• Non ci sono risultati.

Dynamic flood webmapping: an operational and cost-limited tool to optimize crisis management

N/A
N/A
Protected

Academic year: 2021

Condividi "Dynamic flood webmapping: an operational and cost-limited tool to optimize crisis management"

Copied!
6
0
0

Testo completo

(1)E3S Web of Conferences 7, 09003 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0709003. Dynamic flood webmapping: an operational and cost-limited tool to optimize crisis management 1,a. 1. 2. 1. Quentin Strappazzon , Arnaud Koch , Loïck Guesdon & Marc Delbec 1. Prolog Ingénierie  11, rue Auguste Lacroix, 69003 Lyon, France SyAGE (Syndicat mixte pour l'Assainissement et la Gestion des Eaux du bassin versant de l'Yerres)  17, Rue Gustave Eiffel, 91230 Montgeron, France 2. Abstract. Due to strong climate variations and the multiplication of flood events, protection based strategies are no longer sufficient to handle a watershed scale crisis. Monitoring, prediction and alert procedures are required to ensure effective crisis and post-crisis management which explains the recent interest for real time predictions systems. Nevertheless, this kind of system, when fully implemented with in-situ monitoring network, meteorological forecast inputs, hydrological and hydraulic modelling and flood mapping, are often postponed or cancelled because of both their cost and time scale. That is why Prolog Ingénierie and the SyAGE have developed, as an economical and technical sustainable alternative, a tool providing shared access to a real time mapping of current and predicted flooded areas along with a dynamic listing of exposed stakes (such as public buildings, sensible infrastructures, environmental buildings, roads). The update of these maps is performed from the combination of predicted water levels in the river and a flood envelop library (based on 1D/2D hydraulic model results for a wide panel of discharges and hydraulic structures states conditions). This tool has already been implemented on the downstream part of the Yerres River, a tributary of the Seine River in France.. 1 Introduction: from meteorological forecasting to flood forecasting In a context of climate change and increasing frequency and magnitude of extreme weather events, constantly revealing the limits of individual and collective protection, and calling into question the design bases, monitoring, forecasting, alert and crisis management are the heart of public action that must be implemented to: assure the people security, reduce the direct and indirect consequences due to flood events and allow a return to normal as quickly as possible. In such situations, the crisis unit(s), being either internal to local community or extended at departmental or regional level, constitute the decision making  nerve about actions to engage and human and material resources to be mobilized on the ground. In this crisis management plan, the access and sharing of cartographic information in real time about both observed and predictable flooded areas and potentially impacted stakes, is a considerable advantage. It allows to identify the areas and sectors which will have to be rescued or evacuated, and to count their inhabitants, roads that will be cut, the future isolated areas, to locate schools or health facilities to evacuate or on the contrary which may be used to host the victims, to determine the areas at risk of energy stress or communications blackout, etc. a. Thus, this mapping information is a valuable tool for crisis management, and should be easily disseminated to all risk stakeholders: emergency services, municipalities (implementation of safety communal plans - PCS), public institutions managers, actors public and private, local residents, etc. France has invested and mobilized substantial resources in terms of flood forecasting. Météo-France, SCHAPI (Hydrometeorological and Flood Forecasting Central Service), SPC (Flood Forecasting Service), ensure the monitoring and forecasting of rainfall and floods and the diffusion of warning to those involved in crisis management and the public [1]. This forecast information is often consigned in a newsletter, dealing with overall developments and point estimates (for monitoring network stations) regarding flow rates and water levels. Maps delimiting the extent of potentially submerged areas are usually not provided. Paper maps available in crisis units were often produced in Floo 

(2)  tlas (AZI), Flood Risk Prevention Scheme (PPRi), Flood Risk Territories maps (TRI), or specific local studies. The flood events mapped do not always correspond to the event that is currently taking place, the paper format prevents an easy dissemination and sharing of the same information, the stakes are not always represented.. Corresponding author: strappazzon@prolog-ingenierie.fr. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)..

(3) E3S Web of Conferences 7, 09003 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0709003.   .       

(4)       .  ,  -*   ,,      / ,  

(5)  0   1  

(6)   ,       

(7)     .

(8)  2

(9)  /(3453.6    

(10)  6     

(11)     

(12) -738     

(13)  (   ,          

(14)   .  (   ,        

(15) .              .       

(16)   

(17) , -9  

(18)   

(19)     ( 

(20)         . , .   , 

(21)  

(22)  

(23)  -  544:   ,

(24)  

(25)   0 5;<= 

(26)  , , 

(27)     ( 

(28) .   =4 

(29)  ;4. =  

(30)         

(31) .  

