• Non ci sono risultati.

Decentralized Stability Analysis of Interconnected Systems with Time Varying Delays

N/A
N/A
Protected

Academic year: 2022

Condividi "Decentralized Stability Analysis of Interconnected Systems with Time Varying Delays"

Copied!
8
0
0

Testo completo

(1)

Decentralized Stability Analysis of Interconnected Systems with Time Varying Delays

AMAL ZOUHRI and ISMAIL BOUMHIDI

CED-ST Center of Doctoral Studies in Sciences and Technologies, LESSI laboratory, Faculty of Sciences Dhar el Mehraz, Sidi

Mohamed Ben Abdellah University, Fez , MAROCCO amal.zouhri@usmba.ac.ma

Abstract: - In this paper, we present a decentralized stability problem for a class of linear interconnected systems with time-varying delay in the state of each subsystems and in the interconnections. Based on the Lyapunov method, we characterize decentralized linear matrix inequalities (LMI) based delay-dependent stability conditions such that every local subsystem of the linear interconnected delay system is asymptotically stable. The solutions of the LMIs can be obtained easily using efficient convex optimization techniques. A practice example is given in order to show the efficiency of the obtained result.

Key-Words: - Interconnected systems; Time-delay systems; Delay-dependent stability; Lyapunov method;

linear matrix inequality (LMI).

1 Introduction

In this paper, we study the stability analysis of a class of linear interconnected systems with time varying delays. The problem of stability analysis of time varying delay systems is important both in theory and in practice. Considerable attention has been devoted to this problem over the past years, and many research results have been reported in the literature [1-10]. The approach used to derive the stability condition of systems starts usually from the standard Lyapunov-Krasovskii functional [15-18].

This work is concerned with the design problem of decentralized stability for interconnected systems with Time Varying Delays. The delay parameter is assumed to be an unknown time-varying function for which the upper bound on the magnitude and the variation are given. The sufficient conditions for the stability of the interconnected systems is derived in terms of LMIs using the Lyapunov method.

The seat of this work is arranged as following: in section 2, an overview of system models have been provided. stability analysis of interconnected system with time varying delays has been introduced in section 3. In section 4, we present numerical example to show the usefulness of the proposed results. Finally, the paper is concluded by brief conclusion in section 5.

The seat of this work is arranged as following: in section 2, an overview of system

has been introduced in section 3. In section 4, we present numerical example to show the usefulness of the proposed results. Finally, the paper is concluded by brief conclusion in section 5.

Notation: In this paper, the notation

P

  0( 0) is used for positive (negative) definite matrices.

I

denotes the identity matrix with appropriate dimension.

stands for the symmetric term of a square symmetric matrix.

2 Problem Formulation

Consider a class of linear large-scale systems with time-varying delays composed of N interconnected subsystems, where the ithsubsystem is given by:

1,

( ) ( ) ( ( )) ( ( )) ,

( ) ( ) ( ( ))

N

i i i di i i ij j ij

j j i

i i i di i i

x t A x t A x t t A x t t z t C x t C x t t

 

    

  

(1)

where i j,

1,...,N

( )

1

( ),..., ( ) ,

T T T

x t

  

x t xN t

  ( )

1

( ),..., ( ) ,

T T T

z t

  

z t zN t

 

x ti

( ) 

niand

( )

nj

x tj



are the states of the ith and the jth subsystem, z ti

( ) 

qi is the controlled output, the

Decentralized Stability Analysis of Interconnected Systems with Time

Varying Delays

(2)

system matricesA , i Adi, A , ij C and i C are of di appropriate dimensions.

 

i

,

ij are unknown time delay factors satisfying the following conditions:

0 ( ) , ( )

0 ( ) , ( )

i i i i

ij ij ij ij

t t

t t

   

   

  

  

(2) where the bounds

  

i

,

ij

,

i

and 

jiare known constants in order to guarantee smooth growth of the state trajectories.

The class of systems described by (1) subject to delay pattern (2) is frequently encountered in modeling several physical systems and engineering applications including large space structures, multi- machine power systems, transportation systems, water pollution management [19].

