MATHEMATICS for ECONOMIC APPLICATIONS TASK 18/6/2020
I M 1) Calculate the cubic roots of the number D œ # 3 .
" 3
Since #3 œ # cos 3sin and " 3œ# cos 3sin we getÀ
# # % %
1 1 1 1
D œ # 3 œ œ
" 3
#
#
cos sin
cos sin cos sin
1 1
1 1
# #
% %
3
3 1# 1% 3 1# %1 œ
D œ # #
cos1 sin1
% 3 % œ # # 3
. For its cubic roots we get:
$ D œ cos 1 1 sin 1 1
"# 5 #$ 3 "# 5 #$ ß ! Ÿ 5 Ÿ # . For 5 œ ! we get D œ! cos 1 sin 1 à
"# 3 "#
for 5 œ " we get D œ # # à
" cos * sin* cos$ sin$
"#1 3 "#1 œ %1 3 %1 œ # # 3 for 5 œ # we get D œ# cos "( sin "( Þ
"#1 3 "#1
I M 2) Given the matrix œ , determine, on varying the parameter , its eigen-5
" ! #
$ 5 "
# ! $
values and their multiplicity, then establishing if there are values of for which the given matrix5 is diagonalizable.
From - ˆœ ! we get:
" ! #
$ 5 "
# ! $
$
" % œ # " œ
-
-
-
- - - -
œ 5 5 #
œ5- - "# œ ! if -" œ 5 and -# œ-$ œ "Þ
If 5 œ " we get the eigenvalue - œ " whose algebraic multiplicity is 7+" œ $; if 5 Á " we get the eigenvalue - œ " whose algebraic multiplicity is 7+" œ #. For - œ "ß a 5, the matrix becomes " œ .
# ! #
$ 5 " "
# ! #
- ˆ ˆ
But # # and so Rank .
$ " œ ) Á ! " ˆ œ # Ê 71" œ $ # œ " 7+"
So the matrix is not diagonalizable a 5.
I M 3) Determine, on varying the parameters and , the dimensions of the Image and the7 5 Kernel of the linear map ‘& Ä‘ , 0 — œ —† , with œ .
" ! " ! "
" " " 7 5
! " ! " 7
3
By Sylvester Theorem we need to calculate the Rank of the matrix .
By elementary operations on the rowsV Ã V V# # " we getÀ
" ! " ! " " ! " ! "
" " " 7 5 ! " ! 7 5 "
! " ! " 7 ! " ! " 7 Ä
By elementary operations on the rowsV Ã V V$ $ # we getÀ
" ! " ! " " ! " ! "
! " ! 7 5 " ! " ! 7 5 "
! " ! " 7 ! ! ! " 7 7 5 "
Ä
If 7 Á "ß a 5 ÀRank œ $ ÊDim Imm 0 œ $ and Dim Ker 0 œ & $ œ # à if 7 œ "ß 5 Á # ÀRank œ $ ÊDim Imm 0 œ $ and Dim Ker 0 œ & $ œ # à if 7 œ "ß 5 œ # ÀRank œ # ÊDim Imm 0 œ # and Dim Ker 0 œ & # œ $ Þ
I M 4) Given the vectors —" œ "ß #ß " , —# œ "ß "ß # and —$ œ #ß #ß 5 , determine the value of the parameter for which the three vectors are linearly dependent.5
If the three vectors are linearly dependent they must form a singular matrix, and therefore the de- terminant of the matrix having the three vectors as its lines must be equal to .!
So we get
œ œ œ " $5 ' # œ $5 ) Þ
" " # " " #
# " # ! $ #
" # 5 ! " 5 #
having used elementary operations on the rows V à V #V# # " and V à V V Þ$ $ " If $5 ) œ ! Ê 5 œ ) the three vectors are linearly dependent;
$
if $5 ) Á ! Ê 5 Á ) the three vectors are linearly independent.
$
II M 1) Solve the problem : Max/min .
u.c. :
0 Bß C œ B C B " " Ÿ C Ÿ "
#
#
We write the problem in the form . The objective function of Max/min
s.v.:
0 Bß C œ B C B " " C Ÿ ! C " Ÿ !
#
#
the problem is a continuous function, the constraints define a feasible region which is a compact set as it is limited and closed and therefore the maximum and minimum values certainly exist.
For a problem with inequality constraints we apply the Kuhn-Tucker conditions, we find the so- lutions and then we study the objective function on the boundary of .X
To apply the Kuhn-Tucker conditions we construct the Lagrangian function À ABß Cß- -"ß #œB C # -"B "# " C -#C ".
Applying the first order conditions we get:
1) case -" œ !ß-# œ ! À
A A
wB wC
œ #B œ ! œ " Á !
B " " C Ÿ ! Ÿ !
#
C "
so there are no solutions.