(32)   

(33)       

(34)     , ,     -   ..      ( ,  , 

(35) .   ,

(36)          (

(37)  , (  54: ,

(38) 

(39) - 

(40) .  

(41)          

(42)   . 

(43)       ,    3444.    2

(44)  ,    

(45)    > -> )   ,   . 

(46)

(47) 

(48)   

(49)   

(50) ) 

(51)     . (    ?

(52)    @       '.      

(53)  

(54)  , ,  

(55)   . .  ) 

(56)      

(57)     , .   . (     

(58)   .    ( 34  3A (  ,

(59)  

(60) ,)  )B-      ,  

(61)  66*.  

(62)  

(63) 

(64)     .     ,(  

(65)     C   66C-D  . (  

(66)    E   + D ED6 F:: 0 - * E ( 345A.

(67)   3A  .   F   (  

(68)               G& (     .6    . /,   +  

(69)     .   H  . + 

(70)  C  

(71)          -  

(72) ()    I     ,  ,  

(73)  

(74)  

(75)       , 

(76)      )  ,  ,,   

(77) 

(78) .. 

(79)    )-  .      

(80)  

(81)  ,    .

(82) (. ,. , 

(83) 

(84)      

(85) 

(86) -  ,

(87)   ,,   

(88)          

(89) 

(90)  ,   (  - ,   (    *   ,         

(91)    

(92)     

(93)   ,

(94)  

(95)    (              -. The dynamic flood webmapping tool developed by Prolog Ingénierie for the SyAGE is therefore intended to 

(96) 

(97)

(98)  

(99) 

(100) 

(101) 

(102) 

(103)

(104)   management in a crisis context, adding to flood forecasting a real time cartographic projection of flooded and potentially flooded areas. This platform could be used by any service in charge of flood risk monitoring and alert at the scale of a homogenous territory: state services, local authorities,   managers and syndicates,... It was originally built for overflowing rivers , but its extension to runoff phenomena is clearly possible.. 2  

(105)     and the SyAGE approach in terms of flood management     

(106)      

(107)         

(108)          !"#$%  &  

(109) '     ()   &  (   *

(110) + ' (    , 

(111)  (

(112)  -.  Figure 1. The Yerres¶Zatershed. 2.

(113) E3S Web of Conferences 7, 09003 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. Figure 2. Feedback of crisis management exercise in November 2014.  

(114)  ,   

(115)        F  

(116)     L  ,   ,      -  H . 

(117)  F,

(118)  

(119)  L ) ,   ,    , 

(120) 

(121)    ,              

(122)      

(123)        (  

(124) (  ( 3 M-       L  . 

(125)  ,

(126)        

(127) 

(128)          (

(129)   ,

(130)  

(131)  (  

(132)    . (

(133)     ) 

(134)      -   

(135) 

(136)        

(137)      N    . (

(138)   

(139)        F   

(140) . (   

(141)  

(142)     

(143)    

(144)  7A8-    )           .  , .

(145)  

(146)       . 

(147)    ,   .  F, 

(148)  

(149)  ,   ( 

(150)  

(151)     :

(152)   ,,  . ,     I (

(153) -   

(154)  ,       (,,  ,     & ,       -+  . 

(155) 

(156) 

(157) .  , 

(158)   )  , 

(159)  

(160)    

(161) .  , 

(162)  

(163)

(164)         F       -. . This approach is in coherence with the guidelines defined within the framework of the National Strategy for flood risk management (SNGRI) of May 2014 [3].. 3 Basic requirements for webmapping platform development. the. 0      

(165)  

(166)  ,  

(167)  ,      (,, ,  J 9.   

(168) J   

(169)  , .        

(170)           

(171)   

(172)  

(173)   :)      K. 9. J   

(174)  ,   ,      &    

(175)     ,                 4  .   ,  . 

(176)       , 

(177) K. 9. J

(178)     (  

(179)    (   ,F

(180)     

(181)  

(182)       F -  (,,  ,       ( (     

(183)  

(184) ,       

(185) 

(186)      

(187)      ( 

(188)            

(189)      ).  

(190) 

(191)      F        66* +

(192)  6    6  

(193) ( K. 9.     J ,     

(194) 

(195)  

(196)             6 .   .    , .  -. 

(197)    .   (   (  (          

(198)  , 

(199)  () 

(200) 

(201) 

(202)  

(203) -. DOI: 10.1051/ e3sconf/2016 0709003. 4.2 Study area        5= )  (  

(204)       

(205) ,     

(206)   . (           -              

(207)       )     

(208) . 

