of certain Segre embeddings, to appear in Transactions of the American Mathematical Society.

6 A. Constantinescu, M. Varbaro, Koszulness, Krull dimension and other properties of graph-related algebras, to appear in Journal of Algebraic Combinatorics.

7 M. Varbaro, Symbolic powers and matroids, to appear in Proceedings of the American Mathematical Society.

8 L. D. Nam, M. Varbaro, Cohen-Macaulayness of generically complete intersection monomial ideals, to appear in Communications in Algebra.

9 A. Constantinescu, M. Varbaro, On the h-vectors of Cohen-Macaulay Flag Complexes, submitted.

10 W. Bruns, A. Conca, M. Varbaro, Relations among the Minors of a Generic Matrix, in preparation.

Matteo Varbaro, Universit`a di Genova PhD thesis

(4)

PAPERS AND STRUCTURE OF THE THESIS

1 L. Sharifan, M. Varbaro, Graded Betti numbers and ideals with linear quotients, Le Matematiche, Vol. LXIII (2008), pp. 257-265.

2 B. Benedetti, A. Constantinescu, M. Varbaro, Dimension, depth and zero-divisors of the algebra of basic k-covers, Le Matematiche, Vol. LXIII (2008), pp. 117-156.

3 M. Varbaro, Gr¨obner deformations, connectedness and cohomological dimension, Journal of Algebra, Vol. 322 (2009), pp. 2492-2507.

4 B. Benedetti, M. Varbaro, Unmixed graphs that are domains, to appear in Communications in Algebra.

5 M. Varbaro, Arithmetical rank of certain Segre embeddings, to appear in Transactions of the American Mathematical Society.

6 A. Constantinescu, M. Varbaro, Koszulness, Krull dimension and other properties of graph-related algebras, to appear in Journal of Algebraic Combinatorics.

7 M. Varbaro, Symbolic powers and matroids, to appear in Proceedings of the American Mathematical Society.

8 L. D. Nam, M. Varbaro, Cohen-Macaulayness of generically complete intersection monomial ideals, to appear in Communications in Algebra.

9 A. Constantinescu, M. Varbaro, On the h-vectors of Cohen-Macaulay Flag Complexes, submitted.

10 W. Bruns, A. Conca, M. Varbaro, Relations among the Minors of a Generic Matrix, in preparation.

Matteo Varbaro, Universit`a di Genova PhD thesis

(5)

PAPERS AND STRUCTURE OF THE THESIS

1 L. Sharifan, M. Varbaro, Graded Betti numbers and ideals with linear quotients, Le Matematiche, Vol. LXIII (2008), pp. 257-265.

2 B. Benedetti, A. Constantinescu, M. Varbaro, Dimension, depth and zero-divisors of the algebra of basic k-covers, Le Matematiche, Vol. LXIII (2008), pp. 117-156.

3 M. Varbaro, Gr¨obner deformations, connectedness and cohomological dimension, Journal of Algebra, Vol. 322 (2009), pp. 2492-2507.

4 B. Benedetti, M. Varbaro, Unmixed graphs that are domains, to appear in Communications in Algebra.

5 M. Varbaro, Arithmetical rank of certain Segre embeddings, to appear in Transactions of the American Mathematical Society.

6 A. Constantinescu, M. Varbaro, Koszulness, Krull dimension and other properties of graph-related algebras, to appear in Journal of Algebraic Combinatorics.

7 M. Varbaro, Symbolic powers and matroids, to appear in Proceedings of the American Mathematical Society.

8 L. D. Nam, M. Varbaro, Cohen-Macaulayness of generically complete intersection monomial ideals, to appear in Communications in Algebra.

9 A. Constantinescu, M. Varbaro, On the h-vectors of Cohen-Macaulay Flag Complexes, submitted.

10 W. Bruns, A. Conca, M. Varbaro, Relations among the Minors of a Generic Matrix, in preparation.

Matteo Varbaro, Universit`a di Genova PhD thesis

(6)

PAPERS AND STRUCTURE OF THE THESIS

1 L. Sharifan, M. Varbaro, Graded Betti numbers and ideals with linear quotients, Le Matematiche, Vol. LXIII (2008), pp. 257-265.

2 B. Benedetti, A. Constantinescu, M. Varbaro, Dimension, depth and zero-divisors of the algebra of basic k-covers, Le Matematiche, Vol. LXIII (2008), pp. 117-156.

