• Non ci sono risultati.

QUANTITATIVE METHODS for ECONOMIC APPLICATIONS MATHEMATICS for ECONOMIC APPLICATIONS TASK 17/9/2020

N/A
N/A
Protected

Academic year: 2021

Condividi "QUANTITATIVE METHODS for ECONOMIC APPLICATIONS MATHEMATICS for ECONOMIC APPLICATIONS TASK 17/9/2020"

Copied!
4
0
0

Testo completo

(1)

QUANTITATIVE METHODS for ECONOMIC APPLICATIONS MATHEMATICS for ECONOMIC APPLICATIONS

TASK 17/9/2020

I M 1) Calculate the cubic roots of the number D œ "  "

"  3 "  3.

Since D œ "  " œ "  3  "  3 œ #3 œ 3 œcos  3sin we get:

"  3 "  3 "  3 "  3  # # #

1 1

$ 3 œ cos1 1 sin1 1

'  5 #$  3 '  5 #$ ß ! Ÿ 5 Ÿ # . For 5 œ ! we get D œ! cos 1 sin1 à

'  3 ' œ #$  3 #"

for 5 œ " we get D œ" cos & sin& $ "à '1  3 '1 œ  #  3 #

for 5 œ # we get D œ" cos * sin* cos$ sin$ Þ '1  3 '1 œ #1  3 #1 œ  3

I M 2) Given the matrix  œ , determine the values of the parameter for5

5 ! 5

! # !

5 ! 5

 

 

 

 

 

 

 

 

 

 

 

 

which the matrix admits a multiple eigenvalue.

The matrix is a symmetric one, therefore certainly it has only real eigenvalues.

From - ˆœ ! we get:

 

 

 

 

 

5 ! 5     

! # !

5 ! 5

5

   5 œ   #5 œ

-

-

-

- - - - -

œ #  # # #  #

œ-#- -  #5 œ ! and so we get the eigenvalues -" œ !ß-# œ # and -$ œ #5Þ So the matrix admits a multiple eigenvalue when #5 œ ! Ê 5 œ ! Ê -" œ -# œ ! or when

#5 œ # Ê 5 œ " Ê -# œ-$ œ " .

I M 3) Given the linear system , check existence and number of its



B  #B œ "

#B  B  5 B œ # B  #B  'B œ 5

" $

" # $

" # $

solutions on varying the parameter .5

By Rouchè-Capelli Theorem, from  —† œ˜ we need to calculate the Rank of the matrix  and the Rank of the augmented matrix  ˜l .

By elementary operations on the rowsV Ã V  #V# # " and V Ã V  V$ $ " we get À

   

   

   

   

   

   

   

   

   

   

   

   

" !  # l " " !  # l "

#  " 5 l # !  " 5  % l !

"  # ' l 5 !  # ) l 5  "

Ä Þ

By elementary operations on the rowsV Ã V  #V$ $ # we getÀ

(2)

   

   

   

   

   

   

   

   

   

   

   

   

" !  # l " " !  # l "

!  " 5  % l ! !  " 5  % l !

!  # ) l 5  " ! !  #5 l 5  "

Ä Þ

And so:

if  #5 œ ! Ê 5 œ ! ÊRank  œ # Rank ˜l œ $ and so the system has no solutions;

if  #5 Á ! Ê 5 Á ! ÊRank  œ $ œRank ˜l  and so the system has one and only one solution.

I M 4) Determine the matrix  œ + + knowing that "ß  " is an eigenvector rela-

+ +

"" "#  

#" ##

tive to the eigenvalue - œ ! and that  "ß " is an eigenvector relative to -œ #. Since "ß  " is an eigenvector relative to the eigenvalue -œ ! weget:

+ +   "   "   ! +  + œ ! + œ +

+"" +"# †  " œ ! †  " œ ! Ê +  +"" "# œ ! Ê +"# œ +"" à

#" ## #" ## #" ##

Since  "ß " is an eigenvector relative to the eigenvalue -œ # weget:

+ +   "    " # +  + œ # + œ #  +

+"" +"# † " œ # † " œ # Ê +  +"" "#œ # Ê +"# œ #  +"" à

#" ## #" ## #" ## from these

we get: + œ #  + + œ " + œ " " "

+""œ #  +"" Ê +"" œ " Ê +"#œ " Ê œ " " Þ

## ## ## #"

II M 1) Solve the problem :

Max/min u.c.:







 



0 Bß C œ B  C  C C Ÿ "  #B

B   ! C   !

Þ

# #

The objective function of the problem is a continuous function, the constraints are linear func- tions and they define a feasible region which is a compact and bounded set as it is a triangle, and so we can apply Weierstrass Theorem. To solve the problem we don't use the Kuhn- Tucker Theorem.

We determine the stationary points of the function.

