• Non ci sono risultati.

SUPERNOVA EXPLOSIONS :

N/A
N/A
Protected

Academic year: 2021

Condividi "SUPERNOVA EXPLOSIONS :"

Copied!
40
0
0

Testo completo

(1)

SUPERNOVA EXPLOSIONS :

the best Candidate for the Source of the GALACTIC COSMIC RAYS:

[1.] Energy Balance Considerations

[2.] Spectrum Shape

(2)

Energia in RAGGI COSMICI

Condizione di Stazionarieta' T(Galaxy) years

T(cr) years

Potenza Necessaria per rinnovare la Popolazione di Raggi Cosmici

Potenza-In = Potenza-Out

(3)

Potenza-Out = Energia -Raggi Cosmici Tempo di Confinamento

= Energy density *Volume Tempo di

Confinamento

(4)

Energy Density of Cosmic Rays

(5)
(6)
(7)
(8)

Energy Balance 

SuperNova possible Contribution

(9)
(10)

MAXIMUM ENERGY

of the ACCELERATION

Two conditions :

The accelerated Particle must Remain confined in the Accelerator

The lifetime of the accelerator must be

sufficiently long to have time to accelerate

up to the highest energy.

(11)

Magnetic Confinement

(12)
(13)

Condition of the Acceleration Time

Need to compute the lifetime of the accelerator

The “Acceleration Rate”

Lifetime of a SuperNova Remnant:

The “sweeped mass” is of the same order of the ejected mass.

(14)
(15)
(16)
(17)

v1/v2~4

(18)

Bohm diffusion in magnetic field

(19)

E

vshocktacc=R

(20)
(21)

Estimate for SuperNovae

What is this Energy ? The “Knee” ?

(22)

What Sources can produce the Highest energy Cosmic Rays ?

Condition on :

Size * Magnetic Field

“HILLAS PLOT”

(23)

“HILLAS PLOT”

SNR p 100 EeV

(24)
(25)

RADIATION PROCESSES

from

COSMIC RAY SOURCES

(26)

e± p

Astrophysical  Object containing:

Populations of

relativistic  protons, Nuclei electrons/positrons 

Emission  of: 

rays

Neutrinos Cosmic Rays

Cosmic Ray Sources

Emissions of High energy:

Photons Neutrinos

(27)

Power Law

Energy Spectrum of protons

(28)

Processes involving Protons

Photons

Neutrinos

(29)

Photon Emission

Number of photons

emitted per unit time and unit energy.

Intermediate Step: Production Rate of

the parent particles 0

Hadronic Cross section:

(30)
(31)

Two different Energies (100, 175 GeV)

(32)

Feynman Scaling

(Approximate Validity) Important consequence

(33)
(34)

Result:

If the primary Particle spectrum is a power Law of “slope” alpha:

The Inclusive hadronic Cross sections are Feynman scaling:

The secondary Particle spectrum is again a power law spectrum with the same slope:

The proportionality coefficient is a “Z-factor”

(35)

Energy Spectra of Final Particles

in DECAY

(36)
(37)
(38)
(39)
(40)

Riferimenti

Documenti correlati

Scaffalature, scaffalature, scaffalature, guardatele, figlie, sorelle e cugine mie, come mi piacerebbe essere un robot con il cazzo di ferro per sverginarle tutte, che

Dal punto di vista normativo questo interesse ha portato già nel 1979 all’adozione da parte dell’Assemblea Gene- rale delle Nazioni Unite della Convenzione per l’eliminazione

È stata sviluppata una tecnica di facile applicazione che consente al viticoltore di valutare direttamente i suoi comportamenti nei confronti del mantenimento della

Moreover, following the recent satellite and balloon data, the p spectrum seems to steepen at these energies with respect to the spectrum of the heavier nuclei (including a) [51].

Moreover, new results coming from very high energy γ-ray experiments have shown the richness — and its potential increase — of the sky at those energies having detected more than

We consider three models: (A) the growth of ψ is considered, (B) the diffusion coefficient is fixed at the Bohm values regardless of time and position, and (C) the wave energy

Air shower simulation does not well reproduce, off-core, ground level excess of charged particles:. electrons

#  The key concept underlying the GALPROP code is that various kinds of data, e.g., direct CR measurements including primary and secondary nuclei, electrons and positrons,