• Non ci sono risultati.

experimental signal basis.

N/A
N/A
Protected

Academic year: 2021

Condividi "experimental signal basis."

Copied!
16
0
0

Testo completo

(1)

RS algorithm for 3D localization of g interactions in segmented HPGe detectors: tests with calculated and

experimental signal basis.

FABIO CRESPI - University of MILANO / INFN

(2)

OUTLINE:

 g -ray tracking detectors (AGATA array)

 Recursive Subtraction 3D (RS_3D) Algorithm for interaction position determination.

 Tests with Calculated and Experimental

Signal Basis.

(3)

In gamma spectroscopy experiments with radioactive ion beams the reconstruction of the gamma radiation path inside the detectors allows the correction of the Doppler broadening effect and the suppression of the background radiation not coming from the target position.

Ingredients of g -Tracking

Pulse Shape Analysis to decompose recorded traces Highly segmented

HPGe detectors

· ·

· ·

Identified interaction

points (x, y, z, E, t )i

Reconstruction of tracks e.g. by evaluation of

permutations of interaction points

Digital electronics to record and process segment

signals

g

1

2 3

4

reconstructed g-rays

g

Target Particle

Detectors

Particle Detector

g

The Advanced Gamma ray Tracking Array (AGATA)

AGATA Demonstrator Array

(4)

In gamma spectroscopy experiments with radioactive ion beams the reconstruction of the gamma radiation path inside the detectors allows the correction of the Doppler broadening effect and the suppression of the background radiation not coming from the target position.

Ingredients of g -Tracking

Pulse Shape Analysis to decompose recorded traces Highly segmented

HPGe detectors

· ·

· ·

Identified interaction

points (x, y, z, E, t )i

Reconstruction of tracks e.g. by evaluation of

permutations of interaction points

Digital electronics to record and process segment

signals

g

1

2 3

4

reconstructed g-rays

g

Target Particle

Detectors

Particle Detector

g

The Advanced Gamma ray Tracking Array (AGATA)

AGATA Demonstrator Array

RS_3D

(5)

Recursive Subtraction* 3D (RS_3D) Algorithm

The XYZ Position of the interactions is extracted comparing the detector signal shape with reference shapes included in a database (―Signal Basis‖).

The Signals in the ―Basis‖ are ordered according to specific parameters (e.g.

position of the derived net-charge signal maximum) in order to minimize CPU time.

For each net charge collecting segment the following operations are performed:

the Signals (transients or net charge) which are likely to have a shape that depends on only one interaction are selected.

these signals are compared with the Basis elements.

the element that best matches is subtracted from the detector signal.

0 0.001 0.002 0.003 0.004 0.005 0.006

0 100 200 300 400 500 600

Time (ns)

0 0.001 0.002 0.003 0.004 0.005 0.006

0 100 200 300 400 500 600

Time (ns)

Amplitude (A.U.)

max at 100 ns max at 200 ns max at 300 ns max at 400 ns

0 0.001 0.002 0.003 0.004 0.005 0.006

0 100 200 300 400 500 600

Time (ns)

Amplitude (A.U.)

max at 100 ns max at 200 ns max at 300 ns max at 400 ns

0 0.001 0.002 0.003 0.004 0.005 0.006

0 100 200 300 400 500 600

Time (ns)

Amplitude (A.U.)

max at 100 ns max at 200 ns max at 300 ns max at 400 ns

*F.C.L. Crespi, Nucl. Instr. and Meth. A570 (2007), p. 459

(6)

35 5 11 17 23 29 35 34 4 10 16 22 28 34 33 3 9 15 21 27 33 32 2 8 14 20 26 32 31 1 7 13 19 25 31

30 0

72 keV

6 12 18 24 30

446 keV 144 keV

662 keV

Recursive Subtraction 3D (RS_3D) Algorithm Example: 662 keV* F.E.P. simulated event** ,

Segment multiplicity =3.