Applying the first order conditions we have:

f0 Bß C œ  Ê 0 œ #B œ ! Ê Þ ‡Bß C œ œ‡!ß 

0 œ #C  " œ !

B œ ! C œ

# !

! #

"

BCww"   #

#

Since ,

immediatly we see that !ß "# is a minimum point.

For B œ ! we get 0 !ß C œ C  C Ê 0 !ß C œ #C  " C "

  # w    ! for   # and so the result that we have already found: !ß "# is a minimum point.

For C œ ! we get 0 Bß ! œ B Ê 0 Bß ! œ #B  # w    ! for B  ! and so the function is always increasing from B œ ! to B œ "

#.

For C œ "  #B we get 0 Bß "  #B œ &B  #B Ê 0 Bß "  #B œ "!B  #  # w    ! for

B " B œ ! B œ "

& &

  and so the function is decreasing from to and then is increasing from B œ " B œ " B œ "

& to #, so & is a minimum point and so " $& &ß  is a minimum point.

By representing with a figure the results found we have:

(3)

So  !ß " is a maximum point, with 0 !ß " œ ! à  relative maximum point;

"  "  "

#ß ! is a maximum point, with 0 #ß ! œ %; absolute maximum point;

!ß" 0 !ß " œ  "

# is a minimum point, with # %; absolute minimum point;

" $ " $

& &ß 0 & &ß œ  " Þ

&

is a minimum point, with ; relative minimum point

II M 2) Given the function 0 Bß C œ B  BC  # #, and the unit vector @œcosαßsinα, cal- culate W and W . And then calculate W when α 1 .

@ # #

@ß@ @ß@

0 "ß " 0 "ß " 0 "ß " œ

      %

The function 0 Bß C œ B  BC  # # it is clearly differentiable of every order a Bß C −  ‘#. So H 0@  "ß " œ f0 "ß " † @ and W#@ß@0 "ß " œ @ †‡0 "ß " † @X .

From f0Bß C œ #B  C ß  #BC  #  we get f0  "ß " œ "ß  # and so:

W@0 "ß " œ "ß  #    † cosαßsinαœcosα #sinαÞ Then we getÀ

‡Bß C œ  #  #C ‡ œ #  #

 #C  #B Ê "ß "  #  # and so:

W α α α

α

@ß@# 0 "ß " #  # Ê

 #  #

 œcos sin †  † cos 

sin

W@ß@# 0 "ß "  œ cos# #α #sin#α %cos sinα αœ #cos#  #α sin#α.

(4)

Finally, for α 1 W 1 1 .

œ 0 "ß " #  # œ  #

% we get: #@ß@   œ cos # sin #

II M 3) Given the function 0 Bß C œ B  B C  C  # # # determine existence and nature of its stationary points.

Applying the first order conditions we have:

f0 Bß C œ   Ê 0 œ #B  #BC œ #B "  C œ ! Ê ∪ 0 œ B  #C œ !

B œ ! C œ !

B œ # C œ  "

Bw    

w #

C

# and so the

solutions B œ !   and  

C œ !

B œ # B œ  #

C œ  " C œ  "

ß Þ

Since ‡Bß C œ #  #C #B we get:

#B #

- ‡ !ß ! œ     and so  !ß ! is a minimum point;

# !   œ #  !

! # Ê ‡ œ %  !

"

#

- ‡     so   is a saddle point;

   

#  " ! # Ê œ  #  ! #  "

# #

ß œ ‡# ß

- ‡ ß œ   so  ß  is a saddle

   

#  " !  # Ê œ  #  ! #  "

 # # ‡#

point.

II M 4) Given the equation 0 Bß C œ B /  BC C /BC œ !, verify if at P! œ !ß !  it is pos- sible to define an implicit function having as dependent variable of and then calculate theC B partial derivative of the first order of C B  at B œ !.

The functions0 Bß C  is a differentiable function a Bß C −  ‘#, 0 !ß ! œ !  ! œ !  . It is then: f0 Bß C œ  /BC B /BC C /BCà B /BC /BC C /BC from which:

f0 Bß C œ  "  B / BC C /BCà B /BC "  C /  BC.

So f0 !ß ! œ1 !à !  " œ "ß  ". Since 0 !ß ! œCw  1Á ! we can define an im- plicit function B Ä C B  whose first order derivative is:

d d

C 0 !ß !

B ! œ  0 !ß !  œ  œ " Þ

 

Bw Cw

"

 "

Riferimenti

Documenti correlati

Find

a compact set, and so surely exist maximum and mini- mum values.. It is not convenient to use

To nalyze the nature of the stationary points of the function we apply first and second order

a To nalyze the nature of the stationary points of the function we apply first and second order

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for

Firstly we search for two linearly independent eigenvectors corresponding to the eigenvalue -

[r]