• Non ci sono risultati.

Animal Models of Bone Defect Repair

N/A
N/A
Protected

Academic year: 2021

Condividi "Animal Models of Bone Defect Repair"

Copied!
15
0
0

Testo completo

(1)

BIBLIOGRAFIA

* Abdel-Aal AM. Ilizarov bone transport for massive tibial bone defects. Orthopedics 2006; 29: 70-74.

* Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials 2003; 24: 401-416.

* An YH, Friedman RJ. Animal Models of Bone Defect Repair. In: An YH, Friedman RJ.

Animal models in Orthopaedic research. CRC Press 1999b; 13: 241-260.

* An YH, Friedman RJ. Animal selection in orthopaedic research. In: An YH, Friedman RJ (eds.) Animal models in Orthopaedic research. CRC Press 1999a; 39-57.

* Anitua E, Andia I, Sanchez M, Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture Journal of Orthopeadics Research, 2005; 23, 281-286.

* Argintar E, Edwards S, Delahay J. Bone morphogenetic proteins in orthopaedic trauma surgery. Injury 2011; 42: 730-734.

* Aronson J. Limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method. J Bone Joint Surg Am 1997; 79: 1243-1258.

* Bae S, Shoda M. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 2004; 20: 1366-1371.

* Balakrishnan S, Krishnan M, Narayan R, Dubois P. Three-arm poly (ε-caprolactone) by extrusion polymerization. Polymer Eng Sci 2006; 46: 235-240.

* Banks WJ, Apparato locomotore. In: Banks WJ, Istologia e anatomia microscopica veterinaria. Piccin Editore, I ed. It., 1986; 16:263-288

* Barbarossa V, Matković BR, Vucić N, Bielen M, Gluhinić M. Treatment of Osteomyelitis and Infected Non-union of the Femur by a Modified Ilizarov Technique:

Follow-up Study. CMJ 2001; 42:634‐641.114

* Barbosa MA, Granja PL, Barrias CC, Amaral IF. Polysaccharides as scaffolds for bone regeneration. ITBM-RBM 2005; 26: 212-217.

(2)

*   Bates P, Ramachandran M. Bone injury, healing and grafting. In: Basic Orthopaedic Sciences. The Stanmore Guide. Ramachandran M. (Ed) London: Hodder Arnold 2007;

123-134.

* Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Related Res 2000; 371: 10-27.

* Benoit MA, Baras B, Gillard J. Preparation and characterization of protein-loaded poly([var epsilon]- caprolactone) microparticles for oral vaccine delivery. Int J Pharm 1999; 184: 73–84.

* Bodde EWH, Spauwen PHM, Mikos AG, Jansen JA. Closing capacity of segmental radius defects in rabbits. J Biomed Mater Res A 2008; 85: 206-217.

* Bos GD, Goldberg VM, Powell AE, Heiple KG, Zika JM. The effect of

histocompatibility matching on canine frozen bone allografts. J Bone Joint Surg Am 1983;

65: 89-96.

* Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996; 17: 137-146.

* Brown SG, Kramers PC, Guargione indiretta del tessuto osseo (secondaria). In: Bojrab MJ, Le basi patogenetiche delle malattie chirurgiche nei piccoli animali. Giraldi Editore, I ed. It., 2001; Vol. II; 97: 901-909

* Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop 2002;

395: 44-52.

* Calvert JW, Weiss LE, Sundine MJ. New frontiers in bone tissue engineering. Clin Plast Surg 2003; 30: 641-648.

* Carmona JU, Arguelles D, Climent F, Prades M. Autologous platelet rich plasma injected intra-articularly diminished synovial effusion and degree of lameness in horses affected with severe joint disease VCOT, 2006.

* Carson JS, Bostrom MPG: Synthetic bone scaffolds and fracture repair Injury. Int. J.

Care Injured, 2007; 38S1, S33-S37.

* Carter G. Harvesting and implanting allograft bone. AORN J 1999; 70: 660-670.

