• Non ci sono risultati.

Prove a, b, c ∈ [−1, 1] and | arcsin(a

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove a, b, c ∈ [−1, 1] and | arcsin(a"

Copied!
1
0
0

Testo completo

(1)

Problem 12105

(American Mathematical Monthly, Vol.126, April 2019) Proposed by G. Brookfield (USA).

Letr be a real number, and let f (x) = x3+ 2rx2+ (r2− 1)x − 2r. Suppose that f has real roots a, b, and c. Prove a, b, c ∈ [−1, 1] and

| arcsin(a)| + | arcsin(b)| + | arcsin(c)| = π.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. If x ∈ {−1, 0, 1} and f (x) = 0 then r = 0, {a, b, c} = {−1, 0, 1} and the desired arcsin identity is valid.

We assume now that x 6∈ {−1, 0, 1} and therefore r 6= 0. If f (x) = 0 for some r ∈ R \ {0} then f (x) = xr2+ 2(x2− 1)r + x3− x = 0

is a quadratic equation with respect to r and it follows that

4 = (x2− 1)2− x(x3− x) = 1 − x2≥ 0

which implies that |x| ∈ (0, 1). It follows that the real roots a, b, c are such that |a|, |b|, |c| ∈ (0, 1).

Moreover,

(x2− a2)(x2− b2)(x2− c2) = −f (x)f (−x) = x6− 2(r2+ 1)x4+ (r4+ 6r2+ 1)x2− 4r2 and therefore

a2+ b2+ c2= 2(r2+ 2), a2b2+ b2c2+ c2a2= (r4+ 6r2+ 1), a2b2c2= 4r2. Hence

(a2+ b2+ c2)2+ 4a2b2c2− 4(a2b2+ b2c2+ c2a2) = (2(r2+ 1))2+ 4 · 4r2− 4 · (r4+ 6r2+ 1) = 0 (∗).

Finally we show that desired arcsin identity is implied by (∗).

Note that since a + b + c = −2r = −abc and abc = 2r it follows that c = −(a + b)/(1 + ab) and for 0 < |a|, |b| < 1,

arcsin |a| + arcsin |b| > arcsin |c| = arcsin

a + b 1 + ab

because h(t) = arcsin(tanh(t)) is monotone and strictly subadditive in (0, +∞) (h(0) = 0 and h is strictly concave in [0, +∞)).

We may assume that 0 < |a| ≤ |b| ≤ |c| < 1. Thus, by (∗), (a2+ b2+ c2)2+4a2b2c2− 4(a2b2+ b2c2+ c2a2) = 0

⇔ a4+ b4+ c4+ 4a2b2c2= 2(a2b2+ b2c2+ c2a2)

⇔ 4a2b2(1 − a2)(1 − b2) = (c2− a2(1 − b2) − b2(1 − a2))2

⇔ a2(1 − b2) + b2(1 − a2) ± 2|a||b|p

1 − a2p

1 − b2= c2

⇔ |a|p

1 − b2+ |b|p

1 − a2= |c| ∨ |a|

p1 − b2− |b|p 1 − a2

= |c|

⇒ |a|p

1 − b2+ |b|p

1 − a2= |c| (0 < |a| ≤ |b| ≤ |c| < 1)

⇔ sin(arcsin |a| + arcsin |b|) = sin(arcsin |c|)

⇔ arcsin |a| + arcsin |b| = arcsin |c| ∨ arcsin |a| + arcsin |b| = π − arcsin |c|

⇒ | arcsin(a)| + | arcsin(b)| + | arcsin(c)| = π (arcsin |a| + arcsin |b| > arcsin |c|) and we are done.



Riferimenti

Documenti correlati

X is the amount won or lost and Y is the outcome of the

To simplify the calculations, one can argue as follows: in this case the three vectors

[r]

[r]

[r]

[r]

analogously BB ′ and CC ′ are the bisectors of the angles ∠ABC

Per costruire uno di tali prodotti potremmo procedere come segue: il primo fattore è scelto fra gli elementi della prima riga, il secondo fra gli elementi della seconda riga (ma in