3 M. Varbaro, Gr¨obner deformations, connectedness and cohomological dimension, Journal of Algebra, Vol. 322 (2009), pp. 2492-2507.

4 B. Benedetti, M. Varbaro, Unmixed graphs that are domains, to appear in Communications in Algebra.

5 M. Varbaro, Arithmetical rank of certain Segre embeddings, to appear in Transactions of the American Mathematical Society.

6 A. Constantinescu, M. Varbaro, Koszulness, Krull dimension and other properties of graph-related algebras, to appear in Journal of Algebraic Combinatorics.

7 M. Varbaro, Symbolic powers and matroids, to appear in Proceedings of the American Mathematical Society.

8 L. D. Nam, M. Varbaro, Cohen-Macaulayness of generically complete intersection monomial ideals, to appear in Communications in Algebra.

9 A. Constantinescu, M. Varbaro, On the h-vectors of Cohen-Macaulay Flag Complexes, submitted.

10 W. Bruns, A. Conca, M. Varbaro, Relations among the Minors of a Generic Matrix, in preparation.

Matteo Varbaro, Universit`a di Genova PhD thesis

(7)

ZARISKI TOPOLOGY

VS

ETALE TOPOLOGY´

Matteo Varbaro, Universit`a di Genova PhD thesis

(8)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e a r i t h m e t i c a l r a n k

LetS := k[x0, . . . , xn] be the polynomial ring in n + 1 variables over an algebraically closed field k,f1, . . . , fr homogeneous polynomials of S and

X := {P ∈ Pn: f1(P) = . . . = fr(P) = 0} ⊆ Pn.

QUESTION: Which is the minimum number of homogeneous polynomials which define X ?

ara(X ) := minimum s ∈ N: ∃ g1, . . . , gs ∈ S homogeneous with X = {P ∈ Pn: g1(P) = . . . = gs(P) = 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(9)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e a r i t h m e t i c a l r a n k

LetS := k[x0, . . . , xn] be the polynomial ring inn + 1 variables over an algebraically closed fieldk,f1, . . . , fr homogeneous polynomials of S and

X := {P ∈ Pn: f1(P) = . . . = fr(P) = 0} ⊆ Pn.

QUESTION: Which is the minimum number of homogeneous polynomials which define X ?

ara(X ) := minimum s ∈ N: ∃ g1, . . . , gs ∈ S homogeneous with X = {P ∈ Pn: g1(P) = . . . = gs(P) = 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(10)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e a r i t h m e t i c a l r a n k

LetS := k[x0, . . . , xn] be the polynomial ring in n + 1 variables over an algebraically closed field k,f1, . . . , fr homogeneous polynomials of S and

X := {P ∈ Pn: f1(P) = . . . = fr(P) = 0} ⊆ Pn.

QUESTION: Which is the minimum number of homogeneous polynomials which define X ?

ara(X ) := minimum s ∈ N: ∃ g1, . . . , gs ∈ S homogeneous with X = {P ∈ Pn: g1(P) = . . . = gs(P) = 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(11)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e a r i t h m e t i c a l r a n k

LetS := k[x0, . . . , xn] be the polynomial ring in n + 1 variables over an algebraically closed field k,f1, . . . , fr homogeneous polynomials of S and

X := {P ∈Pn: f1(P) = . . . = fr(P) = 0} ⊆ Pn.

QUESTION: Which is the minimum number of homogeneous polynomials which define X ?

ara(X ):= minimum s ∈ N: ∃ g1, . . . , gs ∈ S homogeneous with X = {P ∈ Pn: g1(P) = . . . = gs(P) = 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(12)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e a r i t h m e t i c a l r a n k

LetS := k[x0, . . . , xn] be the polynomial ring in n + 1 variables over an algebraically closed field k,f1, . . . , fr homogeneous polynomials of S and

X := {P ∈ Pn: f1(P) = . . . = fr(P) = 0} ⊆ Pn.

QUESTION: Which is the minimum number of homogeneous polynomials which define X ?

ara(X ):= minimum s ∈ N: ∃ g1, . . . , gs ∈ S homogeneous with X = {P ∈ Pn: g1(P) = . . . = gs(P) = 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(13)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e a r i t h m e t i c a l r a n k

LetS := k[x0, . . . , xn] be the polynomial ring in n + 1 variables over an algebraically closed field k,f1, . . . , fr homogeneous polynomials of S and

X := {P ∈ Pn: f1(P) = . . . = fr(P) = 0} ⊆ Pn.

