• Non ci sono risultati.

PolarizationBasics•The equationsrepresenta pairof planewaves: the twocomponentsof the electricalfieldof anEM wavepropagatingin the z direction, notnecessarilymonochromatic.•The amplitudes

N/A
N/A
Protected

Academic year: 2021

Condividi "PolarizationBasics•The equationsrepresenta pairof planewaves: the twocomponentsof the electricalfieldof anEM wavepropagatingin the z direction, notnecessarilymonochromatic.•The amplitudes"

Copied!
15
0
0

Testo completo

(1)

Polarization Basics

• The equations

represent a pair of plane waves: the two components of the electrical field of an EM wave propagating in the z direction, not necessarily monochromatic.

• The amplitudes Eox,y(t) and phasesδx,y(t) fluctuate slowly with respect to the rapid oscillation of the carrier cos(ωt).

⎩⎨

+

=

+

=

)]

( cos[

) ( ) (

)]

( cos[

) ( ) (

t t t E t E

t t t E t E

y oy

y

x ox

x

δ ω

δ ω

z Ex

Ey E

Polarization Basics

If we eliminate the term cos(ωt) between the two equations, and defineδ(t)= δy(t)-δx(t), we find the polarization ellipse (valid in general at a given time), which is the locus of points described by the optical field as it propagates:

⎩⎨

+

=

+

=

)]

( cos[

) ( ) (

)]

( cos[

) ( ) (

t t t E t E

t t t E t E

y oy

y

x ox

x

δ ω

δ ω

) ( sin ) ( )cos ( ) (

) ( ) ( 2 ) (

) ( ) (

)

( 2

2 2

2 2

t t t

E t E

t E t E t E

t E t E

t E

oy oy

y x oy

y ox

x + −

δ

=

δ

fast fast fast

slow slow slow

slow slow

t ) ( ) ( ) (t E t E t

E x y

r r

r = +

z Ex

Ey E

Polarization Basics

• For purely monochromatic waves, amplitudes and phases must be constant with time:

And the polarization ellipse is also constant:

⎩⎨

+

=

+

=

] cos[

) (

] cos[

) (

y oy

y

x ox

x

t E t E

t E t E

δ ω

δ ω

δ

δ

2

2 2

2 2

sin )cos ( ) ( 2 ) ) (

( + − =

oy ox

y x oy y ox x

E E

t E t E E

t E E

t E

fast fast fast

t ) ( ) ( ) (t E t E t

E x y

r r

r = +

z Ex

Ey E

Polarization Basics

• In general a beam of light is “elliptically polarized”.

• The polarization ellipse degenerates to special forms for special values of the amplitudes and of the phases.

• Linear polarized waves: when the ellipse collapses to a line, i.e. whenδ=0,π. The direction of the E vector remains constant.

• Circularily polarized waves: when the ellipse reduces to a circle, i.e. when δ=π/2, 3π/2 and Eox=Eoy=Eo.

E x y

E x y

E x y

Polarization Basics

• The polarization ellipse is specified by the amplitude parameters Eox,Eoy,δ.

• But it can be expressed equivalently by the elliptical parameters:

• Orientation angleψ:

• Ellipticity angle χ :

• For linearly polarized light χ=0.

ψ b a

x y’

x’

y

2 2

cos 2 2

tan

oy ox

oy ox

E E

E E

= δ

ψ

a

±b χ= tan

2 2

sin 2 2

sin

oy ox

oy ox

E E

E E

= + δ

χ

Stokes Parameters

• Our detectors are too slow to follow the time evolution of the EM field. What we can measure are time averages, over periods much longer than 2π/ω.

• Due to the periodicity of the EM waves, it is enough to compute time averages over a single period of oscillation. These are represented by the symbol <…>.