* Casasco E, Tessuto osseo – Istogenesi del tessuto osseo – Endotelio. In Casasco E, Citologia Istologia. La Goliardica Pavese Editore II ed. It, 1992; 22: 437-474

(3)

* Castañeda S, Largo R, Calvo E, Rodríguez-Salvanés F, Marcos ME, Díaz-Curiel M, Herrero-Beaumont G. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol 2006; 35: 34-41.

* Chaer RA, Graham JA, Mureebe L. Platelet function and pharmacologic inhibition Vasculary and Endovasculary Surgery, 2006; 40, 261-267

* Chang HI, Lau YC, Yan C, Coombes AG. Controlled release of an antibiotic,

gentamicin sulphate, from gravity spun polycaprolactone fibers. J Biomed Mater Res A 2008; 84: 230-237.

* Chapman MW, Bucholz R, Cornell C. Treatment of acute fractures with a collagen- calcium phosphate graft material: a randomized clinical trial. J Bone Joint Surg Am 1997;

79: 495-502.

* Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005; 26: 6565-6578.

* Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 2003; 20: 1103-1112.

* Chew SY, Dzenis Y, Leong KW, Wen Y. The Role of Electrospinning in the Emerging Field of Nanomedicine. Curr Pharm Des 2006; 12: 4751-4770.

* Constantino PD, Freidman CD. Synthetic bone graft substitutes. Otolaryngol Clin North Am 1994; 27: 1037-1073.

* Coombes AGA, Rizzi SC, Williamson M, Barralet JE, Downes S, Wallace WA.

Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 2004; 25: 315-325.

* Crow BB, Borneman AF, Hawkins DL, Smith GM, Nelson KD. Evaluation of in vitro drug release, pH change, and molecular weight degradation of poly(L-lactic acid) and poly(D,Llactide- co- glycolide) fibers. Tissue Eng 2005; 11: 1077-1084.

* Crow BB, Nelson KD. Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber. Biopolymers 2006; 81: 419-427.

* Cypher TJ, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg 1996; 35: 413- 417.

(4)

* De Long WG Jr, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T.

Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am 2007; 89: 649-658.

* Dellmann HD, Eurell JA, Tessuti connettivi e di sostegno. In: Dellmann HD, Eurell JA, Istologia e anatomia microscopica veterinaria. Casa Editrice Ambrosiana, II ed It., 2000; 3:

42-80

* Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Krogman NR, Singh A, Allcock HR, Laurencin CT. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p- phenyl phenoxy) phosphazene] and poly(lactic acid- glycolic acid). Biomaterials 2008; 29: 337-349.

* Denkbas EB, Seyyal M, Piskin, E. Implantable 5-fluorouracil loaded chitosan scaffolds prepared by wet spinning, J Membr Sci 2000; 172: 33-38.

* Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Medicine 2011, 9: 66-75.

* Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury 2005; 36: 1392-1404.

* Doi Y, Steinbüchel A. Polyesters I. Biological systems and biotechnological production.

Weinheim: Wiley-VCH 2002.

* Drosse I, Volkmer E, Capanna R, De Biase P, Mutschler W, Schieker M. Tissue engineering for bone defect healing: An update on a multi-component apporach. Injury 2008; 39: S9-S20.

*  Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res 1998; 355: S7- S21.

* Engel E, Michiardi A, Navarro M, Lacroix D, PLanell JA. Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol 2008; 26: 39-47.

* Fabbri P, Bondioli F, Messori M, Bartoli C, Dinucci D, Chiellini F. Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue

engineering. J Mater Sci Mater Med 2010; 21: 343-351.

* Fang B, Wan Y-Z, Tang T-T, Gao C, Dai K-R. Proliferation and osteoblastic differentiation ofhumanbone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng A 2009; 15: 1091-1098.