QUESTION: Which is the minimum number of homogeneous polynomials which define X ?

ara(X ):= minimum s ∈ N: ∃ g1, . . . , gs ∈ S homogeneous with X = {P ∈ Pn: g1(P) = . . . = gs(P) = 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(14)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e a r i t h m e t i c a l r a n k

LetS := k[x0, . . . , xn] be the polynomial ring in n + 1 variables over an algebraically closed field k,f1, . . . , fr homogeneous polynomials of S and

X := {P ∈ Pn: f1(P) = . . . = fr(P) = 0} ⊆ Pn.

QUESTION: Which is the minimum number of homogeneous polynomials which define X ?

ara(X ):= minimum s ∈ N: ∃ g1, . . . , gs ∈ S homogeneous with X = {P ∈ Pn: g1(P) = . . . = gs(P) = 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(15)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Eisenbud, Evans, 1972): X 6= ∅ =⇒ ara(X ) ≤ n.

(Krull, 1938): ara(X ) ≥ codimPn(X ).

(Serre, 1955):

(Grothendieck, 1973): .

For any scheme U, we define the cohomological dimension of U as:

cd(U) := sup{i ∈ N : ∃ F quasi-coherent : Hi(U, F ) 6= 0}.

The ´etale cohomological dimension of U is

´ecd(U) := sup{i ∈ N : ∃ G `-torsion : Hi(U´et, G) 6= 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(16)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Eisenbud, Evans, 1972): X 6= ∅ =⇒ ara(X ) ≤ n.

(Krull, 1938): ara(X ) ≥ codimPn(X ).

(Serre, 1955):

(Grothendieck, 1973): .

For any scheme U, we define the cohomological dimension of U as:

cd(U) := sup{i ∈ N : ∃ F quasi-coherent : Hi(U, F ) 6= 0}.

The ´etale cohomological dimension of U is

´ecd(U) := sup{i ∈ N : ∃ G `-torsion : Hi(U´et, G) 6= 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(17)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Eisenbud, Evans, 1972): X 6= ∅ =⇒ ara(X ) ≤ n.

(Krull, 1938): ara(X ) ≥ codimPn(X ).

(Serre, 1955):

(Grothendieck, 1973): .

For any scheme U, we define the cohomological dimension of U as:

cd(U) := sup{i ∈ N : ∃ F quasi-coherent : Hi(U, F ) 6= 0}.

The ´etale cohomological dimension of U is

´ecd(U) := sup{i ∈ N : ∃ G `-torsion : Hi(U´et, G) 6= 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(18)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Eisenbud, Evans, 1972): X 6= ∅ =⇒ ara(X ) ≤ n.

(Krull, 1938): ara(X ) ≥ codimPn(X ).

(Serre, 1955): Hi(Pn\ X , F ) = 0 i ≥ ara(X ).

(Grothendieck, 1973): .

For any scheme U, we define thecohomological dimension of U as:

cd(U):= sup{i ∈ N : ∃ F quasi-coherent : Hi(U, F ) 6= 0}.

The ´etale cohomological dimension of U is

´ecd(U) := sup{i ∈ N : ∃ G `-torsion : Hi(U´et, G) 6= 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(19)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Eisenbud, Evans, 1972): X 6= ∅ =⇒ ara(X ) ≤ n.

(Krull, 1938): ara(X ) ≥ codimPn(X ).

(Serre, 1955): Hi(Pn\ X , F ) = 0 i ≥ ara(X ).

(Grothendieck, 1973): Hi((Pn\ X )´et, G) = 0 i ≥ ara(X ) + n.

For any scheme U, we define thecohomological dimension of U as:

cd(U):= sup{i ∈ N : ∃ F quasi-coherent : Hi(U, F ) 6= 0}.

The ´etale cohomological dimension of U is

´ecd(U) := sup{i ∈ N : ∃ G `-torsion : Hi(U´et, G) 6= 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(20)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Eisenbud, Evans, 1972): X 6= ∅ =⇒ ara(X ) ≤ n.

(Krull, 1938): ara(X ) ≥ codimPn(X ).

(Serre, 1955): Hi(Pn\ X , F ) = 0 i ≥ ara(X ).

