• Non ci sono risultati.

Liouville properties of fully nonlinear elliptic operators and some applications

N/A
N/A
Protected

Academic year: 2021

Condividi "Liouville properties of fully nonlinear elliptic operators and some applications"

Copied!
38
0
0

Testo completo

(1)

Liouville properties

of fully nonlinear elliptic operators and some applications

Martino Bardi and Annalisa Cesaroni

Department of Mathematics University of Padua, Italy

"New Trends in nonlinear PDEs: from theory to applications."

School of Mathematics, Cardiff

June 20-24, 2016

(2)

Liouville properties

Fully nonlinear (degenerate) elliptic equations in R

N

(E) F (x , u, Du, D

2

u) = 0 in R

N

. Questions:

are subsolutions bounded from above constant?

are supersolutions bounded from below constant?

N.B.: different from the same question for solutions, which follows from

Harnack inequality.

(3)

Outline

Liouville properties for

1

Hamilton-Jacobi-Bellman operators

2

quasilinear hypoelliptic operators

3

fully nonlinear uniformly elliptic operators (via comparison with Pucci)

Application 1 : large-time stabilization in parabolic equations u

t

+ F (x , Du, D

2

u) = 0 in (0, +∞) × R

N

. Application 2 - Ergodic HJB equation, i.e., critical value of the operator F :

F (x , Dχ, D

2

χ) = c + growth at ∞ of χ.

in the unknowns (c, χ).

(4)

Liouville for subsolutions: some known results

F = −∆u Liouville for subsols. ⇐⇒ N ≤ 2;

Cutrì - Leoni (2000): F = ˜ F (x , D

2

u) + h(x )u

p

, ˜ F uniformly elliptic, via Hadamard-type theorems

Capuzzo Dolcetta - Cutrì (2003):

F = ˜ F (x , D

2

u) + g(|x |)|Du| + h(x )u

p

with g "small at ∞"

Chen - Felmer (2013): similar smallness conditions on the terms in Du

for subelliptic operators: Capuzzo Dolcetta - Cutrì (1997), Bonfiglioli-Lanconelli-Uguzzoni (book 2007),

Kogoj - Lanconelli (2009, 2015), ....

Our goal: use the terms with Du as "good terms".

(5)

Liouville for subsolutions: some known results

F = −∆u Liouville for subsols. ⇐⇒ N ≤ 2;

Cutrì - Leoni (2000): F = ˜ F (x , D

2

u) + h(x )u

p

, ˜ F uniformly elliptic, via Hadamard-type theorems

Capuzzo Dolcetta - Cutrì (2003):

F = ˜ F (x , D

2

u) + g(|x |)|Du| + h(x )u

p

with g "small at ∞"

Chen - Felmer (2013): similar smallness conditions on the terms in Du

for subelliptic operators: Capuzzo Dolcetta - Cutrì (1997), Bonfiglioli-Lanconelli-Uguzzoni (book 2007),

Kogoj - Lanconelli (2009, 2015), ....

Our goal: use the terms with Du as "good terms".

(6)

Liouville for subsolutions: some known results

F = −∆u Liouville for subsols. ⇐⇒ N ≤ 2;

Cutrì - Leoni (2000): F = ˜ F (x , D

2

u) + h(x )u

p

, ˜ F uniformly elliptic, via Hadamard-type theorems

Capuzzo Dolcetta - Cutrì (2003):

F = ˜ F (x , D

2

u) + g(|x |)|Du| + h(x )u

p

with g "small at ∞"

Chen - Felmer (2013): similar smallness conditions on the terms in Du

for subelliptic operators: Capuzzo Dolcetta - Cutrì (1997), Bonfiglioli-Lanconelli-Uguzzoni (book 2007),

Kogoj - Lanconelli (2009, 2015), ....

Our goal: use the terms with Du as "good terms".

(7)

Liouville for subsolutions: some known results

F = −∆u Liouville for subsols. ⇐⇒ N ≤ 2;

Cutrì - Leoni (2000): F = ˜ F (x , D

2

u) + h(x )u

p

, ˜ F uniformly elliptic, via Hadamard-type theorems

Capuzzo Dolcetta - Cutrì (2003):

F = ˜ F (x , D

2

u) + g(|x |)|Du| + h(x )u

p

with g "small at ∞"

Chen - Felmer (2013): similar smallness conditions on the terms in Du

for subelliptic operators: Capuzzo Dolcetta - Cutrì (1997), Bonfiglioli-Lanconelli-Uguzzoni (book 2007),

Kogoj - Lanconelli (2009, 2015), ....

