• Non ci sono risultati.

Chapter  1

N/A
N/A
Protected

Academic year: 2021

Condividi "Chapter  1"

Copied!
40
0
0

Testo completo

(1)

                   

CHAPTER  1  

 The  PI3K/Akt/PDK1  pathway  

 

     

 

1.1.  The  PI3K/Akt/PDK1  pathway  

1.1.1  Physiological  role  

The   PI3K/Akt/PDK1   pathway   is   an   important   and   intricate   signalling   network   that   regulates   several   cellular   mechanisms,   in   which   many   proteins  have  different  and  notably  role.  This  complexity  highlights  the   importance  of  each  nodes  involved  in  the  pathway.  

As  a  consequence  of  the  stimulation  with  growth  factors  like  Epidermal   growth   factor   (EGF)   or   insulin-­‐like   growth   factors   (IGFs)   and   cytokines   on   receptor   tyrosine   kinase   (RTKs),   Akt   is   recruited   from   cytosol   to   plasma   membrane   and   phosphorylated   at   two   key   regulatory   sites,   Thr308   and   Ser473   by   PDK1   and   mTORC2,   respectively.   Akt   activation   depends   on   phosphatidylinositol   3,4,5-­‐trisphosphate   (PIP3)   levels,   a  

second   messenger   produced   by   phosphoinositide   3-­‐kinase   (PI3K)   through   phosphorylation   on   3ʹ′-­‐position   of   the   inositol   ring   in   phosphatidylinositol   4,5-­‐bisphosphate   (PIP2).   The   interaction   of   PIP3  

with   the   pleckstrin   homology   (PH)   domain   of   Akt   promotes   the   translocation   of   Akt   to   the   plasma   membrane,   where   it   undergoes  

(2)

phosphorylation   by   PDK1.     This   binding   also   induces   a   conformational   shift,   which   transform   the   Akt   “close”   form   to   the   “open”   one,   thus   allowing   for   PDK1-­‐mediated   phosphorylation   of   Akt   Thr308.   This   phosphorylation   is   sufficient   to   activate   some   Akt   downstream   substrates,  but  additional  phosphorylation  in  the  C-­‐terminal  domain  at   serine  Ser473  by  mTORC2  is  required  for  the  full  activation  of  Akt  [1].   The   activity   of   PI3K   is   countered   by   phosphatase   and   tensin   homolog   protein  (PTEN),  a  tumor  suppressor  gene  that  converts  back  PIP2  in  PIP3  

thus  switching  off  the  activated  pathway  (Figure  1.1).  

The  activated  Akt  stimulates  cell  growth  and  survival  by  phosphorylating   numerous   downstream   substrates   responsible   for   the   final   biological   response.    

Inactivation  of  proteins  like  caspase-­‐9  and  BCL  antagonist  of  cell  death   (BAD),   two   apoptosis   activating   factors,   is   linked   to   the   cell   survival   through  apoptosis  inhibition.  The  pathway  also  regulates  cellular  energy   control   and   glucose   metabolism   through   glycogen   synthase   kinase-­‐3   (GSK3)   and   phosphofructokinase   2   (PFK2),   meanwhile   the   interaction   with   Forkhead   box   transcription   factors   (FoxO),   p21   and   p27   lead   to   proliferation  effect.  

Akt  is  also  double-­‐strand  linked  to  the  mammalian  target  of  rapamycin   (mTOR)   through   a   positive   feedback   mechanism,   another   important   kinase  involved  in  growth  and  cell  proliferation  [2].  

The   PI3K   signalling   regulates   senescence   and   angiogenesis,   and   both   processes  are  influenced  by  the  activity  of  vascular  endothelial  growth   factor  (VEGF)  and  hypoxia-­‐inducible  factor  (HIF-­‐1α)  [3].  

Moreover   phosphorylated   Akt   interacts   with   Mouse   double   minute   2-­‐ homolog   (MDM2),   an   important   negative   regulator   of   the  p53  tumor   suppressor.  

(3)

  Figure  1.1:  Schematic  representation  of  PI3K/Akt/PDK1  pathway:  black  arrows  

indicate  upstream  Akt  activators,  while  green  and  red  arrows  indicate,  respectively,   activated  and  inhibited  Akt  downstream  effectors  (modified  from  

https://www.caymanchem.com/app/template/Article.vm/article/2132).  

   

1.1.2  Oncogenic  role  

Thus   PI3K/Akt/PDK1   pathway   plays   a   significant   role   in   the   cell:   its   activation   triggers   a   chain   phosphorylation   that   leads   to   a   biological   response.    In  physiological  condition,  this  process  regulates  the  normal   cellular   working,   but,   as   a   result   of   mutation,   could   lead   to   neoplastic   cellular   transformation.   Indeed   this   pathway   is   frequently   found   inappropriately   activated   in   various   cancers   and   it   is   not   surprising   considering   that   its   major   cellular   effects   are   mandatory   hallmarks   of   the  cancer.  

