quot;<"2:$;"&gt BAC(5$ED

Download (0)

Testo completo

(1) 

(2)  . !#"%$'&)(*"++#,. -.0/21435.76. 8 :9:$;"<"2:$;">=?=?=?=%=?=?=?=%=?=?=?=?=@=?=?=?=%=?=?=?=?=%=?=?=?=%=?=?=?=%=?=?=?=?=@=?=-BAC(5$ED;=?=?=?=%=?=?=?=?=%=?=?=?=@=?=?=?=?=%=?=?=?=%=?=?=?=%=?=?=?=?=%=?=?=?=@=?= 8 :(*F*HGA1IDKJ)(*"LDM ♦ 6ONQPR1TS ♦ 8 3VU21TS WYX[Z[\^]_%`ba#c` d^egfhji2klnmopqsrut2v:t*wyx{z|v!w{z[}[z5~!z[?x{z€?Kz[‚nx{zgƒ„‚nxyw{K Yƒu†^KƒC‡ˆƒ„Hv:t‰wyx{ƒ„}[†^rut‰w{z@‡ X5Š^\^`Œ‹!\*ŽŠ@a:#ca<‘Žca#'s’n`“c”X[Z[•:'– — •KZ[!˜“˜ba#™*š›)\^<•K\*œœX[L#c•K\*œ`“˜ — \*a — \‰`baEŠ@a:\‰X[aH`˜Œ•]\*L•ž Ÿ?eg  f¡pl ¢£qpBq‡Lƒ„O¤g†L~!†¥ƒ„K}Y†@?xyw{†*¦%zYwyx{ƒ„§Kƒ„r„z@‡ rŒtTw{ƒ„‚yv†@‚nxVtRKzYrur„†¥‚yv:t^ Yƒu†¨rŒt‰‚y}[ƒut‰x{†~!†@v†¨†^©@ ƒ€?KzY‚yƒ„x{†!ª!ƒu«}5t^‚y†R~ ƒ#}[†^wyw{zY [ƒ„†@Kz^‡ §Kt‰wywVt*w{zjrŒt¨w{ƒ„‚yv†^‚nxVtRzYwywVt‰xVt¨zj‚y}¬w{ƒu¦@zYw{zTt^}[}[t^?x{†RrutRLK†*¦@tjw{ƒ„‚yv†@‚nxVtLe ­Le¨l¡kˆ®¯£°q±j±Blt‰xyxyw{ƒ„§ Kƒ²x{ƒvz¬wrut¥w{ƒ„‚yv†^‚nxVtRz[‚{t‰xyxVtR‚y†^K†Rƒ„:~!ƒ„}5t‰x{ƒt^r„rut¨³: zj~ ƒ´†@©^Kƒ€L z[‚yƒ²x{† e µ eRkpIhBln¶ln°4hsK‚{t*w{zjr„ƒu§!w{ƒC‡€?:t^~ zYw{ ƒ·‡!}5t‰r„}[†@rut‰x{†‰w{ƒC‡x{z[r„zY¸“†^Kƒ´}[z[r„r„Krut‰w{ƒCe ¹?egfhB¯£  q±B¯£oIpBq»º ]!X[Z[a¼½a:˜“`ŒaH0Z*]Z[Z5`4`¡¼½a:˜b`` — \*a:Z[a´Š@a:˜“˜ba e ¾LeR°q¯£qpq‘ƒ„r´¸b†@©^ruƒ„†|¶¿}[†^¤gz£v w{†^¤gz[¤g†^w{ƒut¨~!z[r„r„z£w{ƒu‚yv†^‚nx{z ~Kt‰x{z^e À?eR°qi2kh”tR~!ƒ„‚yv†@‚yƒ„ [ƒ„†@ z@Ád5¹^ÂR¤gƒ„e à =OÄA½DHGDKʼnDƽDF*"%9J"%Å*"0ÇnJ))È?A·:". f. (*"LDKÆ·"'GA4:DK(5A½DK&)ACÆ·"œ(*"LDKÆ·"œG)"@É)ACʼnDHGDM f (x) =. p √ 3 e2x − e + 3 3 e. Ê (‰D:Ë?Ë%A½DK(*"F5J)ÆÇy:9ÆCA·OGAÌ)(*:Å*Ë?:ÆCÆ·2J)9(‰D ɈË?OÍJˆDKÆCACʼnDKÅ5AC#0G)"%ÆCƽD|ÇÎJ))È?A·:" f Ï AC;D:Ë?Ë?:(*G)0Ë?:A(5A·F5J)ÆCʼnDKÅ5A :Å5Å*"%´J)Å5A{= Ð "%Å*"%(5$HACˆDK(*"'ACÆIG):$HAC)A·;GA f "?GÑ"%#"%´Å5JˆDKÆCA£F5AC$H$;"%Å5(5A·"= ҎÓÎÔLÕTÖÔ?×LØÚٓÕBÛBÜ¡×!ÓÝÞ[ß 8 DKÆ·Ë?:ƽDK(*" AÆCAC$HACÅ5ADKÆCƽDRÇn(*:´Å5A·"%(‰D«G)"%Æ´G):$HAC)A·O" G)"%Å*"%(5$HACˆDK(*"¨"%#"%´Å5JˆDKÆCA)D:F5AC´Å*:Å5AàÎ#"%(5Å5A·ËLDKÆCA Ï :(5ACÈ?ÈL:´Å‰DKÆCA Ï :&)ÆCA·Í´J)A á¨Ì"%( f = ҎÓÎÔLÕTÖÔ?×LØÚٓÕBÛBÜ¡×!Ó¨â)Þ[ß 8 DKÆ·Ë?:ƽDK(*"œÆ½D<ÇnJ))È?A·:"œG)"%(5AC:DKʼnD;Ì)(5AC$EDHGA f Ë%ƽD:F*F5A“ɈËLDKG);"%#"%Å5JˆDKÆCAIÌ)J)Å5AGA:ãG)"%(5ACDK&)ACÆCACʼnä= ҎÓÎÔLÕTÖÔ?×LØÚٓÕBÛBÜ¡×!Ó¥åÞ[ß Ä Å5JGA½DK(*"RƽD«Ë%(*"?F‰Ë?"%)È!D2"¨G)"?Ë%(*"?F‰Ë?"%)È!D0GA f Ï ËLDKÆ·Ë?:ƽDKG) Ï Í´JˆDKÆ·:(‰D2"?F5A·F*ʼnDK Ï Ì)J)´Å5AGA$ED:F*F5AC$;´æ $HAC)AC$; (*"%ƽDKÅ5AC#E"2Ì)J)´Å5AGA4$ED:F*F5AC$;´æ $HAC)AC$;ŽD:F*F*:ÆCJ)Å*HÌ"%( f = ҎÓÎÔLÕTÖÔ?×LØÚٓÕBÛBÜ¡×!ÓÝÞ[ß 8 DKÆ·Ë?:ƽDK(*" ƽDgÇÎJ))È?A·:"¨G)"%(5AC:DKʼnD«F*"?Ë?:GD|GA f " F*Å5JGA½DK(*" ƽD|Ë?:ËLD?ACʼnä|" ƽDË?:´#"?F‰F5ACʼnä|GA f Ï ËLDKÆ·Ë?:ƽDKG) 9ÆCAI"%#"%´Å5JˆDKÆCAÌ)J)´Å5AIGAçˆ"?F‰F*Ì¡"%( f = ҎÓÎÔLÕTÖÔ?×LØÚٓÕBÛBÜ¡×!Ó èˆÞ[ß.