Proposition 1 For any x y

,

n and positive definite matrixP



n n , we have

2

x yT

y PyT

x P xT 1 (3) Proposition 2 (Schur complement lemma [11]) Given constant matrices , ,X Y Z with appropriate dimensions satisfyingXXT,YYT  0. Then

1 0

X Z YT Z if and only if

0 or 0

T

T

Y Z X Z

Z X

Z Y

   

    

   (4)

Proposition 3 [10] For any constant matrix

0

Z

ZT

and scalarh0, the following integrations are well defined

   

( ) ( ) 1 ( ) ( )

t t T t

T

t hx s Z x s ds t hx s ds Z t hx s ds

h

 

 

(5) We end this section with the following technical well-known propositions, which will be used in the proof of the main results.

3 Stability Analysis

In this section, we investigate the decentralized stability analysis of interconnected systems with time-varying delays. Before introducing the main result, the following notations of several matrix variables are defined for simplicity

1

1,

( 1) N

T

i i i i i i i ji i

j j i

P A A P N P Q Z W

2 (1 )

i i Qi

   

 

1

1, 2

( 1)

1

N T

i i i i i i i ji

j j i

T

i i i i i

P A A P N P Q Z

N A W A W

 

2

2 (1 ) 1 T

i i Qi N i A W Adi i di

      

2 3

1, 1,

1,

(1 ) 2

N N

T

i ji ji j ji j ji

j j i j j i

N T

ji j ji

j j i

Z A W A

A P A

  

 

 

1

1, 2

( 1) N

T

i i i i i i i ji

j j i

T

i i i i i

P A A P N P Q Z

NA W A W

 

2

2 (1 ) T

ii Qi Ni A W Ad i i d i

  

2 3

1, 1,

2

1, 1, 1,

(1 ) 2

N N

T

i ji ji j ji j ji

j j i j j i

N T N N

T

ij j j ij ji j ji

j j i j j i j j i

Z A W A

A W A A P A

 

 

 

  

(6) The following is the main result of the paper, which gives sufficient conditions for the decentralized stability of interconnected systems with time- varying delays. Essentially, the proof is based on the construction of Lyapunov Krasovskii functions satisfying the Lyapunov stability theorem for a time delay system [11].

Theorem 1 Given

i

0, 

i

0 and 

ji

0,

the system (1) is asymptotically stable if there exist symmetric positive definite matrices

, , and ,

i i ij i

P Q Z W i j

,  1,..., ,

N i

j

,

such that the following LMI holds:

(3)

 

 

 

2 1

2 2

2 3

1,

2 2

1,

2 2 2

2

2

2

0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

1 0

0

T

i i di i i i i

T T

di i i i di i

N T

i ij j j

j j i

i i

N

j j ij j j

j j i

i i i i i di i i

i i i

i i di

T

i i i

P A W A W

A P A W

A W

W W

W A W

W A W A W

N W A

N W A

N A W

N

 

 

 

 

  



  

  

  

 

  

   

  

 

 

 



 

 

 

2

2

2

1

0 0

0 0

0 0 0

0 0

1 0

0 1

T

i di i

i i

i i

A W

N W

N W



 







  

  

(7)

Proof

We consider the following Lyapunov-Krasovskii functional for system (1):

 

1 1

( ) ( ) ( ) ( ) ( ) ( )

N N

i ai bi ci di

i i

V t V t V t V t V t V t

  

(8)

where

( ) T( ) ( )

ai i i i

V tx t P x t ( ) ( ) ( ) ( )

i

t T

bi i i i

t t

V t x s Q x s ds

1, ( )

( ) ( ) ( )

ij

N t T

ci t t j ij j

j j i

V t x s Z x s ds

 

( ) 0 ( ) ( )

i

t T

di i i i i

V t t sx W x d ds

  

 

(9)

Taking the derivative of V in t along the solution of system (1), we have

1,

( ) 2 ( ) ( ) 2 ( ) ( )

( ( )) ( ( ))

T T

ai i i i i i i i

N

di i i ij j ij

j j i

V t x t P x t x t P A x t A x tt A x tt

 