Different  genetic  abnormalities  were  observed  in  this  pathway  in  human   cancer,   including   activating   and   deactivating   mutations,   copy   number   changes   and   post-­‐transcriptional   epigenetic   irregularities   [4].   Nevertheless   the   two   major   mechanisms   of   PI3K/Akt/PDK1   pathway   activation  are  somatic  alteration  in  specific  nodes  of  the  pathway,  like   PI3K  and  Akt,  and  activation  by  RTKs  [3].  The  role  of  these  mutations  in   different  cancer  settings  will  be  discussed  within  this  Chapter.  

(4)

Several  studies  have  also  demonstrated  a  connection  between  altered   PI3K/Akt/PDK1  signalling  network  and  multi  drug  resistance  (MDR),  the   major  problem  in  cancer  treatment.  Most  of  the  more  resistant  cancer   types  show  hyperactivation  of  this  pathway.    

In   breast   adenocarcinoma   Knuefermann   showed   that   the   cell   lines   expressing  both  HER2  and  HER3  had  a  higher  phosphorylation  level  of   Akt  and  were  associated  with  increased  MDR.  Since  selective  inhibition   of   PI3K   or   Akt   kinases   activity   leads   to   induction   of   apoptosis,   the   proposed  mechanism  for  this  synergy  was  the  potentiation  of  apoptosis   [5].  

Emerging  role  of  the  KRAS-­‐PDK1  axis  was  identified  in  pancreatic  cancer,   an   highly   aggressive   tumour   very   resistant   to   treatments,   generally   diagnosed   late   because   of   absence   of   specific   symptoms   and   strongly   metastatic  [6].  

Also   Glioblastoma   Multiforme   (GBM),   known   as   the   most   common,   most  aggressive  and  resistant  malignant  primary  brain  tumor  in  humans   [7],   shows   an   increased   activation   of   PI3K/Akt/PDK1   pathway.   Correlation  between  this  pathway  and  GBM  will  be  discussed  in  detail  in   Chapter  2.  

 

The   importance   of   PI3K/Akt/PDK1   signalling   network   is   demonstrated   also   by   the   remarkable   results   reached   in   clinical   treatments   with   different   molecules   inhibiting   one   or   more   crucial   components   in   this   pathway.   Indeed,   the   inhibition   of   such   PI3K/Akt/PDK1   pathway   components  can  restore  sensibility  to  chemotherapy,  radiotherapy,  and   hormonal  treatment  [3].  

 

1.1.3  Raf/Ras/MEK/MAPK  and  PI3K/Akt/PDK1  signalling  network  

The   Ras/Raf/MEK/MAPK   pathway   is   a   signalling   cascade   involved   in   numerous   cellular   functions   such   as:   cell   cycle   regulation,   wound   healing   and   tissue   repair,   integrin   signalling,   cell   migration   but   also   angiogenesis.   This   pathway   also   converges   with   the   PI3K/Akt/PDK1   pathway  as  they  are  both  activated  by  Ras  superfamily  and  they  share   numerous   downstream   effectors.   Network   constituted   by   the  

(5)

  5   connection   of   the   pathways   is   showed   in   Figure   1.2.   Since   these   two   signaling   pathways   have   been   shown   to   play   crucial   roles   in   the   transmission   of   proliferative   signals   from   membrane   bound   receptors,   they  were  investigated  also  for  their  responsibility  in  tumorigenesis.   In  some  cases,  resistance  to  therapy  may  be  due  to  the  activation  of  an   additional   pathway,   able   to   balance   the   signal.   Although   the   Ras/Raf/MEK/ERK   and   Ras/PI3K/PTEN/Akt/mTOR   pathways   have   distinct   effects   on   cell   proliferation,   they   have   many   common   downstream   targets   that   may   promote   survival   in   the   absence   of   the   corresponding  functional  pathway  [8].  

 

 

 

 

                                   

Figure  1.2:  Interactions  between  the  Ras/Raf/MEK/ERK  and  

Ras/PI3K/PTEN/mTOR  signalling  networks:  green  arrows  indicate  activation  while  red   lines  indicate  inhibition  activity  (modified  from  [8]).  

 

It   was   also   demonstrated   that   the   crosstalk   between   the   Raf/Ras/MEK/MAPK   and   PI3K/Akt/PDK1   pathways   is   involved   in   the   maintenance  of  self-­‐renewal  and  tumorigenicity  of  GBM  stem-­‐like  cells   [9].  