• So we take the time average of the polarization ellipse:

δ

δ

2

2 2

2 2

sin ) cos ( ) ( 2 ) ( )

( + − =

oy ox

y x oy y ox x

E E

t E t E E

t E E

t E

(2)

Stokes Parameters

• Multiplying by 4Eox2Eoy2we find

• Since Ex(t) and Ey(t) are sine waves, we can compute their time averages and substitute above:

• Since we want to express this in terms of intensities, we can add and subtract Eox4+Eoy4:

2 2

2 2

2

) sin 2 ( cos ) ( ) ( 2 8

) ( 4 ) ( 4

δ

δ

ox oy

y x oy ox

y ox x

oy

E E t

E t E E E

t E E t E E

=

+ +

2 2

2 2 2 2

) sin 2 ( ) cos 2

( 2 2

δ

δ

ox oy

oy ox

oy ox ox oy

E E E

E

E E E E

=

+ +

Stokes Parameters

• We find

• We define the Stokes Parameters:

• so that our equation reduces to

2 2

2 2 2 2 2 2

) sin 2 ( ) cos 2 (

) ( ) (

δ

δ

ox oy

oy ox

oy ox ox oy

E E E

E

E E E E

=

+

− +

δ δ sin 2

cos 2

3 2

2 2 1

2 2

oy ox

oy ox

oy ox

ox oy o

E E S

E E S

E E S

E E S

=

=

= +

=

2 3 2 2 2 1

2 S S S

So

= + +

Stokes Parameters

• If light is not purely monochromatic, the amplitudes and phases fluctuate with time.

• It can be shown that, in general,

• The = sign is valid for fully polarized light, while the > sign is valid for partially polarized or unpolarized light. P=degree of polarization:

• The intensity is related to So:

• The orientation of the polarization ellipse is related to S1and S2:

• The ellipticity of the polarization ellipse is related to S3:

2 3 2 2 2 1

2 S S S

So≥ + +

1 2 2 2

cos 2 2

tan S

S E E

E E

oy ox

oy

ox =

= δ

ψ

o oy ox

oy ox

S S E E

E

E 3

2 2

sin 2 2

sin =

= + δ

χ

δ δ sin 2

cos 2

3 2

2 2 1

2 2

oy ox

oy ox

oy ox

ox oy o

E E S

E E S

E E S

E E S

=

=

= +

=

2 2

ox oy

o E E

S = +

1 0

2 3 2 2 2 1

+

= +

=

P S

S S S I P I

o total

pol

Stokes Parameters

• Note that, for linear polarized light (δ=0), both parameters S1 and S2represent the difference in intensity carried by two orthogonal components:

• S1is the difference in intensity between the components along axis x and y

• S2is the difference in intensity between the components along two axisx’and y’rotated 45o with respect to x and y.

x y

x y

y’

x’

2 2

1 Ex Ey

S = −

2 ' 2

' ' ' ' '

2 2

1 2 1 2 1 2

2 1

2ExEy Ex Ey Ex Ey Ex Ey

S = −

⎥⎦⎤

⎢⎣⎡ +

⎥⎦⎤

⎢⎣⎡ −

=

=

Ex

Ey

Ex’

Ey’ 45o

Stokes Parameters: examples

• Unpolarized light:

δ=random

<Eox2>=<Eoy2>=Io

• Linearly polarized light:

– Horizontal(Eoy=0) Vertical (Eox=0) +45o (Eoy= Eoy; δ= 0) θo

• Circular polarized light:

Left Right

δ δ sin 2

cos 2

3 2

2 2 1

2 2

oy ox

oy ox

oy ox

ox oy o

E E S

E E S

E E S

E E S

=

=

= +

=

⎟⎟

⎜⎜

= 0 0 0 1 2Io Sr

⎟⎟

⎜⎜

= 0 0 1 1

Io

Sr

⎟⎟

⎜⎜

= 0 0 1 1

Io

Sr

⎟⎟

⎜⎜

= 0 1 0 1

Io

Sr

⎟⎟

⎜⎜

= 0

2 sin

2 cos

1

θ θ Io

Sr

⎟⎟

⎜⎜

= 1 0 0 1

Io

Sr

⎟⎟

⎜⎜

= 1 0 0 1

Io

Sr

Stokes Parameters

• The waves can be represented as complex functions:

• This helps in the time-averaging process needed to compute the Stokes Parameters. They can be rewritten as follows (Stokes vector):