(5)

* Fawcett DW, Osso. In Bloom & Fawcett. Trattato di Istologia. MacGraw- Hill Editore XXII ed It, 1996; 8: 209-252

* Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg 2002; 84:

454-464.

* Fleming JE Jr, Cornell CN, Muschler GF. Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am 2000; 31: 357-374.

* Freyman TM, Yannas IV, Gibson LJ. Cellular materials as porous scaffolds for tissue engineering. Prog Mat Sci 2001; 46: 273-282.

* Gao H, Gu Y, Ping Q. The implantable 5-fluorouracil-loaded poly(l-lactic acid) fibers prepared by wet- spinning from suspension. J Control Release 2007; 118: 325–332.

* Gatti AM, Valdre G, Oh A. Analysis of the in vivo reactions of a bioactive glass in soft and hard tissue. Biomaterials 1994; 15: 208–212.

* Geiger F, Bertram H, Berger I, Lorenz H, Wall O, Eckhardt C, Simank HG, Rchter W.

Vascular Endothelial Growth Factor Gene-Activated Matrix (VEGF165-GAM) Enhances Osteogenesis and Angiogenesis in Large Segmental Bone Defects. J Bone and Mineral Research 2005; 20: 2028-2035.

* Ghosh K, Ren XD, Shu XZ, Prestwich GD, Clark RAF. Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 2006; 12: 601-613.

* Giannodius PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury;

38 Suppl 4:S36. 2007

* Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005; 36:

S20-S27.

* Giannoudis PV, Einhorn TA. Bone morphogenetic proteins in musculoskeletal medicine. Injury 2009; 40: S1-S3.

* Gil-Albarova J, Salinas AJ, Bueno-Lozano AL, Roman J, Aldini-Nicolo N, Garcia- Barea A, Giavaresi G, Fini M, Giar- Journal of Biomedical Materials Research Part A dino R, Vallet-Regi M. The in vivo behaviour of a sol–gel glass and a glass-ceramic during critical diaphyseal bone defects healing. Biomaterials 2005; 26: 4374–4382.

(6)

* Gomes ME, Bossano CM, Johnston CM, Reis RL, Mikos AG. In vitro localization of bone growth factors in constructs of biodegradable scaffolds seeded with marrow stromal cells and cultured in a flow perfusion bioreactor. Tissue Eng 2006; 12: 177-188.

* Gomes ME, Godinho JS, Tchalamov D, Cunha AM, Reis RL. Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Mater Sci Eng C 2002; 20: 19-26.

* Gomes ME, Malafaya P, Ribeiro A, Reis RL, Cunha AM. A new approach based on injection moulding to produce starch based biodegradable scaffolds: morphology, mechanical and degradation behaviour. Biomaterials 2000; 22: 883-889.

* Gomes ME, Sikavitsas VI, Behravesh E, Reis RL, Mikos AG. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res A 2003; 67: 87-95.

* Gorna K, Gogolewski S. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration. J Biomed Mater Res A 2006; 79: 128-138.

* Gosline JM, Demont ME, Denny MW. The structure and properties of spider silk.

Endeavour 1986; 10: 37–43.

* Green SA, Jackson JM, Wall DM, Marinow H, Ishkanian J. Management of segmental defects by the Ilizarov intercalary bone transport method. Clin Orthop Related Res 1992;

280: 136-142.

* Greish YE, Bender JD, Lakshmi S, Brown PW, Allcock HR, Laurencin CT. Composite formation from hydroxyapatite with sodium and potassium salts of polyphosphazene. J Mater Sci Mater Med 2005; 16: 613-620..

* Hedberg EL, Kroese-Deutman HC, Shih CK, Lemoine JJ, Liebschner MAK, Miller MJ, Yasko AW, Crowther RS, Carney DH, Mikos AG, Jansen JA. Methods: A comparative analysis of radiography, microcomputed tomography, and histology for bone tissue engineering. Tissue Eng 2005; 11: 1356-1367.

* Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 2006; 76: 431-438.