 

Figure 3. Interactions between the Ras/Raf/MEK/ERK, Ras/PI3K/PTEN/mTOR and Wnt/ Catenin Pathways that Result in the Regulation of Protein Translation and Gene Transcription. The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR

pathways can affect protein translation by complex interactions regulating the mTORC1 (grouped together in a purple box) and mTORC2 (grouped together in a blue box) complexes. GF stimulation results in GFR activation which can activate both the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways. Akt can phosphorylate and inhibit the effects of GSK 3 , TSC2 and PRAS 40 (indicated in red ovals), which result in mTORC1 activation. ERK and PDK1 can phosphorylate p90Rsk1

(indicated in green ovals), which in turn can phosphorylate and inhibit TSC2 (indicated in red oval). Akt mediated phosphorylation of GSK 3 also affects the Wnt/ catenin pathway and EMT. Rapamycin targets mTORC1 and inhibits its activity and also results in inhibition of downstream p70S6K. The effects of rapamycin are complex as long term administration of rapamycin may prevent mTOR from associating with mTORC2 and hence full activation of Akt is prevented. However, rapamycin treatment may result in activation of PI3K, by inhibiting the effects of p70S6K on IRS 1 phosphorylation which results in PI3K and Akt activation. Also rapamycin treatment may result in the activation of ERK in some cells, presumably by inhibition of the p70S6K mediated inhibition of IRS1. These later two effects of rapamycin could have positive effects on cell growth. Energy deprivation will result in the activation of serine/threonine kinase 11 (STK11 a.k.a LKB1) and AMP kinase (AMPK) which can result in TSC2 activation (indicated in red ovals) and subsequent suppression of mTORC1. In contrast Akt can phosphorylate and inhibit the activity of AMPK. Inhibition of PDK 1 activity can also result in activation of mTORC1, presumably by suppression of p70S6K and hence inhibition of IRS1 (indicated in red oval) effects on PI3K activity. The PTEN, TSC1, TSC2 and LKB1 tumor suppressor genes all converge on the mTORC1 complex to regulate protein translation. Thus the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways can finely tune protein translation and cell growth by regulating mTORC1. Rapamycin can have diverse effects on these processes. Also these pathways can interact with the Wnt/ catenin pathway which is important in developmental processes, EMT and CICs. Upon activation of the Wnt pathway, catenin forms a complex with Bcl 9, PYGO, plakoglobulin and TCF/LEF which result in the transcription of critical genes including cyclin D1, c Myc, SALL4 and PPAR .

(6)

1.2.  PI3K  

The   class   I   phosphoinositide   3-­‐kinases   (PI3Ks)   are   lipid   kinases   that   regulate   a   broad   range   of   essential   functions   including   growth,   proliferation,  and  migration.  

PI3Ks   specifically   catalyze   the   phosphorylation   on   3-­‐position   of   the   inositol  ring  in  specific  phosphoinositides  (PtIns).  PtIns  are  phospholipids   formed  by  two  fatty  acid  chains  and  a  water-­‐soluble  inositol  head-­‐group   linked   by   a   glycerol   backbone.   The   lipid   products   of   PI3Ks   can   act   as   cellular   second   messengers   since   they   activate   several   proteins   regulating   their   intracellular   localization   or   their   conformational   changes  [10].  

 

1.2.1  Structure  

Mammalian   PI3K   exists   in   eight   isoforms   and   they   are   grouped   into   three  classes  based  on  their  structural  and  biochemical  features:  

All  PI3K  isoforms  possess  a  catalytic  subunit,  the  PI3K  core,  consisting  of   a  C2  domain,  a  helical  domain  and  a  catalytic  domain  (Figure  1.3).  

   

Class  I  PI3K  can  be  further  divided  into  two  subclasses:  IA  and  IB.  They   are   dimers   of   one   catalytic   and   one   regulatory   subunit;   moreover   all   class  I  catalytic  subunits  possess  a  Ras-­‐binding  domain.  

Class  IA,  which  are  mainly  activated  by  RTKs,  comprises  distinct  catalytic   subunits   (p110α,   p110β,   p110δ   and   p110γ);   the   class   IA   Ras-­‐binding   domain   subunits   also   specifically   possess   a   p85-­‐binding   domain   that   mediates   interactions   with   the   regulatory   subunits   (for   p110α,   p110β   and  p110δ)  or  p101  or  p87  (for  p110γ).  All  p85  isoforms  have  two  Src   homology  2  (SH2)  domains  [10,  11].    

Class   IB   PI3Ks   are   mainly   activated   by   GPCRs   (G-­‐protein-­‐coupled   receptors);   this   subfamily   contains   the   p110γ   as   the   only   catalytic   subunit.    

Class  II  PI3Ks  is  a  monomer  of  high  molecular  weight,  which  can  exist  in   mammals   in   three   isoforms:   PI3K-­‐C2α,   PI3K-­‐C2β   and   PI3K-­‐C2γ.   Class   II   PI3Ks  lack  the  regulatory-­‐subunit-­‐binding  domain,  while  they  possess  a   Ras-­‐binding   domain   and   the   PI3K   core   (Figure   1.3).   Moreover,   they  

(7)

contain   a   C-­‐terminus   extension,   constituted   by   a   Phox   homology   domain,   and   a   second   C2   domain.   The   N-­‐terminus   extensions   are   distinct  within  the  class  II  isoforms  (clathrin-­‐binding  region  in  PI3K-­‐C2α   and   proline-­‐rich   sequences   in   PI3K-­‐C2β),   suggesting   specific   roles   for   this  region  [10].  