*137Cs source, used in tests with experimental data presented in the following.

** Geant 4 AGATA code used

(E. Farnea, D. Bazzacco, LNL-INFN(REP)—202 (2004) 158 website: http://agata.pd.infn.it.)

(7)

35 5 11 17 23 29 35 34 4 10 16 22 28 34 33 3 9 15 21 27 33 32 2 8 14 20 26 32 31 1 7 13 19 25 31 30 0 6 12 18 24 30

72 keV 446 keV

144 keV

Recursive Subtraction 3D (RS_3D) Algorithm

662 keV

Example: 662 keV F.E.P. simulated event, Segment multiplicity =3

-100 400 900 1400 1900 2400 2900

0 10 20 30 40 50 60

TIME (10*ns)

AMPLITUDE (A.U.)

Net Charge Signals Transient Signals

(1 N.C. segment neighbor only)

“Superimposed” Transient Signals

(influenced by multiple N.C. Segments)

(8)

35 5 11 17 23 29 35 34 4 10 16 22 28 34 33 3 9 15 21 27 33 32 2 8 14 20 26 32 31 1 7 13 19 25 31 30 0 6 12 18 24 30

72 keV 446 keV

144 keV

-50 -40 -30 -20 -10 0 10

0 10 20 30 40 50 60

-50 -40 -30 -20 -10 0 10

0 10 20 30 40 50 60

-50 -40 -30 -20 -10 0 10

0 10 20 30 40 50 60

Recursive Subtraction 3D (RS_3D) Algorithm

Example: 662 keV F.E.P. simulated event, Segment multiplicity =3

TIME (10*ns)

TIME (10*ns)

TIME (10*ns)

AMPLITUDE (A.U.)AMPLITUDE (A.U.)AMPLITUDE (A.U.)

662 keV

(9)

AMPLITUDE (A.U.)AMPLITUDE (A.U.)AMPLITUDE (A.U.)

35 5 11 17 23 29 35 34 4 10 16 22 28 34 33 3 9 15 21 27 33 32 2 8 14 20 26 32 31 1 7 13 19 25 31 30 0 6 12 18 24 30

72 keV 446 keV

144 keV

-50 -40 -30 -20 -10 0 10

0 10 20 30 40 50 60

-50 -40 -30 -20 -10 0 10

0 10 20 30 40 50 60

-50 -40 -30 -20 -10 0 10

0 10 20 30 40 50 60

TIME (10*ns)

TIME (10*ns)

TIME (10*ns)

Recursive Subtraction 3D (RS_3D) Algorithm

Example: 662 keV F.E.P. simulated event, Segment multiplicity =3

662 keV

(10)

35 5 11 17 23 29 35 34 4 10 16 22 28 34 33 3 9 15 21 27 33 32 2 8 14 20 26 32 31 1 7 13 19 25 31 30 0 6 12 18 24 30

72 keV

144 keV

35 5 11 17 23 29 35 34 4 10 16 22 28 34 33 3 9 15 21 27 33 32 2 8 14 20 26 32 31 1 7 13 19 25 31 30 0 6 12 18 24 30

72 keV

Recursive Subtraction 3D (RS_3D) Algorithm

Example: 662 keV F.E.P. simulated event, Segment multiplicity =3

Net Charge Signals Transient Signals

(1 N.C. segment neighbor only)

―Superimposed‖ Transient Signals

(influenced by multiple N.C. Segments)

662 keV

(11)

35 5 11 17 23 29 35 34 4 10 16 22 28 34 33 3 9 15 21 27 33 32 2 8 14 20 26 32 31 1 7 13 19 25 31

30 0

72 keV

6 12 18 24 30

446 keV 144 keV

662 keV

Recursive Subtraction 3D (RS_3D) Algorithm

Example: 662 keV F.E.P. simulated event, Segment multiplicity =3

-100 400 900 1400 1900 2400 2900

0 10 20 30 40 50 60

TIME (10*ns)

AMPLITUDE (A.U.)