Our goal: use the terms with Du as "good terms".

(8)

Liouville for subsolutions: some known results

F = −∆u Liouville for subsols. ⇐⇒ N ≤ 2;

Cutrì - Leoni (2000): F = ˜ F (x , D

2

u) + h(x )u

p

, ˜ F uniformly elliptic, via Hadamard-type theorems

Capuzzo Dolcetta - Cutrì (2003):

F = ˜ F (x , D

2

u) + g(|x |)|Du| + h(x )u

p

with g "small at ∞"

Chen - Felmer (2013): similar smallness conditions on the terms in Du

for subelliptic operators: Capuzzo Dolcetta - Cutrì (1997), Bonfiglioli-Lanconelli-Uguzzoni (book 2007),

Kogoj - Lanconelli (2009, 2015), ....

Our goal: use the terms with Du as "good terms".

(9)

Liouville for HJB operators: abstract assumptions

L

α

u := tr (a(x , α)D

2

u) + b(x , α) · Du Concave H-J-B operator

G[u] := inf

α∈A

{−L

α

u + c(x , α)u}

with coefficients a, b, c continuous in x uniformly in α ∈ A, A a metric space. Assume

1

Comparison Principle in bounded open sets Ω: u, v sub- and supersolutions of G[u] = 0 in Ω, u ≤ v on ∂Ω, =⇒ u ≤ v in Ω;

2

Strong Maximum Principle: G[u] ≤ 0 in Ω and ∃ x

o

such that u(x

o

) = max

u =⇒ u is constant.

3

there exist Lyapunov function: ∃ R

o

≥ 0 , w ∈ LSC(R

N

) s. t.

G[w ] ≥ 0 for |x| > R

o

, lim

|x|→∞

w (x ) = +∞.

(10)

Liouville for HJB operators: abstract assumptions

L

α

u := tr (a(x , α)D

2

u) + b(x , α) · Du Concave H-J-B operator

G[u] := inf

α∈A

{−L

α

u + c(x , α)u}

with coefficients a, b, c continuous in x uniformly in α ∈ A, A a metric space. Assume

1

Comparison Principle in bounded open sets Ω: u, v sub- and supersolutions of G[u] = 0 in Ω, u ≤ v on ∂Ω, =⇒ u ≤ v in Ω;

2

Strong Maximum Principle: G[u] ≤ 0 in Ω and ∃ x

o

such that u(x

o

) = max

u =⇒ u is constant.

3

there exist Lyapunov function: ∃ R

o

≥ 0 , w ∈ LSC(R

N

) s. t.

G[w ] ≥ 0 for |x| > R

o

, lim

|x|→∞

w (x ) = +∞.

(11)

Theorem 1

Assume (1), (2) and (3), u ∈ USC(R

N

) satisfies G[u] ≤ 0 in R

N

,

(G) lim sup

|x|→∞

u(x ) w (x ) ≤ 0,

and either u ≥ 0 or c(x , α) ≡ 0 =⇒ u is constant.

Rmk.: (G) is satisfied if u is bounded above.

Sketch of proof: assume c(x , α) ≡ 0.

Step 1: η > 0 u

η

(x ) := u(x ) − ηw (x ) , C

η

:= max

|x|≤Ro

u

η

(x ).

=⇒ lim

|x|→∞

u

η

(x ) = −∞ and ∃ M such that

u

η

(x ) ≤ C

η

∀ |x| ≥ M.

(12)

Step 2: G[w ] ≥ 0 =⇒ −L

α

w ≥ 0 ∀α, |x| > R

o

, thus G[u

η

] = inf

α∈A

{−L

α

u + ηL

α

w }≤ inf

α∈A

{−L

α

u} = G[u]≤ 0, |x | > R

o

. Step 3: Comparison Principle in Ω = {R

o

< |x | < M} with C

η

: G[C

η

] = 0 ⇒ u

η

(x ) ≤ C

η

in Ω ⇒ u

η

(x ) ≤ C

η

∀ |x| ≥ R

o

. As η → 0+ =⇒ u(x ) ≤ max

|x|≤Ro

u(x ) ∀ x

=⇒ u attains its maximum over R

N

.