* Hench LL, Wilson J. An introduction to bioceramics. 2nd ed. London: Word Scientific 1999.

* Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc 1991; 74: 1487–1510.

(7)

* Henry JA, Burugapalli K, Neuenschwander P, Pandit A. Structural variants of biodegradable polyesterurethane in vivo evoke a cellular and angiogenic response that is dictated by architecture. Acta Biomater 2009; 5: 29-42.

* Hollinger J O, Kleinschmidt J C. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg. 1990 Jan;1(1):60-8.

* Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH. In vitro degradation of silk fibroin. Biomaterials 2005; 26: 3385-3393.

* Hu Q, Li B, Wang M, Shen J. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 2004; 25; 779-785.

* Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives, J Biomater Sci Polymer Ed 2001; 12: 107-124.

* Hutmacher DW. Scaffold in tissue engineering bone and cartilage. Biomaterials 2000;

21: 2529-2543.

* Jabbarzadeh E, Starnes T, Khan YM, Jiang T, Wirtel A, Deng M, Lv Q, Nair Ls, Doty SB, Laurencin CT. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: A combined gene therapy–cell transplantation approach. PNAS 2008; 105:

11099-11104.

* Jin H-J, Chen J, Karageorgiou V, Altman GH, Kaplan DL. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 2004; 25: 1039–1047.

* Johnson AL Principi fondamentali di chirurgia ortopedica e di trattamento delle fratture. In Fossum TW Chirurgia dei piccolo animali. Elsevier Masson Editore III ed. It., 2008; 31: 962-1014

* Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 2006; 27: 964–973.

* Kasten P, Vogel J, Geiger F, Niemeyer P, Luginbühl R, Szaly K. The effect of platelet- rich plasma on healing in critical-size long-bone defects. Biomaterials 2008; 29: 3983- 3992.

* Khan SN, Cammisa Jr FP., Sandhu HS, Diwan AD, Girardi FP, Lane JM The biology of bone grafting. J Am Acad Orthop Surg, 2005; 13 (1): 77-86.

(8)

*   Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue Engineering of Bone:

Material and Matrix Consideration. J Bone Joint Surg Am 2008; 90 :36-42 d doi:10.2106/JBJS.G.01260

* Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 1998; 16: 224-230.

* Kim JH, Lee KH. Effect of PEG additive on membrane formation by phase inversion. J Memb Sci 1998; 138: 153–163.

* Koh YH, Bae CJ, Sun JJ, Jun IK, Kim HE. Macrochanneled poly (ε-caprolactone)/

hydroxyapatite scaffold by combination of bi-axial machining and lamination. Journal of Materials Science: Mat Med 2006; 17: 773-778.

*   Kohn J, Langer R. Bioresorbable and bioerodible materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds.) Biomaterials science: an introduction to materials in medicine. New York: Academic Press 1996; 64-72.

* Lane JM, Sandhu HS. Current Approaches to Experimental Bone Grafting. Orthop Clin North Am 1987; 18: 213-225.

* Lane JM, Tomin E, Bostrom MP. Biosynthetic bone grafting. Clin Orthop Related Res 1999; 367: S107–S117.

* Laurencin CT, El-Amin SF, Ibim SE, Willoughby DA, Attawia M, Allcock HR, Ambrosio AA. A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res 1996; 30: 133-138.

* Leathers TD. Dextran. In: Steinbüchel A, (ed.) Biopolymers, vol. 5. Weinheim: Wiley- VCH 2002; 300– 321.

* Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm 2001; 221:

1-22.

* LeGeros RZ, LeGeros JP. Calcium phosphate biomaterials: preparation, properties, and biodegradation. In: Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, Schwartz ER, (eds.) Encyclopedia handbook of biomaterials and bioengineering part A:

materials, vol. 2. New York: Marcel Dekker 1995; 1429-1463.