Class  III  PI3K  has  one  catalytic  member,  Vps34  (vacuolar  protein  sorting   34).   This   class   is   a   monomer   that   lacks   the   Ras-­‐binding   and   the   regulatory-­‐subunit-­‐binding   domains   and   catalyses   specifically   the   synthesis  of  Phosphatidylinositol  3-­‐phosphate  (PI3P)  [9].    

                       

Figure  1.3:  PI3K  isoforms  structures  (modified  by  [11]).  

 

1.2.2  Physiological  role  

PI3Ks   can   be   activated   by   multiple   signalling   pathways,   including   tyrosine   phosphorylated   receptors   and   their   adaptors,   GPCRs,   and   the   Ras  superfamily.  Each  PI3K  isoform  has  a  different  role  based  on  their   ability   to   integrate   signals   from   these   inputs:   among   them,   class   I   are   the  widest  featured  one.    

Class  I  PI3Ks  play  remarkable  roles  in  regulating  cellular  processes  and,   not   surprisingly,   they   have   been   frequently   found   misregulated   in   human  diseases.  Class  I  PI3Ks  catalyse  the  phosphorylation  of  PIP2,  the  

primary  substrate,  at  3-­‐position  of  the  inositole  ring,  converting  it  into   PIP3  (Figure  1.4).    

(8)

  8  

PIP3,  the  main  in  vivo  lipid  product  of  class  I  PI3Ks,  is  the  most  studied  

PI3K  effector  and  a  very  well  established  second  messenger,  involved  in   many   cellular   functions.   PIP3   is   able   to   recruit   PH-­‐domain-­‐containing  

proteins   to   the   inner   surface   of   the   cell   membrane.   PH   domains   is   a   lipid-­‐binding  modules  contained  in  a  range  of  proteins,  including  several   cytoplasmic  kinases  such  as  Akt  [12].  

The   mechanism   described   is   counteracted   by   tumor   suppressor   phosphatase   and   tensin   homolog   PTEN,   a   phosphatase   that   dephosphorylate  back  PIP3  to  PIP2.  

Figure  1.4:  Schematic  representation  of  PI3K  structure  and  function  (modified  

from  [12]).  

 

1.2.3  PI3K  in  cancer  

Since   its   discovery   20   years   ago,   several   studies   have   established   the   central   role   of   PI3K/Akt/PDK1   in   cancer   growth,   metabolism,   survival,   and   motility.   The   hyperactivation   of   this   pathway   seems   to   affect   30– 50%  different  types  of  human  cancers  [13].    

Oncogenic   activation   of   the   PI3K/Akt/mTOR   pathway   can   occur   in   multiple   ways,   such   as   point   mutations   of   PI3K,   inactivation   of   PTEN,   and   amplification   or   mutation   of   Akt.   Particularly,   in   2004,   point   mutations   in   PIK3CA,   the   gene   encoding   the   p110α   subunit   of   PI3K,   were  discovered  among  the  most  commonly  documented  mutations  in   cancer. These   modifications   are   able   to   enhance   PI3K   activity.   Consequently,  the  expression  of  p110α  mutants  in  cells  induces  the  Akt  

R E V I E W S

human cancers (see below). Once it became clear that PTEN functions primarily as a PIP3 lipid

phos-phatase12–16, the central importance of PIP

3regulation in

cancer became indisputable. Although PTEN might also have activity against protein substrates17,18, the

evi-dence from mutational studies and from analysis of the hereditary cancer syndrome COWDEN’S DISEASEindicates that the PIP3phosphatase activity is responsible for the tumour-suppressor function of PTEN(BOX 1).

The SHIP phosphatases also act on PIP3, but

remove phosphate from the 5-position rather than the 3-position, creating PtdIns(3,4)P2 (note that PtdIns(3,4)P2can also be generated by class II PI3Ks). PtdIns(3,4)P2can function as a second messenger (like PIP3) to recruit pleckstrin-homology (PH)-domain -containing proteins, such as AKT (see below). So, although both PTEN and SHIP reduce the level of PIP3

in cells, PTEN seems to have primary responsibility for controlling the mitogenic effects of phosphoinositides because it reduces the levels of all those phosphorylated at the D3 position. As expected, knockout mutations in Pten, but not Ship1, give a strong cancer phenotype in mice. Although useful, this model is likely to be an oversimplification. PIP2— the product of the PTEN

reaction — might be a second messenger in its own right, as well as being a substrate for several other phos-phinositides that have signalling functions. In addition, Ship1-knockout mice can develop myeloproliferative syndromes, indicating that PtdIns(3,4)P2can activate

certain mitogenic pathways19–21.