Step 4: Strong Maximum Principle =⇒ u is constant.

(13)

Step 2: G[w ] ≥ 0 =⇒ −L

α

w ≥ 0 ∀α, |x| > R

o

, thus G[u

η

] = inf

α∈A

{−L

α

u + ηL

α

w }≤ inf

α∈A

{−L

α

u} = G[u]≤ 0, |x | > R

o

. Step 3: Comparison Principle in Ω = {R

o

< |x | < M} with C

η

: G[C

η

] = 0 ⇒ u

η

(x ) ≤ C

η

in Ω ⇒ u

η

(x ) ≤ C

η

∀ |x| ≥ R

o

. As η → 0+ =⇒ u(x ) ≤ max

|x|≤Ro

u(x ) ∀ x

=⇒ u attains its maximum over R

N

.

Step 4: Strong Maximum Principle =⇒ u is constant.

(14)

Step 2: G[w ] ≥ 0 =⇒ −L

α

w ≥ 0 ∀α, |x| > R

o

, thus G[u

η

] = inf

α∈A

{−L

α

u + ηL

α

w }≤ inf

α∈A

{−L

α

u} = G[u]≤ 0, |x | > R

o

. Step 3: Comparison Principle in Ω = {R

o

< |x | < M} with C

η

: G[C

η

] = 0 ⇒ u

η

(x ) ≤ C

η

in Ω ⇒ u

η

(x ) ≤ C

η

∀ |x| ≥ R

o

. As η → 0+ =⇒ u(x ) ≤ max

|x|≤Ro

u(x ) ∀ x

=⇒ u attains its maximum over R

N

.

Step 4: Strong Maximum Principle =⇒ u is constant.

(15)

HJB: explicit sufficient conditions

(a) a = σσ

T

(x , α) and

∀R > 0 ∃K

R

: sup

|x|≤R

(|σ| + |b| + |c|) ≤ K

R

,

sup

|x|,|y |≤R,α∈A

(|σ(x , α) − σ(y , α)| + |b(x , α) − b(y , α)|) ≤ K

R

|x − y |;

(b) c(x , α)≥ 0, c continuous in x uniformly in |x | ≤ R, α ∈ A;

(c) ξ

T

a(x , α)ξ≥ |ξ|

2

/K

R

∀ξ ∈ R

N

, |x | ≤ R, α ∈ A.

(d) sup

α∈A

(tr a(x , α) + b(x , α) · x − c(x , α)|x |

2

/2) ≤ 0 for |x | ≥ R

o

.

(a), (b), (c) =⇒ Comparison Principle on bounded sets and Strong

Maximum Principle.

(16)

HJB: Liouville for subquadratic subsolutions

Corollary

Assume L

α

satisfy (a), (b), (c), (d), u ∈ USC(R

N

) satisfies G[u] ≤ 0 and

lim sup

|x|→+∞

u(x )

|x|

2

≤ 0.

Assume either u ≥ 0 or c(x , α) ≡ 0 , then u is a constant.

Proof.

Take the Lyapunov function w (x ) = |x |

2

/2. Since L

α

w = tr a(x , α) + b(x , α) · x

(d) implies G[w ] = inf

α∈A

{−L

α

w + c(x , α)|x |

2

/2}≥ 0 for |x | ≥ R

o

. 

(17)

Example

(d) is satisfied ∀ c ≥ 0 if

a = o(|x |

2

) as |x | → ∞

and the drift b is a controlled perturbation of a mean reverting drift of Ornstein-Uhlenbeck type:

b(x , α) = γ(m − x) + ˜ b(x , α), lim

x →∞

sup

α∈A

˜ b(x , α) · x

|x|

2

= 0

for some m ∈ R

N

, γ > 0.