-500 0 500 1000 1500 2000 2500 3000 3500

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596010 20 30 40 50 60

Reconstructed Signal

(12)

Conclusions

PSCS scan Calculated Basis

Pos X [0.1*mm]

PosY [0.1*mm]

-30 -10 10 30 50 70 90 110

0 60 120 180 240 300 360

1 2 3 4 5 6

TIME [10*ns]

AMPLITUDE [a.u.]

882 493 806 513

883 523 839 504

883 554 873 500

884 585 906 500

885 616 940 504

886 646 973 513

887 677

888 708

889 739

Pos Y [0.1*mm]

Pos X [0.1*mm]

Pos X [0.1*mm]

Pos Y [0.1*mm]

1 56 3 24

-30 -10 10 30 50 70 90 110

0 60 120 180 240 300 360

1 2 3 4 5 6

TIME [10*ns]

AMPLITUDE [a.u.]

-30 -10 10 30 50 70 90 110

0 60 120 180 240 300 360

1 2 3 4 5 6

TIME [10*ns]

AMPLITUDE [a.u.]

-30 -10 10 30 50 70 90 110

0 60 120 180 240 300 360

1 2 3 4 5 6

TIME [10*ns]

AMPLITUDE [a.u.]

Experimental Basis: extracted using PSCS scan****recently developed technique, still under test. (4 segments available) (see dedicated NSS 2010 Poster)

Signal Basis: Calculated and Experimental

Calculated Basis*: currently implemented and used in AGATA experiments with

GRID SEARCH** PSA algorithm. (C001 Asymmmetric Detector, used for experimental data acquisition in Liverpool University***)

Conclusions

PSCS scan Calculated Basis

Pos X [0.1*mm]

PosY [0.1*mm]

-30 -10 10 30 50 70 90 110

0 60 120 180 240 300 360

1 2 3 4 5 6

TIME [10*ns]

AMPLITUDE [a.u.]

882 493 806 513

883 523 839 504

883 554 873 500

884 585 906 500

885 616 940 504

886 646 973 513

887 677

888 708

889 739

Pos Y [0.1*mm] Pos X [0.1*mm]

Pos X [0.1*mm]

Pos Y [0.1*mm]

1 56 3 24

-30 -10 10 30 50 70 90 110

0 60 120 180 240 300 360

1 2 3 4 5 6

TIME [10*ns]

AMPLITUDE [a.u.]

-30 -10 10 30 50 70 90 110

0 60 120 180 240 300 360

1 2 3 4 5 6

TIME [10*ns]

AMPLITUDE [a.u.]

-30 -10 10 30 50 70 90 110

0 60 120 180 240 300 360

1 2 3 4 5 6

TIME [10*ns]

AMPLITUDE [a.u.]

Conclusions

PSCS scan Calculated Basis

Pos X [0.1*mm]

PosY [0.1*mm]

-30 -10 10 30 50 70 90 110

0 60 120 180 240 300 360

1 2 3 4 5 6

TIME [10*ns]

AMPLITUDE [a.u.]

882 493 806 513

883 523 839 504

883 554 873 500

884 585 906 500

885 616 940 504

886 646 973 513

887 677

888 708

889 739

Pos Y [0.1*mm]

Pos X [0.1*mm]

Pos X [0.1*mm]

Pos Y [0.1*mm]

1 56 3 24

-30 -10 10 30 50 70 90 110

0 60 120 180 240 300 360

1 2 3 4 5 6

TIME [10*ns]

AMPLITUDE [a.u.]

-30 -10 10 30 50 70 90 110

0 60 120 180 240 300 360

1 2 3 4 5 6

TIME [10*ns]

AMPLITUDE [a.u.]