Downstream of PIP3: the AKT pathway

Now that the central role of PIP3in cancer seems clear, there is renewed emphasis on defining precisely how PIP3functions as a second messenger. Much of

the recent progress is based on the concept that PIP explain much of the current experimental data, but

there are many other potential modes of regulation. Precisely how the various isoforms and splice variants of p85 and p110 affect PI3K activity remains to be determined. In addition, we have a limited under-standing of how the activated PI3K complex is downregulated. One hypothesis is that tyrosine phos-phorylation of p85, which occurs after the p85–p110 complex has been recruited to the active RTK, serves as a negative regulatory signal that leads to a reduction in p110 catalytic activity9. A better understanding of

these details will undoubtedly provide new insights and opportunities for pharmacological intervention in PI3K-pathway-driven cancers.

PIP3phosphatases

The primary consequence of PI3K activation is the gen-eration of PIP3in the membrane, which functions as a second messenger to activate downstream pathways that involve AKT and other proteins, as described below. PIP3levels are barely detectable in mammalian cells under unstimulated growth conditions and are tightly controlled, owing to the combined effects of stringent PI3K regulation and the action of several PIP3

phos-phatases (PTEN,SHIP1and SHIP2) (FIG. 1). The PIP3

phosphatase that is most clearly involved in oncogenesis is PTEN (also called MMAC1), a 3-position lipid phos-phatase that converts PIP3back to PIP2. This control mechanism is analogous to the regulation of GDP- ver-sus GTP-bound RAS through the opposing effects of guanine nucleotide exchange factors (GEFs; the activators) and GTPase-activating proteins (GAPs; the repressors). PTEN was isolated originally as a tumour-suppressor gene in breast cancer and glioblastomas using traditional positional-cloning strategies10,11, and has

subsequently been implicated more broadly in various COWDEN’S DISEASE

A hereditary predisposition to tumours — especially hamartomas of the skin, mucous membranes, breast and thyroid — that is caused by PTEN mutations.

Figure 1 |Minding your Ps: the PtdIns(4,5)P2–PtdIns(3,4,5)P3cycle. Phosphatidylinositol phosphates are composed of a

membrane-associated phosphatidic acid group and a glycerol moiety that is linked to a cytosolic phosphorylated inositol head group. Phosphatidylinositol 3-kinase (PI3K) can phosphorylate PtdIns(4,5)P2(PIP2) at the D3 position to form the second messenger

PtdIns(3,4,5)P3(PIP3). Phosphorylation at the D3 position is necessary for binding to the pleckstrin-homology domain of AKT (not

shown). Dephosphorylation of PIP3to regenerate PIP2is accomplished by the 3-phosphatase PTEN. Additionally, PIP3can be dephosphorylated at the D5 position by SHIP1 or SHIP2 to generate PtdIns(3,4)P2, another potential second messenger.

O O O O P P P P P P P P P HO HO 1 6 OH 5 4 3 2 O O O O HO OH 1 6 5 4 3 2 Fatty acids Glycerol backbone Inositol head group P P P O O O O HO OH OH 1 6 5 4 3 2 p110 (α,β,δ) p85 (α,β)

PIP2 PI3K PIP3 PtdIns(3,4)P2

ATP ADP

PTEN

SHIP1/2

(9)

activation  in  the  absence  of  growth  factor  stimulation,  thus  leading  to   tumor  development.  Although  these  mutations  have  been  described  in   almost   every   major   tumor   types,   they   were   mainly   found   in   breast,   colon,  and  endometrial  cancers  and  glioblastoma  [3,  14].    

Moreover,   since   PTEN   is   able   to   counterbalance   the   PI3K   activity,   it   is   not  surprising  that  mutations  of  this  tumor  suppressor  gene  represent   the  second  most  common  genetic  abnormalities  found  in  human  cancer.   For   instance,   the   majority   of   pediatric   gliomas   show   activation   of   the   PI3K/Akt/PDK1  pathway  [3].  

Despite  recurrent  mutations  in  PI3Kα,  PI3Kδ  and  PI3Kγ  abnormal  form   are  uncommon.  PI3Kδ  is  preferentially  expressed  in  leukocytes  and  it  is   important   in   B   cell   activation,   proliferation,   survival,   and   lymphoid   tissue   homing.   PI3Kδ   signalling   was   demonstrated   to   be   particularly   hyperactive   in   many   B   cell   malignancies.   Several   preclinical   studies   showed  that  isoform-­‐specific  inhibition  of  PI3Kδ  resulted  in  cytotoxicity   of  B  cells  while  sparing  toxicity  to  other  hematopoietic  cell  types.  Also   PI3Kγ   is   preferentially   expressed   in   leukocytes   and   is   central   to   the   growth  and  survival  of  B  cell  malignancies.  PI3Kγ  is  also  known  to  have  a   role  in  the  maintenance  of  the  tumor  microenvironment  and  involved  in   T  cells  development  and  survival  [13].  

1.2.4  PI3K  inhibitors  

Since  PI3K  exists  in  different  isoforms,  inhibitors  are  classified  according   to  their  selectivity:  pan-­‐PI3K  inhibitors,  able  to  inhibit  different  isoforms   with  various  potency,  and  PI3K  isoform  specific-­‐inhibitors.  