(18)

Quasilinear hypoelliptic equations

Consider

(Q) −tr (σσ

T

(x )D

2

u) + inf

α∈A

{−b(x, α) · Du + c(x, α)u} = 0, in R

N

with σ, b, c loc. Lipschitx in x . Assume

∀ R > 0, either inf

|x|≤R,α∈A

c(x , α)> 0 or

∃i : inf

|x|≤R

inf

j=1,..,m

σ

ij2

(x ) > 0, (non-degeneracy in one direction)

=⇒ Comparison Principle on bounded sets [M.B. - P. Mannucci 2006]

the columns σ

j

of σ are smooth and rank Lie[σ

1

, .., σ

m

](x ) = N, ∀x

=⇒ Strong Maximum principle [M.B. - F. Da Lio 2003]

|σ(x)|

2

+ sup

α∈A

(b(x , α) · x − c(x , α)|x |

2

/2) ≤ 0, |x| ≥ R

o

which implies w (x ) = |x |

2

/2 is a Lyapunov function.

(19)

Liouville for subquadratic subsolutions of (Q)

Corollary

Under the assumptions on (Q), let u ∈ USC(R

N

) be a subsolution to (Q) ,

lim sup

|x|→+∞

u(x )

|x|

2

≤ 0, and either u ≥ 0 or c(x , α) ≡ 0,

Then u is a constant.

(20)

Uniformly elliptic operators

Pucci extremal operators, for 0 < λ ≤ Λ:

M

(X ) := inf{−tr(MX ) : M ∈ S

N

, λI ≤ M ≤ ΛI}

= −Λ X

ei>0

e

i

− λ X

ei<0

e

i

M

+

(X ) := sup{...same...} = −λ X

ei>0

e

i

− Λ X

ei<0

e

i

.

F is uniformly elliptic if there exist constants 0 < λ ≤ Λ such that λtr (Q) ≤ F (x , t, p, X ) − F (x , t, p, X + Q) ≤ Λtr (Q), for all x , p ∈ R

N

, t ∈ R, X , Q ∈ S

N

, Q ≥ 0, or equivalently

M

(X ) ≤ F (x , t, p, X ) − F (x , t, p, 0) ≤ M

+

(X ).

(21)

Liouville for Pucci + H

(P+H) M

(D

2

u) + inf

α∈A

{c(x, α)u − b(x, α) · Du} = 0 in R

N

Previous sufficient condition (w = |x |

2

/2):

sup

α∈A

(b(x , α) · x − c(x , α)|x |

2

/2) ≤ −NΛ for |x | ≥ R

o

. We improve it to

(P) sup

α∈A

(b(x , α) · x − c(x , α)|x |

2

log(|x |)) ≤ λ − (N − 1)Λ for |x | ≥ R

o

.

(P) , u subsolution to (P+H) , lim sup

|x|→+∞log |x |u(x )

≤ 0, either u ≥ 0 or c(x , α) ≡ 0 =⇒ u is a constant

Proof: w (x ) = log |x | =⇒ M

(D

2

w ) = (λ − (N − 1)Λ)/|x |

2

.

(22)

Liouville for uniformly elliptic operators

Corollary

F uniformly elliptic, F (x , t, p, 0) ≥ inf

α∈A

{c(x, α)t − b(x, α) · p} , b, c satisfy (P) , u subsolution to (E) , lim sup

|x|→+∞ log |x |u(x )

≤ 0, either u ≥ 0 or c(x , α) ≡ 0 =⇒ u is a constant.

Proof.

u satisfies M

(D

2

u)+ inf

α∈A

{c(x, α)u−b(x, α)·Du} ≤ F (x, u, Du, D

2

u) ≤ 0 in R

N

,

so we apply the result for (P+H). 

(23)

Remarks

Symmetric results hold for super solutions v ∈ LSC(R

N

) of (E) such that

lim inf

|x|→+∞

v (x ) log |x | ≥0 if F is uniformly elliptic and

F (x , t, p, 0) ≤ sup

α∈A

{c(x, α)t − b(x, α) · p}.

Example: Liouville holds for sub- and supersolutions of (E) if F = F (x , p, X ) is "almost 1-homogeneous" in p

(Fh) −b

1

(x ) · p − g

1

(x )|p| ≤ F (x, p, 0) ≤ −b

2

(x ) · p + g

2

(x )|p|

with g

i

≥ 0 bounded and locally Lipschitz, i = 1, 2, if

(P’) b

i

(x ) · x + g

i

(x )|x | ≤ λ − (N − 1)Λ for |x | ≥ R

o

, i = 1, 2.