    

 

(10)

( ) ( ) ( )

(1 ) ( ( )) ( ( ))

T

bi i i i

T

i i i i i i

V t x t Q x t

x t t Q x t t

  

   

(11)

1,

1,

( ) ( ) ( )

(1 ( )) ( ( )) ( ( ))

( ) ( )

(1 ) ( ( )) ( ( ))

N T

ci j ij j

j j i

T

ij j ij ij j ij

N T

j ij j

j j i

T

ij j ij ij j ij

V t x t Z x t

t x t t Z x t t x t Z x t

x t t Z x t t

  

  

 

    

 

    

(12)

0

2 0

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i

i

i

T T

di i i i i i i i

T T

i i i i i i i i

T t T

i i i i i i i i

t

V t x t W x t x t s W x t s ds x t W x t x t s W x t s ds x t W x t x s W x s ds

 

 

 

     

   

 

    

   

   

2

2

2

1, 2

( ) ( )

( ) ( ( ))

2 ( ) ( ( ))

( ( )) ( )

T T

i i i i i i

T T

i i i i di i i

N

T T

i i i i ij j ij

j j i

T T

i i i di i i i

x t A W A x t

x t A W A x t t

x t A W A x t t

x t t A W A x t

 

 

 

 

 

 

(4)

2

2

1,

2

1, 1,

( ( )) ( ( ))

2 ( ( )) ( ( ))

( ( )) ( ( ))

( ) ( )

i

T T

i i i di i di i i

N

T T

i i i di i ij j ij

j j i

N N

T T

j ij i ij i ij j ij

j j i j j i

t T

i i i i

t

x t t A W A x t t

x t t A W A x t t

x t t A W A x t t

x s W x s ds

  

  

  

  

  

  

 

(13) Applying Proposition 3 and the Leibniz-Newton formula

( ) ( ) ( )

t

i i i

t hx s ds x t x t h

  

(14)

we obtain

   

   

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( )

( ) ( )

i

i i

t T

i t i i i

t T t

T

i i i

t t

T

i i i i i i i

T T

i i i i i i i

T

i i i i i

x s W x s ds

x s ds W x s ds x t x t W x t x t x t W x t x t W x t

x t W x t

 

 

 

     

   

  

 

 

 

(15) Using Proposition 1 gives

1,

1,

1,

2 ( ) ( ( ))

2 ( ) ( ( ))

( 1) ( ) ( )

( ( )) ( ( ))

N T

i i ij j ij

j j i

N T

i i ij j ij

j j i

T

i i i

N

T T

j ij ij i ij j ij

j j i

x t P A x t t

P x t A x t t N x t P x t

x t t A P A x t t

 

   

     

 

  

(16)

1,

1,

1,

2 ( ) ( ( ))

2 ( ) ( ( ))

( 1) ( ) ( )

( ( )) ( ( ))

N

T T

i i i ij j ij

j j i

N T

i i i ij j ij

j j i

T T

i i i i i

N

T T

j ij ij i ij j ij

j j i

x t A W A x t t

W A x t A x t t N x t A W A x t

x t t A W A x t t

 

   

     

 

  

(17)

1,

1,

1,

2 ( ( )) ( ( ))

2 ( ( )) ( ( ))

( 1) ( ( )) ( ( ))

( ( )) ( ( ))

( 1) ( ( ))

N

T T

i i di i ij j ij

j j i

N T

i di i i ij j ij

j j i

T T

i i di i di i i

N

T T

j ij ij i ij j ij

j j i

T T

i i di i

x t t A W A x t t

W A x t t A x t t

N x t t A W A x t t x t t A W A x t t

N x t t A W

 

 

 

 

 

   

      

   

  

  

 

1, 1,

( ( ))

( ( )) ( ( ))

di i i

N T N

ij j ij i ij j ij

j j i j j i

A x t t

A x t t W A x t t

 

(18) Now Nothing that

1 1, 1 1,

( ) ( ) ( ) ( )

N N N N

T T

j ij j i ji i

i j j i i j j i

x t Z x t x t Z x t

 