* Lei Y, Rai B, Ho KH, Teoh SH. In vitro degradation of novel bioactive

polycaprolactone—tricalcium phosphate composite scaffolds for bone engineering. Mat Sci Eng C 2007; 27: 293-298.

(9)

* Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of threedimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003; 24: 2363- 2378.

* Lévesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials 2005; 26: 7436-7446.

* Li C, Vepari C, Jina H-J, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006; 27: 3115-3124.

* Littlewood R. The Benefits and Risks Of The Ilizarov Technique For Limb Reconstruction. 2011 On line

* Liu Y, Chan-Park MB. A biomimetic hydrogel based on methacrylated dextran-graft- lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 2010;31:1158-1170 doi:10.1016/j.biomaterials. 2009.10.040.

* Liu Y, Lu Y, Tian X, Cui G, Zhao Y, Yang Q, Yu S, Xing G, Zhang B. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nonhydroxyapatite/fibrin scaffold in a rabbit model. Biomaterials 2009; 30: 6276-6285.

* Ma PX. Biomimetic materials for tissue engineering. Advanced drug delivery reviews 2008; 60: 184- 198.

* Maia L, de Souza MV, Ribeiro JI, de Oliveira AC, Silveira Alves GE, Benjamin L, Silva YFR, Zandim BM, Moreira J. Platelet-rich plasma in the treatment of induced tendinopathy in horses: histologic evaluation. Journal of Equine Veterinary Science, 2009;

29(8), 618-626

* Marcato PS, Sistema locomotore: ossa. In: Marcato PS, Patologia Sistematica Veterinaria. Edagricole Editore, I ed It., 2008; 13:1159-1196

* Marler JJ, Upton J, Langer R, Vacanti JP. Transplantation of cells in matrices for tissue regeneration. Adv Drug Del Rev 1998; 33: 165-182.

* Martin C, Winet H, Bao JY. Acidity near eroding polylactidepolyglycolide in vitro and in vivo in rabbit tibial bone chambers. Biomaterials 1996; 17: 2373-2380.

* Marx RE. Platelet-rich plasma: evidence to support its use J Oral Maxillofacial Surgery, 2004. 62, 489-496

(10)

* Meinig RP. Polylactide membranes in the treatment of segmental diaphyseal defects:

Animal model experiments in the rabbit radius, sheep tibia, Yucatan minipig radius, and goat tibia. Injury 2002; 33: B58–B65.

* Meyer U, Buchter A, Wiesmann HP, Joos U, Jones DB. Basic reactions of osteoblasts on structured material surfaces. Eur Cell Mat 2005; 9: 39-49.

* Mondrinos MJ, Dembzynski R, Lu L, Byrapogu VKC, Wootton DM, Lelkes PI, Zhou J.

Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering. Biomaterials 2006; 27: 4399-4408.

* Mulder M. Influence of various parameters on membrane morphology. In: Mulder M.

(ed.) Basic principle of membrane technology. Dordrecht, The Netherlands: Kluwer Academic, 1996; 123-140.

* Muzzarelli RA, Mattioli-Belmonte M, Tietz C, Biagini R, Ferioli G, Brunelli MA, Fini M, Giardino R, Ilari P, Biagini G. Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 1994; 15: 1075-1081.

* Nauth A, Giannoudis PV, Einhorn TA, Hankenson KD, Friedlaender GE, Li R, Schemitsch EH. Growth factors: beyond bone morphogenetic proteins. J Orthop Trauma 2010; 24: 543-546.

* Nickel R, Schummer A, Seiferle E, Apparato locomotore. Componente passiva. Sistema sheletrico, osteologia. In Nickel R, Schummer A, Seiferle E, Trattato di anatomia

veterinaria degli animali domestici. CEA Editore vol. I, 1991; 1:11-194

* Niemeyer P, Szalay K, Luginbühl R, Südkamp NP, Kasten P. Transplantation of human mesenchymal stem cells in a non-autogenous setting for bone regeneration in a rabbit critical-size defect model. Acta Biomateralia 2010; 6: 900-908.