(24)

Remarks

Symmetric results hold for super solutions v ∈ LSC(R

N

) of (E) such that

lim inf

|x|→+∞

v (x ) log |x | ≥0 if F is uniformly elliptic and

F (x , t, p, 0) ≤ sup

α∈A

{c(x, α)t − b(x, α) · p}.

Example: Liouville holds for sub- and supersolutions of (E) if F = F (x , p, X ) is "almost 1-homogeneous" in p

(Fh) −b

1

(x ) · p − g

1

(x )|p| ≤ F (x, p, 0) ≤ −b

2

(x ) · p + g

2

(x )|p|

with g

i

≥ 0 bounded and locally Lipschitz, i = 1, 2, if

(P’) b

i

(x ) · x + g

i

(x )|x | ≤ λ − (N − 1)Λ for |x | ≥ R

o

, i = 1, 2.

(25)

Application 1: parabolic equations

(CP)

u

t

+ F (x , Du, D

2

u) = 0 in (0, +∞) × R

N

u(0, x ) = h(x ) in R

n

,

with F uniformly elliptic, satisfying (Fh) , (P’) , and the standard assumptions for the Comparison Principle ("Lipschitz in x ") ,

h ∈ BUC(R

N

).

Proposition

There exist a unique solution u bounded and Hölder continuous in [0, +∞) × R

N

.

Proof based on viscosity methods, e.g. Perron, and Krylov-Safonov

estimates.

(26)

Large-time stabilization (in space)

Theorem

There exist constants u, u ∈ R such that

lim sup

t→+∞

u(t, x ) = u, lim inf

t→+∞

u(t, x ) = u, ∀ x ∈ R

N

. Idea of proof: the relaxed semi-limits

lim sup

t→+∞,y →x

u(t, y ), lim inf

t→+∞,y →x

u(t, y ) are sub- and supersolutions of (E).

In some cases (e.g., F , h periodic in x ) u = u and

lim

t→+∞

u(t, x ) =constant is locally uniform [Alvarez - M.B. 2010]

In general, for some (bounded) initial data h, u > u , even for

u

t

= u

xx

in dim. N = 1. [Eidelman-Kamin-Tedeev 2009,

Collet-Eckmann 1992]

(27)

Large-time stabilization (in space)

Theorem

There exist constants u, u ∈ R such that

lim sup

t→+∞

u(t, x ) = u, lim inf

t→+∞

u(t, x ) = u, ∀ x ∈ R

N

. Idea of proof: the relaxed semi-limits

lim sup

t→+∞,y →x

u(t, y ), lim inf

t→+∞,y →x

u(t, y ) are sub- and supersolutions of (E).

In some cases (e.g., F , h periodic in x ) u = u and

lim

t→+∞

u(t, x ) =constant is locally uniform [Alvarez - M.B. 2010]

In general, for some (bounded) initial data h, u > u , even for

u

t

= u

xx

in dim. N = 1. [Eidelman-Kamin-Tedeev 2009,

Collet-Eckmann 1992]

(28)

Application 2: ergodic HJB equations

(EE) inf

α∈A

{−tr a(x, α)D

2

χ − b(x, α) · Dχ − l(x, α)} = c x ∈ R

N

Theorem

Assume ∀ M > 0 ∃ R > 0 such that

(L) sup

a∈A

{tr a(x, α) + b(x, α) · x} ≤ −M for |x | ≥ R.

Then exists a unique constant c ∈ R for which (EE) has a solution χ such that

(G) lim

|x|→+∞

χ(x )

|x|

2

= 0.

Moreover χ ∈ C

2

(R

N

) and is unique up to additive constants.

(29)

Comments

The "critical value problem" (EE) arises in

I

ergodic stocastic control [P.L.Lions,..., Ichihara, Borkar, Cirant, ....]

I

homogenization [P.L.Lions-Papanicolaou-Varadhan, Evans,...]

I

singular perturbations [O. Alvarez - M.B., C. Marchi, ...],

I

weak KAM theory [Fathi,....],

I

Mean-Field Games [Lasry-Lions, M.B., ....]

Condition (L) is stronger than the previous ones and implies that the Lyapunov function w (x ) = |x |

2

/2 satifies

|x|→∞

lim G[w ] = +∞.