 

(19)

1 1,

1 1,

(1 ( )) ( ( )) ( ( ))

(1 ( )) ( ( )) ( ( ))

N N

T

ij j ij ij j ij

i j j i

N N

T

ji i ji ji i ji

i j j i

t x t t Z x t t

t x t t Z x t t

  

  

  

   

 

 

(20)

2

1 1,

2

1 1,

( ( )) ( ( ))

( ( )) ( ( ))

N N

T T

i j ij ij i ij j ij

i j j i

N N

T T

j i ji ji j ji i ji

i j j i

x t t A W A x t t x t t A W A x t t

  

  

 

  

 

 

(21)

1 1,

1 1,

( ( )) ( ( ))

( ( )) ( ( ))

N N

T T

j ij ij i ij j ij

i j j i

N N

T T

i ji ji j ji i ji

i j j i

x t t A P A x t t x t t A P A x t t

 

 

 

  

 

 

(22)

 

2

1 1, 1,

2

1 1, 1,

( ( )) ( ( ))

( ( )) ( ( ))

N N T N

ij j ij i i ij j ij

i j j i j j i

N N T N

T

i ji ij j j ij i ji

i j j i j j i

A x t t W A x t t

x t t A W A x t t

  

  

  

  

(23) Therefore, we have

(5)

1

1,

1,

( ) 2 ( ) ( ) 2 ( ) ( ( ))

( 1) ( ) ( )

( ( )) ( ( ))

( ) ( ) (1 ) ( ( )) ( ( )) ( ) ( )

(1 ) (

N

T T

i i i i i i di i i

i

T

i i i

N

T T

i ji ji j ji i ji

j j i

T T

i i i i i i i i i

N T

i ji i

j j i

T ji i

V t x t P A x t x t P A x t t N x t P x t

x t t A P A x t t

x t Q x t x t t Q x t t

x t Z x t x t

 

  

   

 

  

    

  

1,

2 2

( )) ( ( ))

( ) ( ) ( ) ( ( ))

N

ji ji i ji

j j i

T T T T

i i i i i i i i i i di i i

t Z x t t

x t A W A x t x t A W A x t t

 

  

  

2

2

1,

2

2

2

( 1) ( ) ( )

( ( )) ( ( ))

( ( )) ( )

( ( )) ( ( ))

( 1) ( ( )) ( ( ))

T T

i i i i i i

N

T T

j i ji ji j ji i ji

j j i

T T

i i i di i i i

T T

i i i di i di i i

T T

i i i di i di i i

N x t A W A x t

x t t A W A x t t x t t A W A x t

x t t A W A x t t

N x t t A W A x t t

  

 

  

  

 

  

 

  

   

2

1,

( ( )) ( ( ))

N

T T

j i ji ji j ji i ji

j j i

x t t A W A x t t

  

 

 

2

1, 1,

1

( ( )) ( ( ))

( ) ( ) 2 ( ) ( )

( ) ( )

( ) ( )

N T N

T

i ji ij j j ij i ji

j j i j j i

T T

i i i i i i i

T

i i i i i

N T

i i i

i

x t t A W A x t t

x t W x t x t W x t x t W x t

t t

  

 

 

 

    

 

  

   

 

 

(24) where

( ) ( ) ( ( ) ( ( ) ( )

T T T T T

i t x ti x ti i t x ti ji t x ti i

 



2 1

2

2

3

0

0 0

0 0 0

0 0

T

i i di i i i di i

T T

di i i di i i i

i

i

i i

P A A W A W

A P A W A

W W

   

   

 

   

 

  

 

we readily see that V t

( ) 0

holds if

i 0

  (25)

using proposition 2 (Schur complements), inequality (25) is equivalent to

2 1

2

2

2 3

1,

2 2

1,

0 0

0 0 0

0 0 0

0

0 0 0

0 0 0

T

i i di i i i di i

T T

di i i di i i i

N T

i ij j j

j j i

i i

N

j j ij j j

j j i

P A A W A W

A P A W A

A W

W W

W A W

 

 

   

   

 

   

   

   

 

  

   

    

