• Non ci sono risultati.

TASK MATHEMATICS for ECONOMIC APPLICATIONS 11/6/2018

N/A
N/A
Protected

Academic year: 2021

Condividi "TASK MATHEMATICS for ECONOMIC APPLICATIONS 11/6/2018"

Copied!
4
0
0

Testo completo

(1)

TASK MATHEMATICS for ECONOMIC APPLICATIONS 11/6/2018 I M 1) D œ "  3  "  3 œ "  3  "  3 œ "  "  #3  "  "  #3 œ

"  3 "  3 "  3 "  3 "  3

     

  

# #

#

œ %3 œ #3 œ # Þ

# cos 1 sin 1

#  3 #

So D œ  # cos1  sin1  Þ

1 1

%  5  3 %  5 ß !Ÿ5 Ÿ"

For 5 œ ! À #cos1 sin1 # œ "  3à

%  3 % œ #  3 #

# #

 

For 5 œ " À #cos& sin&  # # #œ  "  3Þ

 3 œ  3

# #

1 1

% %

 

I M 2) From  œ À

" " ! !

" " ! !

! !  "  "

! !  "  "

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we get

 -ˆ

- -

- - -

- -

- - -

 œ

 

 

 

 

   

   

   

   

   

   

   

   

" " ! ! " ! !

" " ! ! " ! !

! !  "  " ! !  "

! !  "  " ! !  "

œ œ

G Ã G  G" " # and G Ã G  G$ $ % and then V Ã V  V" " # and V Ã V  V% % $

œ  # œ

! 

! 

! !

!   "

! ! 

 

 

 

 

 

 

 

 

 

# ! !

" ! !

! !  "

! !  #

œ

 # -

- -

-

- -

-

-

-

 

 

 

 

 

 

œ- #-- #-œ ! for -" œ-# œ !à -$ œ #à -% œ  # Þ

To find the eigenspace corresponding to the eigenvalue - œ ! we solve the system:

 

   

   

   

   

   

   

   

   

 ! †ˆ †—œ —† œ Ê † œ Þ

B !

C !

D !

A !

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

" " ! !

" " ! !

! !  "  "

! !  "  "

Since Rank ! †ˆœ Rank  œ # the dimension of the eigenspace corresponding to the eigenvalue - œ ! is 7 œ % 1! Rank ! †ˆœ % Rank  œ %  # œ #. The system becomes B  C œ ! C œ  B and the eigenvectors corresponding to the ei-

 D  A œ ! Ê A œ  D

genvalue - œ ! are •œ Bß  Bß Dß  D ß Bß D −  ‘. A basis for the eigenspace may be:

! œ"ß  "ß !ß ! à !ß !ß "ß  "   .

To find the eigenspace corresponding to the eigenvalue - œ # we solve the system:

 

   

   

   

   

   

   

   

   

 # †ˆ †—œ Ê † œ Þ

B !

C !

D !

A !

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 " " ! !

"  " ! !

! !  $  "

! !  "  $

Since - œ # is a simple eigenvalue, we get 7 œ 7 œ "1# +# and the system becomes:

(2)

 

 

 

B  C œ ! C œ B

$D  A œ ! D œ ! D  $A œ ! A œ !

Ê . The eigenvectors corresponding to the eigenvalue - œ # are

•œ Bß Bß !ß ! ß B −  ‘. A basis for the eigenspace may be the vector: •# œ"ß "ß !ß !. To find the eigenspace corresponding to the eigenvalue - œ  # we solve the system:

 

   

   

   

   

   

   

   

   

 # †ˆ †—œ Ê † œ Þ

B !

C !

D !

A !

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$ " ! !

" $ ! !

! ! "  "

! !  " "

Since - œ  # is a simple eigenvalue, we get 71# œ 7+# œ " and the system becomes:

 

 

 

$B  C œ ! B œ ! B  $C œ ! C œ ! D  A œ ! D œ A

Ê . The eigenvectors corresponding to the eigenvalue - œ  # are

•œ !ß !ß Dß D ß D −  ‘. A basis for the eigenspace may be the vector: •# œ!ß !ß "ß ". I M 3) Since the dimension of the Kernel of the map is equal to , we get that Rank"   œ #, and so the determinant of the matrix must be equal to zero:   œ !:

   

   

   

   

   

   

   

 œ œ œ " † 5  " œ ! Ê 5 œ "

! !

! 5  ! 5 

 !  "

1 1 1 1

1 1

1 1 2 1

. So:

  -ˆ

-

-

-

œ Ê  œ œ

!  !

! "  ! "  

  

   

   

   

   

   

1 1    1 1 

1 1

1 1 2 1 1 2

œ1-" -2- "  " - " œ 1- - # $  #  "  " œ- 

œ1- - # $- œ-1- -  $ œ ! . So the matrix has three simple eigenvalues and it is a diagonalizable one.

I M 4) To solve the problem we can apply Rouchè-Capelli Theorem. So we study the aug-

mented matrix:   . By elementary operations on the

 

 

 

 

 

 

 ˜l œ

"  " "  " l  "

" ! " " l "

!  " 7  # l 5 rows V Ã V  V# # " and then V Ã V  V$ $ # we get:

 

   

   

   

   

   

   

 ˜l

"  " "  " l  " "  " "  " l  "

! " ! # l # ! " ! # l #

!  " 7  # l 5 ! ! 7 ! l 5  #

Ê Ê . So:

For 7 Á !ß a 5 we get: Rank  œ Rank ˜l œ $: we have ∞" solutions;

For 7 œ ! and 5 œ  # we get: Rank  œRank ˜l œ #: we have ∞# solutions;

For 7 œ ! and 5 Á  # we get: Rank  œ # Rank ˜l œ $: we have no solutions; it is impossible to express the vector with a linear combination of the vectors ˜ — — —", #, $ and

%.