Pan-­‐PI3K   inhibitors   target   all   Class   IA   PI3Ks   and   are   represented   by  

several   small   molecule   drugs   XL147,   PX-­‐866,   BKM120,   GDC-­‐0941,   BAY806946,   GSK2126458,   and   CH5132799,   and   one   RNA   interfering   (RNAi)  agent,  ATU027.    

XL147,  a  selective  inhibitor  of  Class  I  PI3K  isoforms,  is  now  in  phase  II  

clinical   trial,   both   in   monotherapy   and   in   combination.   PX-­‐866   is   a   derivative   of   Wortmannin   in   phase   II   clinical   trial   and   acts   as   an   irreversible   pan-­‐PI3K   Class   IA   and   B   inhibitors.   BAY806946   (BAY)   is   a   potent  and  highly  selective  reversible  pan-­‐Class  I  PI3k  inhibitor  in  phase   I  trial.  

(10)

BKM120  is  the  most  advanced  PI3K  inhibitor  in  clinical  trial  (phase  4).  It  

is  a  highly  specific  pan-­‐Class  I  PI3K  inhibitor  and  it  does  not  affect  other   proteins  such  as  mTOR  or  Vps34.  It  showed  an  IC50=  52,  166,  116,  262  

nM  versus  p110  α, β, γ, δ  respectively.  

GDC-­‐0941   is   another   pan-­‐Class   I   PI3K   inhibitor   belonging   to   an   early  

generation   PI3K   inhibitor,   actually   in   Phase   II.   It   showed   IC50   values  

lower   than   BKM120   (IC50=   3,   3,   33,   75   nM   versus   p110   α, β, γ, δ  

respectively).    

Finally   ATU027   is   a   novel   RNAi   therapeutic   that   targets   N3   (PKN3),   a   protein   kinase   C-­‐related,   acting   as   downstream   effector   of   the   PI3K   signaling  pathway.  Currently  it  is  subjected  to  a  phase  I  trial  in  cancer   patients   and,   if   successful,   ATU027   and   other   related   siRNA-­‐based   therapeutics   could   be   a   novel   approach   for   targeting   individual   components  of  the  PI3K  pathway.  

 

The  PI3K  isoform-­‐specific  inhibitors  selectively  inhibit  PI3K  p110  α, β, γ   or δ   catalytic   subunits;   this   feature   may   be   an   advantage   since   this   molecules   could   inhibit   more   completely   the   target   with   fewer   side   effects.  

CAL101   is   a   specific   inhibitor   of   PI3Kδ,   as   mentioned   before  

predominantly  expressed  in  leukocytes,  with  a  potency  of  2.5nM.  Early   trials   generated   impressive   response   rates   in   some   lymphomas.   The   compound  is  generally  well  tolerated.  Actually  phase  II/III  trials  in  B-­‐cell   malignancies  are  ongoing  [3].  

(11)

 

 

Figure  1.5:    PI3K  inhibitors  in  different  phases  of  clinical  trial.  

 

1.3.  The  Akt/PKB  kinase  

The  Protein  Kinase  B  or  Akt  belongs  to  the  AGC  kinase  family,  the  most   evolutionary  conserved  groups  among  human  protein  kinases.  The  AGC   kinase  group  was  named  after  three  representative  families,  the  cAMP-­‐ dependent   protein   kinase   (PKA),   the   cGMP-­‐dependent   protein   kinase   (PKG)  and  the  protein  kinase  C  (PKC)  families  [14].    

 

1.3.1  Structure  

Akt,   also   known   as   protein   kinase   B   (PKB),   was   originally   identified   as   the   cellular   homologue   of   the   viral   oncogene,  v-­‐akt   [15]:   a   serine/threonine  kinase  similar  to  protein  kinases  A  and  C.  Akt  acts  as  a  

H N O NH2 S O O NH N N NH Cl O XL#147 O O Me H AcO Me O OH N O H3CO PX#866 N H2N F F N N N N O O BKM120 N N N S O N N SO O GDC0941 O N O N N N N H O N N NH2 O BAY806946 S O O N N N N F F O GSK2126458 N N H2N N N N O N S O O CH5132799 N N O F HN N N N NH CAL101

(12)

central   core   that   transduces   various   extracellular   signals   to   regulate   a   wide  range  of  biological  processes  through  phosphorylation  of  distinct   protein  substrates.  

Mammalian   Akt   exists   as   three   different   isoforms,   Akt1,   Akt2,   Akt3,   which   share   high   sequence   and   structural   homology.   Their   structure   consists   of   an   amino-­‐terminal   pleckstrin   homology   (PH)   domain   and   a   carboxyl-­‐terminal  regulatory  domain  (CTD).  Belonging  to  class  of  Ser-­‐Thr   kinases,   Akt   isoforms   present   two   different   phosphorylation   site   both   necessary   to   have   a   complete   activation:   Thr   is   situated   in   the   Kinase   domain  (308  in  Akt1,  309  in  Akt2,  305  in  Akt3)  while  Ser  is  positioned  in   the  CTD  (473  in  Akt1,  474  in  Akt2,  472  in  Akt3)  (Figure  1.6).  