2) case -" Á !ß-# œ ! À
A -
A - - -
-
wB "
wC " " "
"
œ #B # B " œ ! œ " œ !
Ê Ê !
B # œ ! œ
B œ œ
C œ B " "
C Ÿ "
"
C œ B " "
C Ÿ "
" ! C œ
Ÿ "
# #
% "#
$
$ %
%
: from it
follows that the point "
#ß $
% it is a possible Minimum point.
3) case -" œ !ß-# Á! À
A
A -
- -
wB
wC #
# #
œ #B œ ! œ " œ !
C œ " Ê !
B œ ! C œ "
B " " Ÿ C
œ " !
! Ÿ "
!ß "
#
; from it follows that the point is a possi-
ble Maximum point.
4) case -" Á!ß-# Á! À
A -
A - -
- -
- - - -
wB "
wC " #
" "
" # " #
œ #B # B " œ ! œ " œ ! C œ "
Ê ∪
B œ " # B œ " #
C œ " C œ "
#B # B " œ ! #B # B " œ !
" œ ! " œ !
C œ B " # " à
B œ " #
C œ "
#B # B " œ !
" œ !
Ê Ê
B œ " # C œ "
# # # # # œ ! œ "
B œ " # C œ "
œ !
œ !
-
- -
-
- -
- -
"
" #
"
# "
"
#
" #
#
"# #
#
À
from -" !ß-# ! it follows that the point " ß "# is a possible Maximum pointà
B œ " #
C œ "
#B # B " œ !
" œ !
Ê Ê
B œ " # C œ "
# # # # # œ ! œ "
B œ " # C œ "
œ !
œ !
-
- -
-
- -
- -
"
" #
"
# "
"
#
#"
#
# #"
#
à
from -" !ß-# ! it follows that the point " ß "# is a possible Maximum point.
Now we study the objective function on the constraint C œ ". It is 0 Bß " œ B " Ê 0 B œ #B ! # w for B !.
Then the function is decreasing for " # Ÿ B Ÿ ! and increasing for ! Ÿ B Ÿ " #. So it has at B œ ! a Minimum point.
But the point !ß " had been reported as a possible maximum point and therefore it is neither a maximum point nor a minimum point
We study the objective function on the constraint C œB "# ". It is 0 Bß B " " œ #B #B Ê 0 B œ %B # ! B ".
# # w for #
Then the function is decreasing for " # Ÿ B Ÿ " and increasing for " Ÿ B Ÿ " #.
# #
So it has at B œ " .
# a Minimum point
The point T œ "ß $
# %
" had been reported as a possible minimum point and therefore it is
the Minimum point with 0 T œ "
" #à
The point T œ " # #ß ", with 0 T # œ % ## is a Maximum pointà the point T œ " $ #ß ", with 0 T $ œ % ## is a Maximum pointà T# it is a relative maximum point, is the absolute maximum point.T$
II M 2) Given the function 0 Bß C œ / BC, find the directions @œcosαßsinα for which it results W@0 !ß ! œ ! Þ
The function 0 Bß C œ / BC it is clearly differentiable a Bß C − ‘#. So H 0@ 5ß 5œ f05ß 5† @. Since:
f0 B ß C œ /BCà /BCÊf05ß 5 œ "ß ", to get W@0 5ß 5 œ ! it must be À
"ß " ß œ œ ! Ê œ Ê œ à œ
% %
&
cosα sinα cosα sinα cosα sinα α 1 α 1.
II M 3) Given the function 0 Bß Cß D œ B C D BC # 2 # # 2 , check the nature of its stationary points.
By applying first order conditions we get:
f Bß Cß D Ê Ê
0 œ #B #C œ ! 0 œ %C #B œ ! 0 œ #D œ !
B œ ! C œ ! D œ !
0 œ Þ
Bw Cw Dw
Then:
‡ ‡
Bß Cß D œ !ß !ß ! œ
# # !
# % !
! ! #
.
Since the point it is a minimum point.
‡ ‡
‡ ‡
‡
" "
# #
$
œ # !à œ % !
œ ) % !à œ ) ! ! œ # ) % !
!ß !ß !
II M 4) Given the equation 0 Bß C œ B / BC C /CB œ ! satisfied at the point !ß ! , verify that an implicit function B Ä C B can be defined with it, and then calculate the first order de- rivative of this function.
The function 0 Bß C it is a differentiable function a Bß C − ‘#. Then it is:
f0 B ß C œ /BC B /BC C /CBà B /BC /CB C /CBœ
f0 B ß C œ " B/BCC /CBà B /BC " C / CBÊf0 !ß ! œ "à "Þ Since 0Cw !ß ! œ " Á ! it is possible to define an implicit function B Ä C B .
For its derivative we get: C ! œ " œ " Þ
"
w