• Non ci sono risultati.

Bases and linear maps 18/04

N/A
N/A
Protected

Academic year: 2021

Condividi "Bases and linear maps 18/04"

Copied!
1
0
0

Testo completo

(1)

Bases and linear maps 18/04

Summary

Let V be a vector space of dimension n, so it has a basis {v1, . . . , vn}. We know that there exists an isomorphism

Rn ←→ V

that allows us to regard vectors in V as rows of a matrix with n columns, and prove the

Theorem.

(i) If m vectors are L I in V then m à n.

(ii) If p vectors span V then p á n.

In particular, any basis of V has n elements and it is enough to check one of the two conditions.

Let {e1, . . . , en} be the canonical basis of Rn,1. If f is the linear mapping defined by a matrix A ∈ Rm,n then f (e1) is determined by the first column Ae1 of A, and so on.

Conversely, given any linear mapping g: V → W between vector spaces, we shall use the images g(vj) of elements of a basis {v1, . . . , vn} of V to construct column-by-column a matrix B representing g.

Riferimenti

Documenti correlati

Gli esiti -visti come conseguenze positive o negative sul lavoratore- sono mediati dalle caratteristiche delle persone e dalle modalità di gestione delle

Delega al Governo per la riforma del Terzo settore, dell'impresa sociale e per la disciplina del servizio civile universale (seguito esame C. 2617-B, approvato dalla Camera

Sea, Travels and Rites on the Early Modern Stage chair: Maria Luisa De Rinaldis. Gilberta Golinelli, Università degli Studi

A bijective linear mapping is also called an isomorphism, so a basis of V defines an isomor- phism f from R n to V.. This enables one to prove results such

It is an isomorphism that can be used to treat V as the same vector space as R n with respect to the

[r]

[r]

OBJECTIVE: align 3d folds of proteins = align contact maps..