(209)      (I   

(210)     ( 

(211)   -         (

(212) 

(213) 

(214)   =    

(215)     .           ,     

(216)    

(217)  (

(218)  ( 

(219)        

(220)       (

(221)   ,  -  

(222)    

(223) ( ( 

(224) -. . 4 Presentation plateform. of. the. webmapping  Figure 3. 18 km study area, subdivided into 8 homogenous sections, between SyAGE mobile dams. 4.1 Platform structure.              .    )   

(225)    ,      (

(226) -.          ,   ,    

(227) - (       (     ,  

(228)  (   . 3.

(229) E3S Web of Conferences 7, 09003 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0709003.       ,      . 

(230) .     F    

(231)       

(232)  

(233) & ( 54: ,

(234)  - 1   (   . 

(235)          - 4.3   

(236)      performance . ,   (

(237)     ,  J 9. 9. 9. Configuration interface « Forecaster ».  

(238) 

(239)  &  (  ' (       .,   

(240)    .    ,  (    .     N  (  

(241)         (     

(242)    ,

(243)   N  ,       F,  

(244)    ,

(245)  N44  5444 K. Choice of flood contours. )ORRGHGDUHDV¶OLEUDU\.            , .     , .            .   

(246)    . ,  

(247) 

(248)      .        O53  F,K. Webmapping interface « user ».  (,,  ,          

(249) 

(250)    , 

(251)      

(252)  

(253)  (  ,    

(254)  , 

(255)   ) 

(256)   

(257) . ,   ,  

(258)     

(259)      .  

(260)        (       -. Figure 4. :HEPDSSLQJ¶VFRPSRQHQWV. 4.3.1 Flood hazard mapping   

(261) 

(262)  &  (   

(263)   

(264)  2

(265) , ,   

(266)   ,

(267)  .       

(268) &   P  *%$  &66*Q% ,,  (

(269)           ,

(270) 5/R3/

(271)    

(272)    -      ( F  

(273)     

(274)     N    -.   , 

(275)   . ,  

(276)  

(277)  (  ,            (             ,   

(278)    ,     (  , -. Figure 5. View of coupled 1D/2D hydraulic model of downstream Yerres. 4. .

(279) E3S Web of Conferences 7, 09003 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. . 4.3.2 Stakes mapping  C   

(280)  )     :     )

(281)     

(282)  ,    *-A 66*-   )  ,,

(283)   

(284)    

(285) 

(286) .   

(287)   +

(288)  /      .    .   . -. . DOI: 10.1051/ e3sconf/2016 0709003. ,      

(289) 

(290) & (.  ,  , 

(291)        , 

(292)   R ,  

(293)  

(294)  (  ,   4

(295) OS -                 )   

(296)          J   .    . , (  ( 

(297) .  .  

(298) . -        ,,    

(299)     )F, 

(300) -   )     .    

(301)  , (  

(302) .      ( (     (    - *     (     ,,    

(303)     ( 

(304) .   */

(305)  

(306) .           , .    . , . ) , . --. Figure 6. Exemple of « human health ªVWDNHV¶PDSSLQJRQ downstream Yerres. 4.3.3 Webmapping platform use     

(307)  ,

(308)            , 

(309)      

(310)  ,  E (.  ,   - D   ,

(311) .     ,           

(312)      

(313)      

(314)  

(315)  (               

(316)        

(317)     - 1         

(318)    

(319) .  ,, ,    ,. ,      (  2

(320) ( (  . ( .  

(321)  . -- ,    )  J   :           

(322)    4

(323)       = 

(324)        ,   =       - H   

(325)  ,  ( ,     .   

(326) ,

(327)     

(328) 

(329)  B  .    ,, ,   - H ,    ,  (  )   ,

(330)               O S  TH.53H---- H             -. Figure 8. )ORRGHGDUHDVYLHZLQJ¶VLQWHUIDFH.  

(331)

(332)    F,  

(333) ,  ,   

(334)    

(335) .   (  

(336) 

(337)  )-. Figure 9. Exemple RILPSDFWHGVWDNH¶VOLVWLQJIRUDJLYHQ flooded area. 4.4 Computing requirement  ,, ,  (

(338)  ,

(339)      

(340)  ,   J. Figure 7. Forecast entry interface. . 5. 9.  6  * , 

(341)  (   )     (   

(342) 

(343)  &  ('.  ,   

(344)  ,, ,  K. 9.     ,  *     * U  *      ,K.

