• Non ci sono risultati.

1: Conceptual and Architectural Design

N/A
N/A
Protected

Academic year: 2021

Condividi "1: Conceptual and Architectural Design"

Copied!
5
0
0

Testo completo

(1)

1: Conceptual and Architectural Design (13)

1.1: Introduction to the Designing approach of this Thesis (13) 1.2: Collocation and historic aspect of the footbridge (13) 1.3: Common footbridge static schemes (19)

1.4: Developed solution and issues (21)

1.4.1: Solution 1: inferior opposing arches (23) 1.4.2: Solution 2: cable suspended (26) 1.4.3: Solution 3: superior crossing arches (28)

1.5: Boundaries and Requirements (30)

1.6: Developing the requirement-satisfying footbridge (30)

2: Structural shear-stiffening use of glass (41)

2.1: Laminated Glass (41)

2.1.1: Introduction (41)

2.1.2: Time-Temperature behaviour (42)

2.1.3: State of the art of interlayer proprieties: PVB (46) 2.1.4: State of the art of interlayer proprieties: SGP (49) 2.1.5: Final Master-curves and Conservative Design Values (51)

2.2: Shear Glass Panels (53)

2.2.1: Static considerations (53)

2.2.2: Basic idea: glass-aluminium composite structure with no-tensile in-plane diagonal (54) 2.2.3: Interface problems, technological solution and details (59)

2.2.4: Geometric non-linearity and Buckling Failure (62) 2.2.4.1: Out-of-plane imperfection (63) 2.2.5: Stiffness-Equivalent Non-Linear FE modelling (66) 2.2.6: F.E. Modelling and Non-linear Analysis (67) 2.2.6.1: Real thickness (67)

2.2.6.2: Linear elements (68)

2.2.6.3: Non-Linear elements and non-linear solver (69) 2.2.6.4: Discussion and elements choice motivation (71) 2.2.6.5: Numerical model overview and graphic outputs (73) 2.2.7: Parametric analysis results (76)

(2)

2.2.7.1: Reference values (76)

2.2.7.2: G modulus: Time-Temperature depending (76) 2.2.7.3: Thickness (79)

2.2.7.4: Shape (Diagonal slenderness) (80) 2.2.7.5: Out-of-plane imperfection (81) 2.2.8: Global Parametric analysis of Stiffness (82) 2.2.8.1: Static behaviour of arches (82) 2.2.8.2: Parametric analysis (83) 2.2.8.3: Discussion (88)

2.2.8.4: Glass thickness design procedure (90)

3: Footbridge's global analysis (93)

3.1: Introduction (93)

3.2: Geometry and F.E. model description (93)

3.3: Supports horizontal reaction: issues and improvements (100)

3.3.1: Issues (100) 3.3.2: Lightness (101) 3.3.3: Load duration (101)

3.3.4: Wedge shape of supports (101) 3.3.5: Cable post-tensioning system (102) 3.3.5.1: Static scheme study (105) 3.3.5.1.1: Hingeless (105)

3.3.5.1.2: Horizontal displacements released (105) 3.3.5.1.3: Two hinges at the extrados (107) 3.3.5.1.4: Static scheme choice (108)

3.3.5.2: Steel relaxation issues and "auto-tensioning effect" (109) 3.3.5.3: Optimisation of axial force value for cable post-stressing (110) 3.3.5.4: Analytical pre-design of position 0 (111)

3.3.5.5: Discussion (112)

3.4: Actions (113)

3.4.1: Permanent loads (113) 3.4.2: Temperature (113)

(3)

3.4.3: Wind (114) 3.4.4: Crowd action (114) 3.4.5: Earthquake (116) 3.4.6: Accidental scenario (118)

3.4.7: Partial safety factor and scenarios' load combinations (119)

3.5: Imperfections (122) 3.5.1: Imperfection shape (122) 3.5.1.1: Global imperfection (122) 3.5.1.2: Local imperfection (124) 3.5.2: Imperfection amplitude (125) 3.6: Safety Assessing (127) 3.6.1: Global buckling (127) 3.6.1.1: EN 1993-1-6 Method (127)

3.6.1.2: IASS Working Group 8 Method (129) 3.6.2: Material (130)