   

 

(26)

Also, inequality (26) is equivalent to

(6)

 

1

2

2 3

1,

2 2

1,

2

2

2 1 2 2

0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0

i i di i

T

di i i

N T

i ij j j

j j i

i i

N

j j ij j j

j j i

T

i i i

T

i di i

i i i i i i i di

P A W

A P

A W

W W

W A W

A W A W

W W A W A

 

 

  

 

 

 

   

   

   

 

  

   

    

   

 

 

 

 

   

   

 

 

 

(27)

we obtain

2 1

2 2

2 3

1,

2 2

1,

2 2 2

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

T

i i di i i i i

T T

di i i i di i

N T

i ij j j

j j i

i i

N

j j ij j j

j j i

i i i i i di i i

P A W A W

A P A W

A W

W W

W A W

W A W A W

 

 

 

 

  

 

 

 

   

   

   

 

  

   

    

   

 

  

 

(28)

it can readily verified that the condition of (28) is equivalent to the LMI (7), this establishes the internal asymptotic stability.

Remark 1. Theorem 1 presents a new stability criterion for system (1) with time-varying delay.

It is worth noting that condition (7) is an LMI, which can be readily checked by using the standard numerical software.

To illustrate the application of the proposed method, we present the following example.

4 Numerical Example

Consider a large-scale system, which is composed of three subsystems, each is of the type (1) with:

1 1

2 0 1 0

, ,

2 1 d 1 0

A   A  

    

12 13

1 0 0 1

1 0 , 0 1

A   A   

2 2

1 0 1 0

, ,

2 2 d 2 1

A   A  

     

21 23

1 2 1 1

3 6 , 3 2

A    A  

    

3 3

1 0 0 0

, ,

1 2 d 1 2

A    A   

31 32

1 2 0 0

1 2 , 0 1

A   A  

    

By applying Theorem 1 and solving the corresponding optimization problem (7), we obtain

1 1 21 21

31 31 2 2

3 ; 1.5; 2 ; 0.8;

2 ; 0.8; 32.5 ; 1.3;

   

   

   

   

(7)

12 1.5 ; 12 0.9; 32 1.5 ; 32 0.9;

       

3 3 13 13

23 23

3 ; 1.1; 1.8 ; 0.75;

1.8 ; 0.75;

   

 

   

 

1 2

2.2511 0.0020 0.1386 -0.0152

; ;

0.0362 0.0724

P   P  

     

3 1

1.8296 0.1004 1.39501 0.0576

; ;

0.5422 20.0181

P    Q   

2 3

5.9043 0.3326 21.3065 -2.5036

; ;

5.4613 28.6509

Q   Q  

     

Since

P Qi, i, 0 , i1, 2, 3

Then the conditions required by Theorem 1 are satisfied.

5 Conclusion

In this paper, the problem of the decentralized stability for large-scale time varying delay systems has been studied. The time delay is assumed to be a function belonging to a given interval. By effectively combining an appropriate Lyapunov functional with the Newton-Leibniz formula, this paper has derived new delay-dependent conditions for the stability in terms of linear matrix inequalities (LMIs).

Numerical examples are given to show the effectiveness of the obtained result.

References:

[1] D.D. Siljak,, Decentralized Control of Complex Systems. Academic Press, 1991.

[2] M.S. Mahmoud, N.B. Almutairi, Resilient decentralized stabilization of interconnected time- delay systems with polytopic uncertainties, Int. J. Robust. Nonlinear Control, Vol.21, 2011, pp. 355-372.

[3] A. Zouhri, M. Benyakhlef, S. Kririm and I.

Boumhidi, Robust Stability and H∞ Analysis for Interconnected Uncertain Systems, International Journal of Mathematics and Statistics™, ISSN 0974-7117 (Print), ISSN:

0973-8347 (Online), Vol. 17, 2016, pp. 55-66.

[4] A. Zouhri and I. Boumhidi. Decentralized control of interconnected systems with time- delays, 12th ACS/IEEE International

Conference on Computer Systems and Applications AICCSA 2015 November 17-20, 2015, Marrakech, Morocco.