-30 -10 10 30 50 70 90 110

0 60 120 180 240 300 360

1 2 3 4 5 6

TIME [10*ns]

AMPLITUDE [a.u.] Z(0.1*mm)

Y (0.1*mm)

X (0.1*mm) X’ (0.1*mm)

*Bart Bruyneelet al., NIMA599 (2009), p. 196

**R. Venturelli, D. Bazzacco, LNL-INFN(REP)—204 (2005) 220

***A. Boston et al., Nucl. Instr. and Meth.

B 261 (2007), p. 1098

****F.C.L. Crespi

et al.

,

NIMA

593 (2008), p.440

(13)

Tests with Calculated Signal Basis

Y Position (mm) Y Position (mm)

X Position (mm)

Y Position (mm)

X Position (mm)

Y Position (mm) Z Position (mm)

Z Position (mm)

Y Position (mm)

Counts (A.U.)

662 keV pencil beam moved along Y direction – 5 mm steps

(Geant4 + Calculated Signals + preamp response + 5 keV FWHM noise)

Original Distribution

Original Distribution

RS_3D output Distribution

RS_3D Output Distribution

(14)

Tests with Calculated Signal Basis

X Position (mm)

Y Position (mm)

X Position (mm)

Y Position (mm)

Y Position (mm)

Z Position (mm) Z Position (mm)

Y Position (mm) Y Position (mm)

Counts (A.U.)

662 keV pencil beam moved along X direction – 5 mm steps

(Geant4 + Calculated Signals + preamp response + 5 keV FWHM noise)

Original Distribution RS_3D output Distribution

Original Distribution RS_3D Output

Distribution

(15)

X (mm)

Counts

Y (mm)

Counts

1 5 6 3 2 4

137Cs

Tests with Experimental Signal Basis

137

Cs (662 keV) collimated data*

Experimental Signal Basis extracted with PSCS technique** for Segment A1.

**F.C.L. Crespiet al., NIMA593 (2008), p.440 and NSS- 2010 (N29-226) Poster Presentation

*

A. Boston et al., Nucl. Instr. and Meth. B261 (2007), p.

1098

(16)

Conclusions

A new version of RS algorithm (RS_3D) providing 3D localization of gamma interaction points inside a segmented HPGe detector (disentangling also multiple hits in a single segment) has been developed and tested with both calculated and experimental signals.

 5 mm position resolution (necessary for performing gamma ray tracking) is reached.

 RS_3D CPU time consumption still has to be decreased for allowing the algorithm application on-line:

currently in AGATA the GRID SEARCH algorithm is implemented (it is fast but can not disentangle multiple hits in a single segment).

Perspectives

 Further test the RS_3D algorithm with experimentally extracted PSCS basis, using all the scanned segments. (e.g. n looking at the reconstructed energy relaese distributon along Z axis).

 Improving further RS_3D algorithm CPU time performancies

Riferimenti

Documenti correlati

Outcome mea- surements were obtained on testing days to determine markers of glucose homeostasis by completion of an 8-h meal glucose tolerance test (MGTT) including

Necrotizing SSTIs (cellulitis, fasciitis, myositis, Fournier’s gangrene) require surgical intervention including drainage and debridement of necrotic tissue in addition to

The source-induced background is higher for the larger detector (except in the 100 keV region), but the ratio of the two backgrounds is never as high as the efficiency ratio for

The first performed with a 25-fold segmented HPGe detector (cylindrical crystal with 90mm length and 72mm diameter) and the other with a cluster of 3 36-fold segmented HPGe

PSA algorithms developed for highly segmented HPGe detectors make use of a signal data base which contains the detector pulse shapes for all the possible interaction positions

Gamma ray tracking arrays composed of large volume segmented HPGe detectors like AGATA and GRETA will be used in experiments with radioactive ion beams.. The gamma

Comparing the results of RS_3D obtained with the two different bases it has been possible to evaluate the algorithm performances for interactions localization and also to check

This study represents a crucial test of the AGATA detectors for the measurement of high- energy gamma rays, in terms of detection efficiency, energy resolution, tracking and