* Nixon AJ. Terapie iniettabili per la tenite: fattori di crescita, aspirato midollare, plasma arricchito o cellule staminali: cosa scegliere? Atti del XIV Congresso SIVE-FEEVA, Venice (Italy), 2008; 332-339

* O’Driscoll SW, Saris DB, Ito Y, Fitzimmons JS. The chondrogenic potential of periosteum decreases with age. J Orthop Res 2001; 19: 95–103.

* O’Driscoll SW. Articular cartilage regeneration using periosteum. Clin Orthop Relat Res 1999; 367: S186–S203.

(11)

* Parfitt AM, Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cellular Biochem, 1994; 55(3):273-86.

* Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mat 2007; 13: 1-10.

* Pelagalli GV, Botte V, Scheletrico. In Pelagalli GV, Botte V, Anatomia veterinaria sistematica e comparata. Edi Ermes Editore vol. I, 1981 ; 2:25-228,

* Perren SM, Guarigione diretta del tessuto osseo (primaria). In: Bojrab MJ, Le basi patogenetiche delle malattie chirurgiche nei piccoli animali. Giraldi Editore, I ed It., 2001;

Vol. II; 96: 890-900

*  Peter SJ, Lu L, Kim DJ, Stamatas GN, Miller MJ, Yaszemski MJ, Mikos AG. Effects of transforming growth factor beta1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J Biomed Mater Res 2000; 50: 452-462.

* Peter SJ, Nolley JA, Widmer MS, Merwin JE, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG. In vitro degradation of a poly(propylene fumarate)/btricalcium phosphate composite orthopaedic scaffold. Tissue Eng 1997; 3: 207-215.

* Pitt CG. Poly (ε-caprolactone) and its copolymers. In: Chassin M, Langer R (eds.) Biodegradable polymers as drug delivery systems. New York: Dekker 1990; 71-119.

* Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 2009; 38: 1139-1151.

* Probst A, Spiegel HU. Cellular mechanisms of bone repair. J Invest Surg 1997; 10: 77–

86.

* Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric Materials for Bone and Cartilage Repair. Progr Polymer Scie 2010a; 35: 403-440.

* Puppi D, Detta N, Piras AM, Chiellini F, Clarke DA, Reilly GC, Chiellini E.

Development of electrospun three-arm star poly(ε-caprolactone) meshes for tissue engineering applications. Macromol Biosci 2010b; 10: 887-897.

* Puppi D, Piras AM, Detta N, Dinucci D, Chiellini F. Poly(lactic-co-glycolic acid) electrospun fibrous meshes for the controlled release of retinoic acid. Acta Biomater 2010c; 6: 1258-1268.

(12)

* Puppi D, Piras AM, Chiellini F, Chiellini E, Martins A, Leonor IB, Neves N, Reis R.

Optimized electro and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. J Tissue Eng Regn Med 2011a;

5: 253-263.

* Puppi D, Dinucci D, Bartoli C, Mota C, Migone C, Dini F, Barsotti G, Carlucci F, Chiellini F. Development of 3D wet-spun polymeric scaffolds loaded with antimicrobial agents for bone engineering. J of Bioactive Compatible Polymers. 2011b; 26 (5): 478-492.

* Reuvers, AJ, Smolders, CA. Formation of membranes by means of immersion precipitation: Part II. The mechanism of formation of membranes prepared from the system cellulose acetate- acetone-water. J Membr Sci 1987; 34: 67-86.

* Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006; 27:

3413-3431.

* Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jerome R. Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 2002; 13: 1207-1214.

* Rosati P, Colombo R, Tessuto Osseo. In : Rosati P & Colombo R Istologia. Edi Ermes Editore IV ed. It,1981; 17:449-489

* Rout PGJ, Tarrant SF, Frame JW, Davies JE. Interaction between primary bone cell cultures and biomaterials. Part 3: a comparison of dense and macroporous hydroxyapatite. In: Pizzoferratto ARP, Lee AJC (eds.) Bioceramics and clinical applications. Amsterdam: Elsevier 1988; 591-596.