(Grothendieck, 1973): Hi((Pn\ X )´et, G) = 0 i ≥ ara(X ) + n.

For any schemeU, we define the cohomological dimension of U as:

cd(U):= sup{i ∈ N : ∃ F quasi-coherent : Hi(U, F ) 6= 0}.

The´etale cohomological dimension of U is

´

ecd(U):= sup{i ∈ N : ∃ G `-torsion : Hi(U´et, G) 6= 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(21)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Eisenbud, Evans, 1972): X 6= ∅ =⇒ ara(X ) ≤ n.

(Krull, 1938): ara(X ) ≥ codimPn(X ).

(Serre, 1955): ara(X ) ≥ cd(Pn\ X ) + 1.

(Grothendieck, 1973): Hi((Pn\ X )´et, G) = 0 i ≥ ara(X ) + n.

For any scheme U, we define thecohomological dimension of U as:

cd(U):= sup{i ∈ N : ∃ F quasi-coherent : Hi(U, F ) 6= 0}.

The´etale cohomological dimension of U is

´

ecd(U):= sup{i ∈ N : ∃ G `-torsion : Hi(U´et, G) 6= 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(22)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Eisenbud, Evans, 1972): X 6= ∅ =⇒ ara(X ) ≤ n.

(Krull, 1938): ara(X ) ≥ codimPn(X ).

(Serre, 1955): ara(X ) ≥ cd(Pn\ X ) + 1.

(Grothendieck, 1973): Hi((Pn\ X )´et, G) = 0 i ≥ ara(X ) + n.

For any scheme U, we define thecohomological dimension of U as:

cd(U):= sup{i ∈ N : ∃ F quasi-coherent : Hi(U, F ) 6= 0}.

The´etale cohomological dimension of U is

´

ecd(U):= sup{i ∈ N : ∃ G `-torsion : Hi(U´et, G) 6= 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(23)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Eisenbud, Evans, 1972): X 6= ∅ =⇒ ara(X ) ≤ n.

(Krull, 1938): ara(X ) ≥ codimPn(X ).

(Serre, 1955): ara(X ) ≥ cd(Pn\ X ) + 1.

(Grothendieck, 1973): ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

For any scheme U, we define thecohomological dimension of U as:

cd(U):= sup{i ∈ N : ∃ F quasi-coherent : Hi(U, F ) 6= 0}.

The´etale cohomological dimension of U is

´

ecd(U):= sup{i ∈ N : ∃ G `-torsion : Hi(U´et, G) 6= 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(24)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Eisenbud, Evans, 1972): X 6= ∅ =⇒ ara(X ) ≤ n.

(Krull, 1938): ara(X ) ≥ codimPn(X ).

(Serre, 1955): ara(X ) ≥ cd(Pn\ X ) + 1.

(Grothendieck, 1973): ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

For any scheme U, we define thecohomological dimension of U as:

cd(U):= sup{i ∈ N : ∃ F quasi-coherent : Hi(U, F ) 6= 0}.

The´etale cohomological dimension of U is

´

ecd(U):= sup{i ∈ N : ∃ G `-torsion : Hi(U´et, G) 6= 0}.

Matteo Varbaro, Universit`a di Genova PhD thesis

(25)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Grothendieck, 1961): cd(Pn\ X ) ≥ codimPn(X ) − 1.

(Lyubeznik, 1993): ´ecd(Pn\ X ) ≥ codimPn(X ) + n − 1.

As we learned in the above slide:

ara(X ) ≥ cd(Pn\ X ) + 1.

ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

QUESTION (Hartshorne, 1970): Which is better???

?

´ecd(Pn\ X ) ≷ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(26)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Grothendieck, 1961): cd(Pn\ X ) ≥ codimPn(X ) − 1.

(Lyubeznik, 1993): ´ecd(Pn\ X ) ≥ codimPn(X ) + n − 1.

As we learned in the above slide:

ara(X ) ≥ cd(Pn\ X ) + 1.

ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

QUESTION (Hartshorne, 1970): Which is better???

?

´ecd(Pn\ X ) ≷ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(27)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Grothendieck, 1961): cd(Pn\ X ) ≥ codimPn(X ) − 1.

(Lyubeznik, 1993): ´ecd(Pn\ X ) ≥ codimPn(X ) + n − 1.

As we learned in the above slide:

ara(X ) ≥ cd(Pn\ X ) + 1.

ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

QUESTION (Hartshorne, 1970): Which is better???

?

´ecd(Pn\ X ) ≷ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(28)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Grothendieck, 1961): cd(Pn\ X ) ≥ codimPn(X ) − 1.

(Lyubeznik, 1993): ´ecd(Pn\ X ) ≥ codimPn(X ) + n − 1.

As we learned in the above slide:

ara(X ) ≥ cd(Pn\ X ) + 1.

ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

QUESTION (Hartshorne, 1970): Which is better???

?

´ecd(Pn\ X ) ≷ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(29)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Grothendieck, 1961): cd(Pn\ X ) ≥ codimPn(X ) − 1.

(Lyubeznik, 1993): ´ecd(Pn\ X ) ≥ codimPn(X ) + n − 1.

As we learned in the above slide:

ara(X ) ≥ codimPn(X ).

ara(X ) ≥ cd(Pn\ X ) + 1.

ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

QUESTION (Hartshorne, 1970): Which is better???

?

´ecd(Pn\ X ) ≷ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(30)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Grothendieck, 1961): cd(Pn\ X ) ≥ codimPn(X ) − 1.

(Lyubeznik, 1993): ´ecd(Pn\ X ) ≥ codimPn(X ) + n − 1.

As we learned in the above slide:

ara(X ) ≥ codimPn(X ).

ara(X ) ≥ cd(Pn\ X ) + 1.

ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

QUESTION(Hartshorne, 1970): Which is better???

?

´ecd(Pn\ X ) ≷ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(31)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Grothendieck, 1961): cd(Pn\ X ) ≥ codimPn(X ) − 1.

(Lyubeznik, 1993): ´ecd(Pn\ X ) ≥ codimPn(X ) + n − 1.

As we learned in the above slide:

ara(X ) ≥ codimPn(X ).

ara(X ) ≥ cd(Pn\ X ) + 1.

ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

QUESTION(Hartshorne, 1970): Which is better???

?

´ecd(Pn\ X ) ≷ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(32)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Grothendieck, 1961): cd(Pn\ X ) ≥ codimPn(X ) − 1.

(Lyubeznik, 1993): ´ecd(Pn\ X ) ≥ codimPn(X ) + n − 1.

As we learned in the above slide:

ara(X ) ≥ cd(Pn\ X ) + 1.

ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

QUESTION(Hartshorne, 1970): Which is better???

?

´ecd(Pn\ X ) ≷ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(33)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Grothendieck, 1961): cd(Pn\ X ) ≥ codimPn(X ) − 1.

(Lyubeznik, 1993): ´ecd(Pn\ X ) ≥ codimPn(X ) + n − 1.

As we learned in the above slide:

ara(X ) ≥ cd(Pn\ X ) + 1.

ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

QUESTION(Hartshorne, 1970): Which is better???

?

´ecd(Pn\ X ) ≷ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(34)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Grothendieck, 1961): cd(Pn\ X ) ≥ codimPn(X ) − 1.

(Lyubeznik, 1993): ´ecd(Pn\ X ) ≥ codimPn(X ) + n − 1.

As we learned in the above slide:

ara(X ) ≥ cd(Pn\ X ) + 1.

ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

QUESTION(Hartshorne, 1970): Which is better???

?

´ecd(Pn\ X ) ≷ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(35)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Grothendieck, 1961): cd(Pn\ X ) ≥ codimPn(X ) − 1.

(Lyubeznik, 1993): ´ecd(Pn\ X ) ≥ codimPn(X ) + n − 1.

As we learned in the above slide:

ara(X ) ≥ cd(Pn\ X ) + 1.

ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

QUESTION(Hartshorne, 1970): Which is better???

?

´ecd(Pn\ X ) ≷ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(36)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

S o m e r e s u l t s t o d e a l w i t h t h i s p r o b l e m

(Grothendieck, 1961): cd(Pn\ X ) ≥ codimPn(X ) − 1.

(Lyubeznik, 1993): ´ecd(Pn\ X ) ≥ codimPn(X ) + n − 1.

As we learned in the above slide:

ara(X ) ≥ cd(Pn\ X ) + 1.

ara(X ) ≥ ´ecd(Pn\ X ) − n + 1.

QUESTION(Hartshorne, 1970): Which is better???

?