(30)

Comments

The "critical value problem" (EE) arises in

I

ergodic stocastic control [P.L.Lions,..., Ichihara, Borkar, Cirant, ....]

I

homogenization [P.L.Lions-Papanicolaou-Varadhan, Evans,...]

I

singular perturbations [O. Alvarez - M.B., C. Marchi, ...],

I

weak KAM theory [Fathi,....],

I

Mean-Field Games [Lasry-Lions, M.B., ....]

Condition (L) is stronger than the previous ones and implies that the Lyapunov function w (x ) = |x |

2

/2 satifies

|x|→∞

lim G[w ] = +∞.

(31)

Steps of the proof

Discounted HJB equation: for δ > 0

δu

δ

+ F (x , Du

δ

, D

2

u

δ

) = 0 in R

N

,

has a unique solution s.t. ku

δ

k

≤ klk

/δ and ∀ h ∈ (0, 1] ∃ R

h

: (Gδ) −h |x|

2

2 + min

|x|≤Rh

u

δ

≤ u

δ

(x ) ≤ max

|x|≤Rh

u

δ

+h |x|

2

2 ,

v

δ

= u

δ

− u

δ

(0) are uniformly bounded and Hölder continuous on compact sets (by Krylov-Safonov)

δu

δ

(0) → −c and v

δ

→ χ loc. uniformly as δ → 0

and (Gδ) implies the sub-quadratic growth (G) of χ.

(32)

Steps of the proof

Discounted HJB equation: for δ > 0

δu

δ

+ F (x , Du

δ

, D

2

u

δ

) = 0 in R

N

,

has a unique solution s.t. ku

δ

k

≤ klk

/δ and ∀ h ∈ (0, 1] ∃ R

h

: (Gδ) −h |x|

2

2 + min

|x|≤Rh

u

δ

≤ u

δ

(x ) ≤ max

|x|≤Rh

u

δ

+h |x|

2

2 ,

v

δ

= u

δ

− u

δ

(0) are uniformly bounded and Hölder continuous on compact sets (by Krylov-Safonov)

δu

δ

(0) → −c and v

δ

→ χ loc. uniformly as δ → 0

and (Gδ) implies the sub-quadratic growth (G) of χ.

(33)

Steps of the proof

Discounted HJB equation: for δ > 0

δu

δ

+ F (x , Du

δ

, D

2

u

δ

) = 0 in R

N

,

has a unique solution s.t. ku

δ

k

≤ klk

/δ and ∀ h ∈ (0, 1] ∃ R

h

: (Gδ) −h |x|

2

2 + min

|x|≤Rh

u

δ

≤ u

δ

(x ) ≤ max

|x|≤Rh

u

δ

+h |x|

2

2 ,

v

δ

= u

δ

− u

δ

(0) are uniformly bounded and Hölder continuous on compact sets (by Krylov-Safonov)

δu

δ

(0) → −c and v

δ

→ χ loc. uniformly as δ → 0

and (Gδ) implies the sub-quadratic growth (G) of χ.

(34)

Uniqueness of c and of χ up to additive constants.

Assume there exist two solutions of (EE) (c

1

, χ

1

) , (c

2

, χ

2

) and suppose c

1

≤ c

2

. Use Theorem 1:

G[χ

1

− χ

2

]

= inf

α∈A

{−tr a(x, α)(D

2

χ

1

− D

2

χ

2

) − b(x , α) · (Dχ

1

− Dχ

2

)}

≤ inf

α∈A

{−tr a(x, α)D

2

χ

1

− b(x, α) · Dχ

1

− l(x, α)}

+ sup

α∈A

{tr a(x, α)D

2

χ

2

+ b(x , α) · Dχ

2

+ l(x , α)}

= c

1

− c

2

≤ 0

The first Corollary of Thm. 1 =⇒ χ

1

− χ

2

= constant

=⇒ c

1

= c

2

.

(35)

Uniqueness of c and of χ up to additive constants.