* Salgado AJ, Coutinho OP, Reis RL, Davies JE. In vivo response to starch-based scaffolds designed for bone tissue engineering applications. J Biomed Mater Res A 2007;

80: 983-989.

* Sandhu HS, Grewal HS, Parvataneni H. Bone grafting for spinal fusion. Orthop Clin North Am 1999; 30: 685-698.

* Savarino L, Baldini N, Greco M, Capitani O, Pinna S, Valentini S, Lombardo B, Esposito MT, Pastore L, Ambrosio L, Battista S, Causa F, Zeppetelli S, Guarino V, Netti PA. The performance of poly- e-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials 2007; 28: 3101-3109.

(13)

* Schellauf F, Grillo Fernandes E, Braunegg G, Chiellini E. Properties of PHAs and their correlation to fermentation conditions in biorelated polymers. In: Chiellini E, Gil H, Braunegg G, Buchert J, Gatenholm P, van der Zee M (eds.) Sustainable polymer science and technology. New York: Kluwer Academic/Plenum Publishers 2001; 115-124.

* Schmidhammer R, Zandieh S, Mittermayr R, Linda E, Pelinka LE, Leixnering M, Hopf R, Kroepfl A, Redl H. Assessment of bone union/nonunion in an experimental model using microcomputed technology. J Trauma 2006; 61: 199-205.

* Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986; 205: 299–308.

* Shen H, Hu X, Yang F, Bei J, Wang S. The bioactivity of rhBMP- 2 immobilized poly(lactide-co- glycolide) scaffolds. Biomaterials 2009; 30: 3150-3157.

* Simon TM, Van Sickle DC, Kunishima DH, Jackson DW. Cambium cell stimulation from surgical release of the periosteum. J Orthop Res 2003; 21: 470–480.

* Sinibaldi KR. Principi di innesto osseo. In: Bojrab MJ, Ellison GW, Slocum B (eds.) Tecnica Chirurgica 2 - Chirurgia ortopedico-traumatologica: rachide, scheletro appendicolare. UTET Torino 2001; 49: 849-853.

* Siracusa G, Tessuto Osseo. In Monesi V, Istologia. Piccin Editore. V ed. It, 2007; 13:

508-549

* Song HR, Cho SH, Koo KH, Jeong ST, Park YJ, Ko JH. Tibial bone defects treated by internal bone transport using the Ilizarov method. Int Orthop (SICOT) 1998; 22: 293–297.

* Sopyan I, Mel M, Ramesh S, Khalid KA. Porous hydroxyapatite for artificial bone applications. Science and Technology of Advanced Materials 2007; 8: 116-123.

* Soucacos PN, Johnson EO, Babis G. An update on recent advances in bone regeneration. Injury 2008; 39: S1-S4.

* Steven PA, James WW, Peter S. Fratture e biologia delle fratture. In: Slatter D H.

Trattato di Chirurgia dei piccoli animali. Edizioni SBM Noceto (Parma), I ed It., 1990;

151:1939-1944

* Stevenson S. Bone Grafting. In Textbook of Small Animal Surgery. Slatter D.H., Philadelphia ed.: Saunders, 1993; 2:2035-48

(14)

* Strathmann H, Kock K, Amar P, Baker R. The formation mechanism of asymmetric membranes. Desalination 1975; 16: 179-203.

* Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH.

Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 2002; 99: 9656-9661.

* Sutter WW, Kaneps AJ, Bertone AL. Comparison of hematologic values and transforming growth factor-β and insulin-like growth factor concentrations in platelet concentrates obtained by use of buffy coat and apheresis methods from equine blood, AVJR 2004; 65(7), 924-930

* Taddei P, Tinti A, Reggiani M, Fagnano C. In vitro mineralization of bioresorbable poly([epsilon]- caprolactone)/apatite composites for bone tissue engineering: a vibrational and thermal investigation. J Mol Struct 2005; 744–747: 135-143.

