• Non ci sono risultati.

1 − Z 1 0 t 1 + nt·log(1 + t) t dt

N/A
N/A
Protected

Academic year: 2021

Condividi "1 − Z 1 0 t 1 + nt·log(1 + t) t dt"

Copied!
1
0
0

Testo completo

(1)

Problem 11225

(American Mathematical Monthly, Vol.113, May 2006) Proposed by J. L. D´ıaz-Barrero (Spain).

Find

lim

n→∞

1 n

Z n

0

 x log(1 + x/n) 1 + x

 dx.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Letting t = x/n the integral becomes 1

n Z n

0

 x log(1 + x/n) 1 + x

 dx =

Z 1

0

nt

1 + nt·log(1 + t) dt

= Z 1

0

log(1 + t) dt − Z 1

0

t

1 + nt·log(1 + t)

t dt

= 2 log(2) − 1 − Z 1

0

t

1 + nt·log(1 + t)

t dt.

Taking the limit as n goes to infinity then the remaining integral goes to zero because

0 ≤ Z 1

0

t

1 + nt·log(1 + t) t dt ≤ 1

n Z 1

0

log(1 + t) t dt < 1

n. ActuallyR1

0 log(1 + t)/t dt = π2/12, but it suffices to note that since log(1 + t) < t for t > 0 then this integral is less than 1. Therefore

lim

n→∞

1 n

Z n

0

 x log(1 + x/n) 1 + x



dx = 2 log(2) − 1.



Riferimenti

Documenti correlati

[r]

[r]

La brutta copia non va consegnata: viene corretto solo ci` o che ` e scritto sul foglio intestato.. Ogni affermazione deve essere

Negli esercizi 1–10, ove possibile, verificare se le forme differenziali sono chiuse e, se esatte, calcolarne un

[r]

We compute the cartesian equation of M.. See Test 3 of the

Indeed we know that the maximal eigenvalue is the max- imum value taken by the quadratic form on the unit sphere (that is, the set of all

[r]