⎟⎟

⎟⎟

⎜⎜

⎜⎜

− +

=

⎟⎟

⎟⎟

⎜⎜

⎜⎜

− +

− +

=

⎟⎟

⎟⎟

⎜⎜

⎜⎜

δ δ sin 2

cos 2 ) (

2 2

2 2

*

*

*

*

*

*

*

*

3 2 1

oy ox

oy ox

oy ox

oy ox

x y y x

x y y x

y y x x

y y x x o

E E

E E

E E

E E

E E E E i

E E E E

E E E E

E E E E

S S S S

⎩⎨

+

= +

=

+

= +

=

)]

( exp[

] cos[

) (

)]

( exp[

] cos[

) (

y oy

y oy

y

x ox

x ox

x

t i E t E t E

t i E t E t E

δ ω δ

ω

δ ω δ

ω

(3)

Stokes Parameters

• The Stokes vector can also be expressed in terms of So, ψ, χ.

• From

• And from

• Using

we find S1, so we have:

⎟⎟

⎟⎟

⎜⎜

⎜⎜

=

⎟⎟

⎟⎟

⎜⎜

⎜⎜

χ ψ χ

ψ χ

2 sin

2 sin 2 cos

2 cos 2 cos

1

3 2 1

o o

S S S S S

δ ψ

ψ 2 cos we can write tan2 2

tan 2 2 S2 S1

E E

E E

oy ox

oy

ox =

= −

δ χ

χ 2 sin we can write sin2 2

sin 2 2 3 o

oy ox

oy

ox S S

E E

E

E =

= +

2 3 2 2 2 1

2 S S S

So = + +

Poincare’

Classical measurement of the Stokes Parameters

• The measurement of the 4 Stokes Parameters needs two optical components:

– A retarder (wave plate): it is a phase-shifting element, whose effect is to advance the phase of the x component byφ/2and to retard the phase of the y component by -φ/2. So the field emerging from the retarder is E’x= Exei φ/2and E’y= Eye-i φ/2 – A polarizer. The optical field can pass only along one axis, the

transmission axis. So the total field emerging from the polarizer is E”=E’xcosθ+E’ysinθ, where E’ is the incident field and θ is the angle of the transmission axis.

• So the beam arriving on the detector is E”=Ex ei φ/2cosθ+Eye-i φ/2sinθ

φ θ

source retarder polarizer

detector

Classical measurement of the Stokes Parameters

• E”=Ex ei φ/2cosθ+Eye-i φ/2sinθ

• The detector measures its intensity, i.e. I= E”E”*

• So we get

• Which can be rewritten using the half-angle formulas:

φ θ

source retarder polarizer

detector

θ θ θ

θ

θ θ

φ ϑ

φ

φsin cos sin cos

sin cos

) , (

*

*

2

* 2

*

i y x i

y x

y y x x

e E E e

E E

E E E E I

+ +

+ +

=

( ) ( )

( ) ( )

+ +

+

+

= +

θ φ θ

φ φ θ

ϑ cos sin2 sin sin2

2 cos )

,

( * * * *

*

*

*

* 2 1

x y y x x

y y x

y y x x y y x x

E E E E i E

E E E

E E E E E E E E I

2 2 sin 2

2 cos 1 2 2

2 cos 1

2 sin sin cos

cosθ=+ θ θ= θ θ θ= θ

[

θ φ θ φ θ

]

φ

ϑ, ) cos2 cos sin2 sin sin2

( 21S S1 S2 S3

I = o+ + +

Classical measurement of the Stokes Parameters

• This is the formula derived in 1852 by Sir George Gabriel Stokes.

• The first three parameters can be measured by removing the retarder (φ=0) and measuring the intensity with three orientations of the polarizerθ=0o,45o,90o:

• The fourth parameter can be measured by inserting a 90oretarder (quarter wave plate):

φ θ

source retarder polarizer

detector

[

θ φ θ φ θ

]

φ

ϑ, ) cos2 cos sin2 sin sin2

( 2 1 2 3

1S S S S

I = o+ + +

[ ]

[ ]

[ ]

[ ]

