• Non ci sono risultati.

Prove that 1 2πLi2(e−2π

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove that 1 2πLi2(e−2π"

Copied!
1
0
0

Testo completo

(1)

Problem 11848

(American Mathematical Monthly, Vol.122, June-July 2015) Proposed by I. Mez˝o (China).

Prove that

1

2πLi2(e−2π) = ln(2π) − 1 −5π 12 −

X

k=1

(−1)kζ(2k) k(2k + 1) .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

By the definition of Bernoulli numbers, we have that

F (x) := 2

X

k=1

(−1)k−1ζ(2k)x2k=

n

X

k=1

B2k

(2πx)2k

(2k)! = 2πx

e2πx− 1 − 1 + πx.

Hence

X

k=1

(−1)k−1ζ(2k) k(2k + 1) = 2

X

k=1

(−1)k−1ζ(2k)

2k − 2

X

k=1

(−1)k−1ζ(2k) 2k + 1 =

Z 1 0

F (x) x dx −

Z 1 0

F (x)dx.

As regards the first integral, we get Z 1

0

F (x)

x dx = π + Z

0

 1 et− 1 −1

t



dt = π +ln(1 − e−t) − ln(t)

0+= π + ln(1 − e−2π) − ln(2π).

The second one goes as follows Z 1

0

F (x)dx = −1 + π 2 + 1

2π Z

0

t

et− 1dt = −1 + π 2 − 1

2πLi2(e−2π) + ln(1 − e−2π) + π 12. Infact

Z 0

t et− 1dt =

Z 0

te−t 1 − e−tdt =

Z 0

t

X

k=1

e−ktdt =

X

k=1

Z 0

te−ktdt

= −

X

k=1

 e−kt

k2 +te−kt k



0

= −Li2(e−2π) + 2π ln(1 − e−2π) +π2 6 . Finally

X

k=1

(−1)k−1ζ(2k)

k(2k + 1) = π + ln(1 − e−2π) − ln(2π) −



−1 +π 2 − 1

2πLi2(e−2π) + ln(1 − e−2π) + π 12



= 1

2πLi2(e−2π) − ln(2π) + 1 + 5π 12.



Riferimenti