´ecd(Pn\ X ) ≷ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(37)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0and X = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0 and X = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE (Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(38)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0and X = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0and X = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE (Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(39)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0 andX = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0and X = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE (Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(40)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0 and X = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0and X = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE (Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(41)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0 and X = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0and X = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties(Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE (Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(42)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0 and X = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0 andX = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties(Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE (Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(43)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0 and X = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0 and X = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties(Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE (Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(44)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0 and X = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0 and X = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties(Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE(Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(45)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0 and X = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0 and X = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE(Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(46)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0 and X = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0 and X = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always provedat least as effective asthe (ordinary) cohomological dimension.

CONJECTURE(Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(47)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0 and X = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0 and X = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE(Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(48)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0 and X = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0 and X = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE(Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(49)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

H i s t o r y

(Ogus, 1973): char(k) = 0 and X = vd(Pk) ⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

(Newstead, 1980): char(k) > 0 and X = Ps× Pt⊆ Pn.

´ecd(Pn\ X ) > cd(Pn\ X ) + n

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schw¨anzl, Barile, Singh-Walther...) and the ´etale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE(Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

Matteo Varbaro, Universit`a di Genova PhD thesis

(50)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e r e s u l t

CONJECTURE(Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

(Lyubeznik, 2009): COUNTEREXAMPLE if char(k) > 0

(-, to appear in Trans. Amer. Math. Soc.):

TRUE in characteristic 0, provided that X is smooth

Matteo Varbaro, Universit`a di Genova PhD thesis

(51)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e r e s u l t

CONJECTURE(Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

(Lyubeznik, 2009): COUNTEREXAMPLE if char(k) > 0

(-, to appear in Trans. Amer. Math. Soc.):

TRUE in characteristic 0, provided that X is smooth

Matteo Varbaro, Universit`a di Genova PhD thesis

(52)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e r e s u l t

CONJECTURE(Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

(Lyubeznik, 2009): COUNTEREXAMPLE if char(k) > 0

(-, to appear in Trans. Amer. Math. Soc.):

TRUE in characteristic 0, provided that X is smooth

Matteo Varbaro, Universit`a di Genova PhD thesis

(53)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e r e s u l t

CONJECTURE(Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

(Lyubeznik, 2009): COUNTEREXAMPLE if char(k) > 0

(-, to appear in Trans. Amer. Math. Soc.):

TRUE in characteristic 0, provided that X is smooth

Matteo Varbaro, Universit`a di Genova PhD thesis

(54)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e r e s u l t

CONJECTURE(Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

(Lyubeznik, 2009): COUNTEREXAMPLE if char(k) > 0

(-, to appear in Trans. Amer. Math. Soc.):

TRUE in characteristic 0, provided that X is smooth

Matteo Varbaro, Universit`a di Genova PhD thesis

(55)

ZARISKI TOPOLOGY VS ´ETALE TOPOLOGY

T h e r e s u l t

CONJECTURE(Lyubeznik, 2002): ´ecd(Pn\ X ) ≥ cd(Pn\ X ) + n

(Lyubeznik, 2009): COUNTEREXAMPLE if char(k) > 0

(-, to appear in Trans. Amer. Math. Soc.):

TRUE in characteristic 0, provided that X is smooth

Matteo Varbaro, Universit`a di Genova PhD thesis

Riferimenti

Documenti correlati

By Krull’s principal ideal theorem it follows that ara h (I ) ≥ ara(I ) ≥ ht(I ),. but may be equality does

This gives us a way of finding a basis of any subspace generated by a set of vectors, better than.

The main results of the study are as follows: 1) CSAs were asked to play a relay role in consensus building; 2) the associations were aware of this request, as well as of the

Anche Aldo Ferrari parte dal momento della conversione collettiva del po- polo armeno come dato fondamentale e fondante dell’identità storico-culturale armena, per spostarsi

Presupposti per l’adozione e realizzazione di un testo critico interlineare comprensivo delle edizioni Mainardi 1801, Genio tipografico 1802, Mantovana 1802, Agnello Nobile

This notion, based on the concept of strongly connected component, allows to partition the nodes of a graph and to guide the computation of the bisimulation algorithm. In this work

As an immediate corollary of Theorem 1.7 , we obtain the following sphere theorem, that should be compared with the classical Alexandrov Theorem for compact connected constant

Periodic locally nilpotent groups with finite abelian subgroup rank are easily seen to be hypercentral groups with ˇ Cernikov p-components and such a group G has finite rank if and