• Non ci sono risultati.

log(1 +2t)) log(t) t + 1 dt = log(2) Z 1 0 log(t) t + 1 dt

N/A
N/A
Protected

Academic year: 2021

Condividi "log(1 +2t)) log(t) t + 1 dt = log(2) Z 1 0 log(t) t + 1 dt"

Copied!
2
0
0

Testo completo

(1)

Problem 12222

(American Mathematical Monthly, Vol.127, December 2020) Proposed by R. Tauraso (Italy).

Prove

X

k=1

(−1)k k2

X

n=k

1

n2n = −13ζ(3) 24 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Since Z 1

0

tklog(t) dt = tk+1 k + 1log(t)

1

0

− Z 1

0

tk+1−1

k + 1 dt = − 1 (k + 1)2, it follows that the given double series has an integral representation

I :=

Z 1

0

log(t + 2) log(t) t + 1 dt =

Z 1

0

(log(2) + log(1 +2t)) log(t)

t + 1 dt

= log(2) Z 1

0

log(t) t + 1 dt +

X

n=1

(−1)n−1 n2n

Z 1 0

tnlog(t) t + 1 dt

= log(2) Z 1

0

log(t)

X

k=0

(−1)ktkdt +

X

n=1

(−1)n−1 n2n

Z 1

0

tnlog(t)

X

k=0

(−1)ktkdt

= − log(2)

X

k=0

(−1)k (k + 1)2

X

n=1

(−1)n−1 n2n

X

k=0

(−1)k (n + k + 1)2

= −log(2)ζ(2)

2 +

X

n=1

1 n2n

ζ(2) 2 +

n

X

k=1

(−1)k k2

!

= −log(2)ζ(2) 2 +ζ(2)

2

X

n=1

1 n2n +

X

n=1

1 n2n

n

X

k=1

(−1)k k2

= −log(2)ζ(2)

2 +log(2)ζ(2)

2 +

X

n=1

1 n2n

n

X

k=1

(−1)k k2

=

X

k=1

(−1)k k2

X

n=k

1 n2n.

Now we evaluate the integral I. We introduce two ausiliary functions F and F+: F(x) :=

Z x 0

log2(t)

1 − t dt = − log2(x) log(1 − x) + 2 Z x

0

log(t) log(1 − t)

t dt

= − log2(x) log(1 − x) − 2 Z x

0

log(t)

X

k=1

tk−1 k dt

= − log2(x) log(1 − x) − 2 log(x)Li2(x) + 2 Z x

0

X

k=1

tk−1 k2 dt

= − log2(x) log(1 − x) − 2 log(x)Li2(x) + 2Li3(x) and, in a similar way,

F+(x) :=

Z x 0

log2(t)

1 + t dt = log2(x) log(1 + x) + 2 log(x)Li2(−x) − 2Li3(−x) . Hence

I = Z 1

0

log(t + 2) log(t) t + 1 dt =1

2 Z 1

0

 log2(t)

t + 1 +log2(t + 2) t + 1 −

log2

t t+2

 t + 1

dt.

(2)

The first term is

Z 1 0

log2(t)

t + 1 dt = F+(1) = −2Li3(−1) =3ζ(3) 2 . Moreover, by letting s = 1/(t + 2) we get

Z 1 0

log2(t + 2) t + 1 dt = −

Z 1/3 1/2

log2(s) s(1 − s)ds =

Z 1/2 1/3

log2(s) 1 − s ds +

Z 1/2 1/3

log2(s) s ds

= F(1/2) − F(1/3) +log3(3)

3 −

log3(2) 3 and, by letting s = t/(t + 2) we find

Z 1 0

log2

t t+2

 t + 1 dt = 2

Z 1/3 0

log2(s) 1 − s2 ds =

Z 1/3 0

log2(s) 1 − s ds +

Z 1/3 0

log2(s) 1 + s ds

= F(1/3) + F+(1/3).

Therefore I = 3ζ(3)

4 +log3(3)

6 −

log3(2)

6 +F(1/2)

2 − F(1/3) −F+(1/3) 2

=13ζ(3)

8 −

log3(3)

3 − log(3)

 2Li2

 1 3



− Li2



− 1 3



 2Li3

 1 3



− Li3



− 1 3



. Since it is known that (see Lewin’s book Polylogarithms and Associated Functions)

2Li2

 1 3



− Li2



− 1 3



= π2 6 −

log2(3) 2 and

2Li3

 1 3



− Li3



− 1 3



= log3(3)

6 −

log(3)π2

6 +13ζ(3) 6 we finally find

I = −13ζ(3) 24 .



Riferimenti