⎪⎪

⎪⎪

+

=

= +

= +

=

2 3 1 2 1 1 2 2 1 2 1 1

) 90 , 45 (

) 0 , 90 (

) 0 , 45 (

) 0 , 0 (

S S I

S S I

S S I

S S I

o o o

o o o

o o o

o o o

⎪⎪

⎪⎪

=

=

= +

=

) 0 , 90 ( ) 0 , 0 ( ) 90 , 45 ( 2

) 0 , 90 ( ) 0 , 0 ( ) 0 , 45 ( 2

) 0 , 90 ( ) 0 , 0 (

) 0 , 90 ( ) 0 , 0 (

3 2

1

o o o o o o

o o o o o o

o o o o

o o o o o

I I I

S

I I I S

I I S

I I S

Classical measurement of the Stokes Parameters

• The great advantage of the Stokes Parameters is that they are observable. The polarization ellipse is not (too fast).

• Moreover, the Stokes parameters can be used to describe unpolarized light: light which is not affected by the rotation of a polarizer or by the presence of a retarder. Stokes was the first one to describe mathematically unpolarized and partially polarized light.

• It is evident from Stokes formula that, for unpolarized light, S1=S2=S3=0, while So>0.

• The fully polarized light had

• The intermediate state is partially polarized light, where

φ θ

source retarder polarizer

detector

[

θ φ θ φ θ

]

φ

ϑ, ) cos2 cos sin2 sin sin2

( 2 1 2 3

1S S S S

I = o+ + +

2 3 2 2 2 1

2 S S S

So= + +

2 3 2 2 2 1

2 S S S

So≥ + +

Partially polarized light

• The Stokes parameters of a combination of independent waves are the sums of the respective Stokes parameters of the separate waves.

• If we combine a fully polarized wave with an

independent, unpolarized one, we find partially polarized light.

• This expression will be useful in the following.

1 0

2 3 2 2 2

1+ + ≤ ≤

=

= P

S S S S I P I

o total

pol

⎟⎟

⎜⎜

+

⎟⎟

⎜⎜

=

⎟⎟

⎜⎜

=

3 2 1

3 2 1

0 0 ) 0 1 (

S S S S P S P S S S S S

o o o

(4)

Polarization-active optical components

• When a beam of light interacts with matter its polarization state is almost always changed.

• It can be changed by

– changing the amplitudes – changing the phases – changing the directions

of the orthogonal field components.

• Their effect can be described by means of the Mueller matrices: M is a 4x4 matrix such that the emerging Stokes vector is S’=M S .

Polarizer (Diattenuator) Rotator

Wave-plate (Retarder)

1) Polarizer or Diattenuator

• It attenuates the orthogonal components of an optical beam unequally:

• Using the definitions of S and S’

• And inserting the expressions for E’

we get

⎪⎩

⎪⎨

=

=

y y y

x x x

E p E

E p E

' '

+

+

=

) ( ' '* ' '*

'*

' '*

' '*

' '*

' '*

' '*

'

' 3 ' 2 ' 1 '

x y y x

x y y x

y y x x

y y x x o

E E E E i

E E E E

E E E E

E E E E

S S S S

+

+

=

⎟⎟

⎜⎜

)

( * *

*

*

*

*

*

*

3 2 1

x y y x

x y y x

y y x x

y y x x o

E E E E i

E E E E

E E E E

E E E E

S S S S

⎟⎟

⎜⎜

+

+

=

3 2 1 2

2 2 2

2 2 2 2

' 3 ' 2 ' 1 '

2 0 0 0

0 2 0 0

0 0

0 0

2 1

S S S S

p p p p p p p p

p p p p

S S S

S o

y x y x y x y x

y x y x o

Special cases

• If the diattenuator is simply an attenuator, i.e. if px=py=p we have a neutral density filter:

• If the Polarizer is ideal and horizontal, i.e. if py=0 we have

• If the Polarizer is ideal and vertical, i.e.

if px=0 we have

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

3 2 1 2

' 3 ' 2 ' 1 '

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

S S S S

p

S S S

So o

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

3 2 1 2

' 3 ' 2 ' 1 '

0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1

2

S S S S p

S S S

S o

x o

⎟⎟

⎜⎜

+

+

=

3 2 1 2

2 2 2

2 2 2 2

' 3 ' 2 ' 1 '