3.6.3: Heat Affected Zone (133)

3.6.4: Design resistance and safety inequality (134) 3.6.5: Serviceability Ultimate State (135)

3.7: Numerical analysis and results (136)

3.7.1: Structure's shaping and pre-sizing (136) 3.7.1.1: Deck Plates (136)

3.7.1.2: Thickness vs Frequencies (137) 3.7.1.3: Rigid diaphragm needing (137) 3.7.2: Linear analysis (138)

3.7.2.1: Serviceability Limit State: maximum displacements (138) 3.7.2.2: Ultimate Limit States: Safety ratio (139)

3.7.2.3: Graphic stress output (142)

3.7.2.4: Natural frequencies and Engine-modes (144) 3.7.2.5: Response spectrum analysis (144)

3.7.2.6: Discussion of the results (144) 3.7.3: Non-linear pseudo-static analysis (146)

(4)

3.7.3.1: Introduction (146)

3.7.3.2: Time and Temperature depending of Material behaviour: procedure (146) 3.7.3.3: Half live load & Temperature increasing scenario (147)

3.7.3.4: Half live load & Temperature decreasing scenario (147) 3.7.3.5: Discussion (148)

3.7.4: Accidental scenario (151)

3.8: Vibration and Comfort assessing (152)

3.8.1: Introduction (152) 3.8.2: Issues (152) 3.8.3: Improvement (153)

3.8.4: Standards and JRC-Scientific and Technical Report (154) 3.8.4.1: Step 1: Evaluation of Natural Frequencies (154)

3.8.4.2: Step 2 : Check of critical range of natural frequencies (154) 3.8.4.3: Step 3 : Assessment of Design situation (155)

3.8.4.3.5: Traffic classes (156) 3.8.4.3.6: Comfort classes (156)

3.8.4.3.7: Assessed design situations (157) 3.8.4.4: Step 4: Damping (157)

3.8.4.5: Step 5: Determination of maximum acceleration (159) 3.8.4.6: Step 6: Check of comfort levels (161)

3.8.4.7: Step 7: Check of criteria for later lock-in (161) 3.8.4.8: Flowchart of footbridge vibration assessing (163) 3.8.5: Numerical analysis and results (164)

3.8.5.1: Natural frequencies and Engine-modes (164) 3.8.5.2: Pedestrian load (165)

3.8.5.3: Linear Harmonic analysis (165) 3.8.5.4: Time-history non-linear analysis (167) 3.8.5.5: Discussion of results (168)

(5)

3.8.5.5.8: Natural Frequency (168)

3.8.5.5.9: Footbridge harmonic dynamic response (169) 3.8.5.5.10: Non-linear time-history dynamic analysis (171) 3.8.5.6: Comparison with existing footbridges (172)

4: References (175)

5: Appendixes (179)

5.1: Drawings (179) 5.2: Rendering (179)

5.3: Ancient plan of Old Pisa (179)

5.4: Official Communication about Aluminium structures from the Italian "National Authority for Public Constructions" (179)

Riferimenti

Documenti correlati

To enable monitoring and treatment of patients in their own home environment, the SWANiCare project aims to develop a device that will integrate noninvasive sensors

An equivalent plate model has been presented which has the capability to embed a finite–volume beam model to give an hybrid model for a complete aircraft within the NeoCASS

The presence of the perivascular cuff at imaging (Figure 2 ) evaluation reported a 30% accuracy in determining tumor persistence and retroperitoneal margin infiltration in

Donna dagli interessi culturali amplissimi, che spaziavano dalla musica classica alla filosofia, dalla letteratura alla storia, nella sua decennale carriera di insegnamento

Für den Standort Italien, der den zentralen Schwerpunkt dieses Bandes bildet, führte eine Umfrage des Ministeriums für Arbeit zum Fremd- sprachenbedarf

A rare association of infra-diaphragmatic sinus histiocytosis with massive lymphadenopathy (SHML) (Rosai-Dorfman disease) and anaplastic large cell lymphoma (ALCL) in the same

[r]

By analysing the mid-transit times of the 12 transit events of Kepler-539 b recorded by the Kepler spacecraft, we found a clear modulated transit time variation (TTV), which