Assume there exist two solutions of (EE) (c

1

, χ

1

) , (c

2

, χ

2

) and suppose c

1

≤ c

2

. Use Theorem 1:

G[χ

1

− χ

2

]

= inf

α∈A

{−tr a(x, α)(D

2

χ

1

− D

2

χ

2

) − b(x , α) · (Dχ

1

− Dχ

2

)}

≤ inf

α∈A

{−tr a(x, α)D

2

χ

1

− b(x, α) · Dχ

1

− l(x, α)}

+ sup

α∈A

{tr a(x, α)D

2

χ

2

+ b(x , α) · Dχ

2

+ l(x , α)}

= c

1

− c

2

≤ 0

The first Corollary of Thm. 1 =⇒ χ

1

− χ

2

= constant

=⇒ c

1

= c

2

.

(36)

Uniqueness of c and of χ up to additive constants.

Assume there exist two solutions of (EE) (c

1

, χ

1

) , (c

2

, χ

2

) and suppose c

1

≤ c

2

. Use Theorem 1:

G[χ

1

− χ

2

]

= inf

α∈A

{−tr a(x, α)(D

2

χ

1

− D

2

χ

2

) − b(x , α) · (Dχ

1

− Dχ

2

)}

≤ inf

α∈A

{−tr a(x, α)D

2

χ

1

− b(x, α) · Dχ

1

− l(x, α)}

+ sup

α∈A

{tr a(x, α)D

2

χ

2

+ b(x , α) · Dχ

2

+ l(x , α)}

= c

1

− c

2

≤ 0

The first Corollary of Thm. 1 =⇒ χ

1

− χ

2

= constant

=⇒ c

1

= c

2

.

(37)

Some references

M.B., A. Cesaroni: Liouville property and critical value...

J. D. E. to appear Related papers:

M.B., A. Cesaroni, L. Manca: Convergence by viscosity methods in multiscale financial models..., Siam J. Financial Math. (2010) M.B., A. Cesaroni, L. Rossi: Nonexistence of nonconstant solutions of some degenerate Bellman equations....

ESAIM-COCV in print

D. Castorina, A. Cesaroni and L. Rossi: A parabolic HJB equation degenerating at the boundary, Comm. Pure Appl. Anal. 2016 A. Arapostathis, V.S. Borkar, M.K. Ghosh: Ergodic control of diffusion processes. Cambridge University Press 2012.

Thanks for your attention!

(38)

Some references

M.B., A. Cesaroni: Liouville property and critical value...

J. D. E. to appear Related papers:

M.B., A. Cesaroni, L. Manca: Convergence by viscosity methods in multiscale financial models..., Siam J. Financial Math. (2010) M.B., A. Cesaroni, L. Rossi: Nonexistence of nonconstant solutions of some degenerate Bellman equations....

ESAIM-COCV in print

D. Castorina, A. Cesaroni and L. Rossi: A parabolic HJB equation degenerating at the boundary, Comm. Pure Appl. Anal. 2016 A. Arapostathis, V.S. Borkar, M.K. Ghosh: Ergodic control of diffusion processes. Cambridge University Press 2012.

Thanks for your attention!

Riferimenti

Documenti correlati

nibile, convoca una riunione, da lui presieduta, dei membri del Gabinetto Distrettuale e di tutti i past officers internazionali, soci in regola di un Lions club in regola

Lo studio realizzato sullo sviluppo della presenza femminile nella nostra Associazione ha visto impegnate le Delegate dei Governatori dei Distretti 108 Italy al fine di riportare

I graditi ospiti della serata sono stati: Teresa Filippini, Presidente di Zona con consorte, Paolo Canella, Angela Vincenzi e Genni Bergamini in rappresentaza di Comune di

È vero che mancando, ora, i partecipanti non vale la pena di persistere, ma va ricordato che nel Lions Club Della Rovere vi sono tanti soci che sono stati Leo e la stessa

Con la firma delle convenzioni, dunque, si può dire conclusa la prima parte del progetto” un libro per amico” avviato un anno fa dalla officer distrettuale per il libro parlato

Si parlerà di aiuto e soccorso in casi di criticità e situazioni pericolose grazie all’esempio della Squadra Montagna Croce Verde Torino, che racconterà non solo la sua lunga storia

“Seleggo nasce dagli indirizzi della ricerca svolti dal Centro Medea – La nostra Famiglia e dalle esperienze sia tecnologiche svolte da Seleggo Onlus che da quelle maturate

-Donazione di attrezzature sanitarie per gravi disabili, fornite dal Club assieme al socio onorario Immi Ben- newitz ,all’Istituto Palazzolo gestito dalla Congregazione delle