II M 1) From the equation 0 ßB Cß Dœ B  C  D  $BC  $CD œ "$ $ $ we get:

0 "ß "ß  " œ "  "  "  $  $ œ "  and so the point "ß "ß  " satisfies the equation.

Then f0 Bß Cß D œ $B  $Cß $C  $B  $Dß $D  $C   # # #  and f0 "ß "ß  " œ 'ß ß '   3 . Since 0 œ ' Á !Dw there exists an implicit function Bß C Ä D Bß C   with partial derivati- vesÀ `D "ß " œ  ' œ  " and `D "ß " œ  $ œ  ".

`B  ' `C  ' #

(3)

II M 2) To solve the problem Max/min we observe that u.c.:

 0 Bß C œ B  C  B  C Ÿ "

% %

# # objective fun-

ction of the problem is a continuous function, the feasible region is a circle, so a compactX set, and so maximum and minimum values surely exist. The constraints are qualified.

The Lagrangian function of the problem is: ABß Cß-œB  C% %-B  C # # 1. 1) case - œ ! À

 

 

         

A A

wB wC

œ %

œ % "#

"#

B C

B  C Ÿ " Ÿ

Bß C B !

C

$

$

# #

#

#

œ !

œ ! Ê œ !ß ! œ

B œ ! C œ !

! "

! !

! ! !

. ‡ and ‡ ,

By the Hessian ‡ !ß ! we haven't any information about the point  !ß ! , but trivialy we can see that  !ß ! is a minimum point since 0 !ß ! œ ! and 0 Bß C   !ß  aBß C. 2) case - Á ! À

 

 

 

 

 

A - -

A - -

wB wC

œ %  # B œ %  # C

B C

B  C œ " Á

$

$

# #

œ #B #B  œ ! œ #C #C  œ ! Ê

B œ ! C œ !

! "

#

# unacceptable solution;

∪ Ê à  !

B œ ! œ #

B œ ! œ #

 

 

- - -

C œ "# C œ „"

since these points may be maximum points;

∪ Ê à !

œ # œ !

œ # œ !

 

 

 

- -

C C - 

B œ "# B œ „"

since these points may be maximum points;

∪ Ê à !

œ

œ œ



 

 

 

 

 

 

 

 

 



 B

C

 œ "

B œ „ #

#

„ #

œ " #

#

#

- -

- -

-

-

#

#

# #

C 

 since these points may be maximum

points.

If we want to complete the study of our problem in the boundary points, we can use the parametric form for the circle:

B œ >   C œ cos> Ê 0 BÞC

sin Ä 0 > œ  cos%> sin%>. By deriving we get:

0 > œ %w  cos$> †  sin>  % sin$> †cos> œ  %sin> †cos>†cos#> sin#> . And so 0 > œ  #w  sin#> †cos#> œ sin%> .

Since sin>   ! for ! Ÿ > Ÿ1 we get: sin%>   ! for:

! Ÿ > Ÿ  ∪ Ÿ > Ÿ  ∪ Ÿ > Ÿ  ∪ Ÿ > Ÿ 

% # % % # %

$ & $ (

1 1 1 1 1 1

1 .

So 0 >w    ! for:

1 1  1   1 1  1 

1 1

% Ÿ > Ÿ # ∪ $% Ÿ > Ÿ ∪ &% Ÿ > Ÿ $# ∪ (% Ÿ > Ÿ # . So the four points „ # „ # are not maximum points.

# #

 

ß

(4)

II M 3) 0 Bß C œ  log/B C# # /B C# # is a differentiable function aBß C − ‘#Þ

From f œ #B #B #C #C f œ

0 Bß C   /  / /  /  0  !

/  / ß /  / ß !

B C B C B C B C

B C B C B C B C

# # # # # # # #

# # # # # # # # :  !ß !

and f œ  # # # # œ  # . And so:

0 "ß " /  / ß /  / ß #/  "

/  / /  / /  "

## ! ! ## !!  ##

H 0 !ß ! œ@   f0 !ß ! † œ !ß ! †@    # #

# ß # œ ! ; WA

#

# #

0  "ß "  "ß " A  #ß #/  "  #ß  #

/  " # # /  "

     

œf † œ † œ # #

0    

.

II M 4) 0 Bß C œ B  C  C  $B   #  # is a differentiable function aBß C − ‘ .#

0 Bß C œ B  C   #  C  $B # œ "! B  #C  )BC Ê f0 Bß C œ #!B  )Cß %C  )B# #    .

M SG: #!B  )C œ ! B œ !  

 )B  %C œ ! Ê C œ ! . We have only one stationary point: !ß ! .

‡0 Bß C œ‡0 !ß ! #!  )

 ) %

    œ   .

MM SG:     .

 ‡ ‡

" "

#

œ #!  ! œ %  !

Ê !ß !

or is a minimum point

œ "'  !  

Riferimenti

Documenti correlati

[r]

For the second order conditions we use the borde-. red Hessian matrix: ‡

Find

a compact set, and so surely exist maximum and mini- mum values.. It is not convenient to use

a To nalyze the nature of the stationary points of the function we apply first and second order

To nalyze the nature of the stationary points of the function we apply first and second order

a To nalyze the nature of the stationary points of the function we apply first and second order

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first