 

 

Figure  1.6:  Akt  isoforms.  

 

However   accumulating   evidence   suggests   differential   substrate   specificity   and   biological   functions   among   Akt   isoforms:   Akt1   is   ubiquitously   expressed   in   various   tissues   at   high   levels;   Akt2   is   highly   expressed   in   the   muscle,   liver   and   adipose   tissues   while   modestly   expressed  in  other  tissues;  Akt3  is  predominantly  expressed  in  brain  and   testis.   Since   these   Akt   isoforms   are   activated   by   PI3K   and   PDK1   in   a   similar  way  and  share  also  some  downstream  effectors,  it  is  proposed   that   Akt   isoforms   functions   may   be   partially   overlapped.   Therefore,   these   observations   lead   researchers’   attention   to   investigate   more   deeply   the   roles   of   each   Akt   isoform   in   physiopathological   conditions   [1].    

Numerous   studies   have   established   that   growth   factors   (such   as   EGF,   Heregulin  and  insulin)  hormones  and  cytokines  stimulate  Akt  activation  

(13)

through   serial   phosphorylation   events.   The   binding   of   ligand   to   its   associated  RTK  causes  PI3K  activation  that  converts  phospholipid  PIP2  to  

PIP3.  Then  PIP3  interacts  with  the  PH  domain  and  recruits  both  Akt  and  

PDK1   to   the   plasma   membrane,   where   PDK1   can   phosphorylate   Akt   Thr308   in   the   activation   loop,   consequently   changing   Akt   in   its   active   conformation.   While   this   phosphorylation   is   enough   to   activate   some   Akt   downstream   substrates,   a   second   phosphorylation   by   mTORC2   at   Ser473   in   the   C-­‐terminal   domain   completely   activates   Akt.     Phosphorylation   at   Akt   Ser473   seems   to   be   modulated   also   by   other   kinases  such  as  DNA-­‐dependent  protein  kinase  (DNA-­‐PK),  integrin-­‐linked   kinase   (ILK),   and   mitogen-­‐activated   protein   kinase-­‐activated   protein   kinase-­‐2  (MAPKAPK2)  in  various  contexts  [1].    

Conversely,   as   previously   discussed,   PTEN   dephosphorylates   PIP3   thus  

preventing  Akt  membrane  recruitment  and  phosphorylation.  As  well  as   PTEN,  also  other  two  phosphatases,  protein  phosphatase  2A  (PP2A)  and   PH   domain   and   leucine   rich   repeat   protein   phosphatase   (PHLPP),   counteract   Akt   activation   throughout   the   dephosphorylation   of   Akt   at   Thr308  and  Ser473,  respectively.  

 

1.3.2  Physiological  role  

Akt  regulates  critical  cellular  processes  activating  or  inhibiting  a  variety   of   downstream   targets.   Each   target   often   fulfills   different   cellular   functions   including   cell   survival   and   proliferation,   glucose   metabolism,   cell  migration,  cancer  progression  and  metastasis.  

For  instance,  FoxOs,  once  phosphorylated  by  Akt,  are  sequestered  in  the   cytoplasm   where   they   fail   to   induce   transcription   of   genes   associated   with   apoptosis   and   cell   cycle   arrest,   thus   blocking   the   apoptosis   mechanism.   Akt   phosphorylation   of   GSK3β   induced   cells   to   reacquire   survival   features,   since   this   kinase   is   known   to   downregulate   protein   substrates  for  cell  survival  and  proliferation.  The  phosphorylation  of  the   Tuberous  Sclerosis  Complex  2  (TSC2)  allows  the  reactivation  of  mTORC1,   a   protein   complex   essential   for   protein   translation   and   cell   growth   normally  blocked  by  TSC2.    Akt  phosphorylation  of  Bad,  a  pro-­‐apoptotic  

(14)

protein   that   controls   mitochondrial   outer   membrane   permeability,   decreases  Cytochrome  C  release  to  protect  cells  from  apoptosis.    

Moreover,   Akt   activates   some   substrates   such   IKKα,   Skp2   and   AS160.   The  phosphorylation  of  IKKα  leads  to  the  induction  of  immune  response   through  upregulation  of  the  necrosis  factor-­‐κB  (NF-­‐κB).  The  activation  of   Skp2,   a   protein   essential   for   cell   cycle   progression,   migration   and   metastasis,   facilitates   its   cytosolic   translocation,   thus   stimulating   cell   migration   and   cancer   metastasis  [1].   Again,   the   AS160   activation   (Akt   substrate,  160  kDa),  promotes  Glut4  translocation  and  glucose  uptake  in   muscle  cells.  

Additionally,   Akt   phosphorylates   MDM2   promoting   its   translocation   to   the   nucleus,   where   it   negatively   regulates   p53-­‐induced   apoptosis.   Akt   mediated-­‐phosphorylation  decreases  the  protease  activity  of  caspase-­‐9,   activated   during   programmed   cell   death,   but   also   inhibits   p27   expression  preventing  its  cell-­‐cycle  inhibitory  effects.  