(3) = Ð "%Å*"%(5$HACˆDK(*". Ï. inf A sup A. ҎÓÎÔLÕTÖÔ?×LØÚٓÕBÛBÜ¡×!Ó¥åÞ[ß. "?GÑ"%#"%´Å5JˆDKÆC$;"%Å*". Ï. Ï "?F*F‰"%G). min A max A      1 π A = 2 + log sin · , n∈N . n2 + 1 2. = Ð "%Å*"%(5$HACˆDK(*"'ACÆ4ÆCJ:9#H9#"?:$;"%Å5(5A·Ë?‘G)"%9ÆCA. z∈C. ʼnDKÆCAIË".  Im 3 + i|z|2 + 2z + 7iz = 0.. ҎÓÎÔLÕTÖÔ?×LØÚٓÕBÛBÜ¡×!Ó¥åÞ[ß. = 8 DKÆ·Ë?:ƽDK(*" . arctan(nn ) + log(n2n ) lim √ . n→+∞ n2 + 3 · [log((n + 1)!) − log(n!)]. ҎÓÎÔLÕTÖÔ?×LØÚٓÕBÛBÜ¡×!Ó¥åÞ[ß. = 8 DKÆ·Ë?:ƽDK(*" . lim. x→1. ҎÓÎÔLÕTÖÔ?×LØÚٓÕBÛBÜ¡×!Ó¥åÞ[ß. = 8 DKÆ·Ë?:ƽDK(*". f : R −→ R. 2 (x−1). − 1) cos 2 3 sin (x − 1). x−1 π. . √ (ex/2 − 1 + x) sin(4x2 ) lim x→0 1 − cosh(2x2 ). ҎÓÎÔLÕTÖÔ?×LØÚٓÕBÛBÜ¡×!Ó¥åÞ[ß. ,=OÄA½D. (etan. ƽDÇnJ))È?A·:"œG)"@É)ACʼnDHGD  2  sin(x − 6) [1 + (x − 7)2 ]1/(x−7) + f (x) = x−6 x−7 1. F‰" ‰F ". Ð %" Å*"%(5$HACˆDK(*"<"0Ë%ƽD:F*F5A“ɈËLDK(*"<"%#"%´Å5JˆDKÆCAIÌ)J)Å5AIGAIGA·F*Ë?:Å5AC´J)ACʼnäEÌ¡"%( f = ҎÓÎÔLÕTÖÔ?×LØÚٓÕBÛBÜ¡×!Ó èˆÞ[ß 2. x 6= 7, x 6= 6.  x=7. Ï. x=6. =.

(4)

figura

Updating...

Riferimenti

Argomenti correlati :