* Tatsuyama K, Maezawa Y, Baba H, Imamura Y, Fukuda M. Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone.

Eur J Histochem 2000; 44: 269-278.

* Tessmar JK, Göpferich AM. Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliver Rev 2007; 59: 274-291.

* Tuzlakoglu K, Alves CM, Mano JF, Reis RL. Production and characterization of

chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications. Macromol Biosci 2004; 4: 811–819.

* Ural E, Kesenci K, Fambri L, Migliaresi C, Piskin E. Poly(D,L-lactide/ε-caprolactone)/

hydroxyapatite composites as bone filler: Preparation and characterization. Biomaterials 2000; 21: 2147- 2154.

* Wang G, Yang H, Li M, Lu S, Chen X, Cai X. The use of silk fibroin/hydroxyapatite composite co- cultured with rabbit bone-marrow stromal cells in the healing of a segmental bone defect. J Bone Joint Surg Br 2010; 92: 320-325.

* Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties. Biomed Mater Eng 1998; 8: 1-9.

* We T, Ramakrishna S. A review on electrospinning design and nano fibre assemblies Nanotechnology 2006; 17: 89-106.

(15)

* Weigel JP. Innesti Ossei. In Bojrab M J. Le basi patogenetiche delle malattie chirurgiche nei piccoli animali. Giraldi Editore I ed. it. Vol. II, 2001; 97: 901-909

* Westerhuis RJ, Van Bezooijen RL, Kloen P. Use of bone morphogenetic proteins in traumatology. Injury; 36 (12): 1405-12. Epub. 2005.

* Wheeler DL, Chamberland DL, Schmitt JM, Buck DC, Brekke JH, Hollinger JO, Joh SP, Suh KW. Radiomorphometry and biomechanical assessment of recombinant human bone morphogenetic protein 2 and polymer in rabbit radius ostectomy model. J Biomed Mater Res 1998; 43: 365-373.

* Wiedel JD. Salvage of infected total knee fusion: the last option. Clin Orthop 2002; 404:

139-142.

* Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 2000; 276: 461-465.

* Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak M. Gene expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 2001; 55: 151-157.

* Yannas IV. Natural materials. In: Ratner BD, HoffmanAS, Schoen FJ, Lemons JE (eds).

Biomaterials Science. An introduction to materials in medicine. California, USA:

Academic Press 1996; 84- 94.

* Zerwekh JE, Kourosh S, Scheinberg R, Kitano T, Edwards ML, Shin D, Selby DK.

Fibrillar collagenbiphasic calcium phosphate composite as a bone graft substitute for spinal fusion. J Orthop Res 1992; 10: 562-572.

http://www.noc.nhs.uk/limbreconstruction/documents/articlewrittenbyrebeccalittlewood workexp.pdf (accessed April 19/2012)

Riferimenti

Documenti correlati

This heuristic is admissible, thus pre- serving the optimality properties of the planning algorithm, and it depends only on the database of motion primitives, being applicable

Armadillo officinalis, is a xeric woodlouse (Isopoda, Oniscidea) that can produce vibrations, audible even by the human ear, by means of a ledge of scales situated on the propodus

Figure 6: While standard test set validation usually favours over-fitted nonlinear PCA models, model validation based on the correctness of missing data estimation provides a

This mutation reveals that Pinot gris and Pinot blanc arose independently from the ancestral Pinot noir, suggesting a novel parallel evolutionary model. This proposed

Figura 13 – Qualità del tappeto erboso di Cynodon dactylon “Princess 77” ai diversi trattamenti nei plots irrigati all’80% di ET. Figura 14 – Qualità del tappeto

In practice, 1) we assumed that the probability distribution function PDF(β) follows a given functional form, whose average (< β >) and standard deviation (rms(β)) have to