2 0 0 0

0 2 0 0

0 0

0 0

2 1

S S S S

p p p p p p p p

p p p p

S S S

S o

y x y x y x y x

y x y o x

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

3 2 1 2

' 3 ' 2 ' 1 '

0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1

2

S S S S p

S S S

S o

y o

Polarizer:

• The characteristics of the polarizer pxand py can be rewritten in terms of new parameters p and α:

• With these parameters the Mueller matrix of a polarizer is:

• An ideal polarizer converts any incoming beam into a linearly polarized beam:

+

+

=

y x y x y x y x

y x y x

P

p p p p p p p p

p p p p M

2 0 0 0

0 2 0 0

0 0

0 0

2

1 2 2 2 2

2 2 2 2

sin cos

⎪⎩

⎪⎨

=

= α α p p

p p

ydef xdef

⎟⎟

⎜⎜

=

α α α

α

2 sin 0 0 0

0 2 sin 0 0

0 0 1 2 cos

0 0 2 cos 1

2 p2

MP

( )

⎟⎟

⎜⎜

± ±

=

⎟⎟

⎜⎜

⎟⎟

⎜⎜

±

±

=

0 0 1 1

2 1

0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1

2 1

1

3 2 1

' 3 ' 2 ' 1 '

S S S S S S

S S S S

o o o

2) Retarder

• It introduces a phase shift between the orthogonal components of an optical beam :

• Using the definitions of S and S’

• And inserting the expressions for E’

we get

⎪⎩

⎪⎨

=

=

+

) ( ) (

) ( ) (

2 / '

2 / '

t E e t E

t E e t E

y i y

x i x

ϕ ϕ

+

+

=

) ( ' '* ' '*

'*

' '*

' '*

' '*

' '*

' '*

'

' 3 ' 2 ' 1 '

x y y x

x y y x

y y x x

y y x x o

E E E E i

E E E E

E E E E

E E E E

S S S S

+

+

=

⎟⎟

⎜⎜

)

( * *

*

*

*

*

*

*

3 2 1

x y y x

x y y x

y y x x

y y x o x

E E E E i

E E E E

E E E E

E E E E

S S S S

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

3 2 1

' 3 ' 2 ' 1 '

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

S S S S

S S S

So o

ϕ ϕ

ϕ ϕ

Special cases

• If the retarder is a quarter- wave plate (φ=90o):

• Such a retarder converts a +45olinearly polarized beam into a right/left circularly polarized beam:

• If the retarder is a half-wave plate (φ=180o):

• This reverses the ellipticity and orientation of the incomin polarization state.

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

3 2 1

' 3 ' 2 ' 1 '

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

S S S S

S S S

So o

ϕ ϕ

ϕ ϕ

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

3 2 1

' 3 ' 2 ' 1 '

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

S S S S

S S S

So o

⎟⎟

⎜⎜

⎟⎟±

⎜⎜

=

⎟⎟

⎜⎜

± 0

1 0 1

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1 0 0 1

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

3 2 1

' 3 ' 2 ' 1 '

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

S S S S

S S S

So o

Riferimenti

Documenti correlati

Here, by combining functional calcium imaging with time-frequency analysis, we have been able to monitor the oscillatory components of neural activity upon olfactory stimulation..

cells of DM and sarcopenic muscles exhibit a massive nuclear reorganization of the RNP-containing domains where the mol- ecular factors responsible for pre-mRNA transcription

Magnetic resonance imaging (MRI) and MR-cholangiography showed the presence of numerous small (&lt;1.0–1.5-cm diameter) liver lesions hypointense on T1-weighted scans and

First results of a long-term cultivation experiment of different species of Nummulitidae (Foraminifera) from the island of Sesoko (Okinawa,

Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions.. Nirenberg, Estimates near the boundary

We discuss the role of the Uð1Þ axial symmetry for the scalar and pseudoscalar meson mass spectrum of QCD at finite temperature, above the chiral transition at T c , using a

While recognizing that in the prevailing view voting choice should be deterministically produced as a result of the individual’s calculus of voting propensities (and hence a model

Volendo trarre le fila da quanto messo in evidenza nei paragrafi precedenti, si può dunque sostenere che tanto la qualificazione del trust come diritto reale,