(345) E3S Web of Conferences 7, 09003 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. 9.  V 2, 

(346)     , (     ,    ,K. 9. ,

(347) ** (     -.  W  , I                 

(348)  ,

(349)         (    

(350)  . ,  J 9.      

(351)  

(352) 

(353)  ,    

(354)   

(355)   

(356) I    -. 9. ,     

(357)  , 

(358)         .      

(359) 

(360)       )  .  -. 5 Advantages of webmapping tool . real. time. 9 9 9. 9. 9. D,

(361)  , I .   

(362) (  

(363) (   , 7N8K 9ED, I D,E 

(364)

(365) / (   

(366) (D,  0,+7T8K 6 , (    ( 

(367) 

(368)  ( , I  

(369) (/*K C  L    )7<8K  -  .               

(370) :  

(371)  ,

(372) 

(373) -. flood. 

(374)  ,

(375) ,  J 9. DOI: 10.1051/ e3sconf/2016 0709003. 6 Evolution of the webmapping platform.   .( 

(376)    

(377)  

(378)     

(379) 

(380)  .  ).  

(381) .     

(382)       (  2 

(383)           .   ,

(384)  

(385)   

(386)      ,  - 

(387)   

(388)          

(389)    

(390) .  )

(391)  (

(392)  

(393) .(   

(394)  ,         

(395)       2

(396)               . 

(397)      

(398)       2     F, 

(399)   L    

(400)  (

(401)    ,

(402)  . 

(403) 

(404)   K.   ,  

(405)  ,

(406)           ,   ,   F, 

(407)   ,          F,  

(408)      .    ,

(409)  

(410)  ,   ,

(411)  345<:345=     66*, -. 7 Acknowledgement    R ) )    .   

(412)  ,,  .

(413)       ,,     ,  ,  (     F  E (345A-.           ,    

(414)   (                 . ,  . , .    ,              ,  - 

(415) ,        

(416)             ,         ,  (          

(417)       

(418)        ,      2(  ,   .   9) , C   6 6C- * 

(419)

(420) .     )

(421)  

(422)  , 

(423) (

(424)  .       

(425)    (         

(426)     ,  ,, ,    2  -  ,.  ,  ) 

(427)      

(428)    ) F,  

(429) (F,

(430) 

(431)     

(432)  ( 

(433)

(434) .  (  . 1     6 . ----K. 8 References 1.. 2.. 3.. 4..    

(435) J   ,L    

(436)  ,              

(437)   

(438) 

(439)      )  

(440)          

(441)    

(442)  

(443)   )&

(444)  (        (   

(445)      

(446)   

(447)  (    

(448)  .,    /*.   

(449)  (  , (  ( 

(450) .  --. 5. 6. 7.. 6.    

(451) 

(452)

(453) 

(454)   Prévision des Crues (SCHAPI) (2010). Le dispositif. !

(455)    

(456)   ues " #

(457)  

(458) 

(459)    populations. Lien : www.vigicrues.gouv.fr/ftp/aide/Maq_VigiCrue_v2A. pdf) $! %&'(&)* ++, 

(460)   -  .  .  - #

(461)           projets PAPI du MEDDE du 17/02/2011. 210 pages + annexes. /0  !

(462) 

(463) 1 #

(464) # -  ! %&'(6)* 

(465)  

(466) .  7 

(467)  

(468) *&6* $! %&'(8)* ++, 

(469)   -  .  .  " Action I.4 : Diagnostic approfondi et partagé du territoire. Rapports Prolog Ingénierie références 13-111-14 / 13-111-15 / 13-111-16. Opendata France; http://www.opendatafrance.net/ Projet BANO, OpenStreetMap France; http://openstreetmap.fr/bano Cartorisque; https://www.data.gouv.fr/fr/datasets/cartorisque30382037/.

(470)

Riferimenti

Documenti correlati

This paper shares interdisciplinary research that has developed an innovative co- production process to engage small businesses and the stakeholders that support them in

The assessment considered local models - used in a network of models representing rivers across a region - and the national G2G model, a distributed grid-based hydrological

The forecasted time-dependent flood spreading in the protected area, but also the effect of water level reduction (resulting in a reduction of failure probability) to other

In a collaborative approach, HR Wallingford and Deltares have developed methods, tools and techniques to extend existing flood forecasting systems with elements of strategic

It was demonstrated that the flow dependent description of the background error covariances with the EnKF algorithm leads to a more realistic correction of the hydraulic state

- qualitativo: la delegazione del potere legislativo al Governo non trova più ragion d’essere nel fondamento logico-funzionale che ne aveva giustificato

[r]