[5] S. Schuler, U. Münz, F. Allgöwer, Decentralized state feedback control for interconnected systems with application to power systems, Journal of Process Control, Vol.24, 2014, pp. 379–388.

[6] T. N. Lee, and U. L. Radovic, Decentralized Stabilization of Linear Continuous and Discrete- Time Systems with Delays in Interconnections, IEEE Transactions on Automatic Control, Vol.33, 1988, pp. 757–761.

[7] M.S. Mahmoud, N.B. Almutairi, Decentralized Stabilization of Interconnected Systems with Time-varying Delays, European Journal of Control, Vol.6, 2009,pp. 624–633.

[8] A. Zouhri, M. Benyakhlef and I. Boumhidi, Finite Frequency H- /H∞ Stability of Singularly Perturbed Systems, WSEAS Transactions on Systems and Control, E-ISSN:

2224-2856, Vol. 9, 2014, pp. 302-308.

[9] B. Xu, On Delay-Independent Stability of Large-Scale Systems with Time Delays, IEEE Transactions on Automatic Control, Vol.40, 1995, pp. 930–933.

[10] P. Niamsup, G. Rajchakit, New results on robust stability and stabilization of linear discrete-time stochastic systems with convex polytopic uncertainties. J. Appl. Math., 368259.

doi:10.1155/2013/368259.

[11] S. Boyd, L. E. Ghaoui, E. Feron, and Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory, Studies in Applied Mathematics, SIAM, Philadelphia, Pennsylvania, Vol.15, 1994.

[12] B. Olivier, Notions de base pour une initiation à la synthese robuste de correcteurs par approche LMI, Vol.3, 2008.

[13] Y. Zhang, and A. H. Pheng, Stability of fuzzy control systems with bounded uncertain delays, IEEE Trans. Fuzzy Syst., Vol.10, 2002, pp. 92–

97.

[14] P. Gahinet, A. Nemirovski, A. Laub, and M.

Chilali, LMI Control Toolbox User’s Guide, Mathworks, Natick, Massachusetts, 1995.

[15] G. Rajchakit, Robust stability and stabilization of nonlinear uncertain stochastic switched discrete-time systems with interval time- varying delays. Appl. Math. Inform. Sci. Vol.6, 2012, pp. 555-565.

[16] J. Sun, GP. Liu, J. Chen, D. Rees, New delay- dependent conditions for the robust stability of linear polytopic discrete-time systems. J.

(8)

[17] W. Zhang, X. Cai, Z. Han, Robust stability criteria for systems with interval time-varying delay 2010.

[18] R. Manlika, N. Piyapong, and R. Grienggrai, LMI approach to decentralized exponential stability of linear large-scale systems with interval non-differentiable time-varying delays, Advances in Difference Equations, Vol.332, 2013, pp. 1-16.

[19] D.D. Siljak , Decentralized Control of Complex Systems. Academic Press, 1991.

Riferimenti

Documenti correlati

Recent experiments have shown that BMSB communicates using vibrational signals and that males are attracted by a female song.. The aim of our experiment was

Compared to animals kept indoors, grazing animals had similar performance and milk characteristics, higher rumination time and, with respect to volatile

For high resolution spectroscopy of ' S O - ~ P O doubly forbidden transition we have also prepared a 698 nm clock laser stabilized on high finesse symmetrically

The aim of this paper is to evaluate the influence of humic substances extracted from pasture and forested soils on invertase, esterase and peroxidase enzymes and on redox

Se sussiste un diritto a non morire per una malattia curabile; se la scelta terapeutica è proiezione della tutela costituzionale della libertà personale; se tale scelta deve,

The roadside features for which the Forgiving Roadsides Design Guide has been developed are barrier terminals, shoulder rumble strips, forgiving support structures for road

Il vescovo, che si rivolge a Onorio e a Stilicone, opera sul piano della teologia politica un ridimensionamento della figura del primo imperato- re cristiano, preferendogli

In a recent investigation, a statistically significant association was found between polycystic ovarian syndrome (PCOS), obesity and leptin, where the overweight and obese women