Finally,   Akt   activates   endothelial   nitric   oxide   (NO)   synthase   (eNOS)   through   its   direct   phosphorylation.   The   release   of   NO   produced   by   activated   eNOS   can   stimulate   vasodilation,   vascular   remodeling,   and   angiogenesis  [16].    

A   summary   panel   of   all   Akt   substrates   and   relative   cellular   role   is   proposed  in  Figure  1.7.    

                     

Figure  1.7:  Main  Akt  direct  substrates  and  relative  roles  (modified  from  [16]).  

(15)

1.3.3  Akt  in  cancer  

Since  AKT/PKB  is  involved  in  numerous  cellular  processes,  reasonably  its   deregulation   leads   to   different   disorders   like   cancer,   diabetes,   cardiovascular  and  neurological  diseases.    

Although  mutations  in  Akt  are  rarely  found,  Akt  signaling  is  one  of  the   most  frequently  hyperactivated  pathways  in  many  human  cancers.     Several   mechanisms   accounting   for   its   aberrant   activation   have   been   proposed.   These   include   mutation   or   amplification   of   PIK3C   gene   that   encodes  PI3K,  loss  of  PTEN  function  and  activation  of  RTKs.  

The  PI3K-­‐dependent  Akt  serine/threonine  phosphorylation  by  PDK1  and   mTORC2   has   long   been   thought   to   be   the   primary   mechanism   responsible  for  Akt  activation.  However,  this  regulation  alone  does  not   sufficiently   explain   how   Akt   hyperactivation   can   occur   in   tumors   with   normal   levels   of   PI3K/PTEN   activity.   Mounting   evidence   demonstrates   that  aberrant  Akt  activation  can  be  attributed  to  other  posttranslational   modifications,  which  include  tyrosine  phosphorylation,  O-­‐GlcNAcylation   (glicosilation),  as  well  as  lysine  modifications.  Thus,  the  identification  of   proteins   accountable   for   these   modifications   will   provide   important   insights  for  cancer  treatment  [1].  

Even  though  Akt  isoforms  partially  share  their  functions,  there  are  rising   evidences   that   distinctive   isoforms   have   non-­‐overlapping   effects   in   cancer.  The  single  amino  acid  substitution  E17K  in  the  Akt1  PH  domain   has  been  identified  in  various  human  cancers  such  as  breast,  colorectal,   endometrial,  ovarian  cancers  and  in  some  melanomas.  Moreover  Akt2   overexpression  has  been  observed  in  colorectal  cancers  and  metastases.     Mutations   in   various   Akt   isoforms   suggested   a   potential   role   for   Akt   inhibitors  in  therapy  [3].    

 

1.3.4  Akt  Inhibitors  

There  are  two  main  classes  of  Akt  inhibitors  in  clinical  development:  PH-­‐

domain,  ATP-­‐competitive  and  allosteric  Akt  inhibitors.  

 

Perifosine   is   a   PH   domain   inhibitor   that   targets   Akt   activity   via  

(16)

IC50=4.7µM  and  it  has  been  proven  as  the  most  clinically  advanced  Akt  

inhibitor.  However,  perifosine,  such  as  other  PH  domain  Akt  inhibitors,   lacks  of  selectivity  since  it  inhibits  not  only  Akt,  but  also  PH-­‐domains  of   other   proteins.   Consequently,   the   limited   specificity   of   PH   domain   inhibitors   as   well   as   the   potential   for   severe   side   effects   (such   as   hemolysis)  represents  an  important  restrictive  factor  for  the  clinical  use   of  this  class  of  drugs.  [1].  Nevertheless,  perifosine  has  been  evaluated  in   multiple   phase   I/II   clinical   trials   both   alone   and   in   combination   with   various   other   agents;   actually   it   is   in   phase   III   clinical   trial.   The   most   common  adverse  reactions  are  fatigue  and  gastrointestinal  toxicity  [3].    

Triciribine   phosphate   (TCN-­‐P)   is   a   potent   pan-­‐AKT   inhibitor  

(IC50=130nM)   in   phase   I/II   clinical   trials.   It  was   shown   to   interact   with  

the   PH   domain   of   Akt   and   to   interfere   with   its   localization   to   the   membrane,  thereby  preventing  Akt  phosphorylation  and  its  subsequent   activation  [17].  

TCN-­‐P  was  administered  to  subjects  whose  tumors  displayed  evidence   of   increased   Akt   phosphorylation   (p-­‐Akt),   as   measured   by   immunohistochemical  analysis.  Modest  decreases  in  tumor  p-­‐Akt  were   detected  following  treatment  with  TCN-­‐P.  No  Maximum  Tolerated  Dose   was  determined,  and  no  objective  response  was  observed  [3].  

 

Pan-­‐Akt  kinase  inhibitors  are  ATP-­‐competitive  Akt  inhibitors.  Because  of  

the   highly   conserved   ATP-­‐binding   pocket   within   different   kinases,   this   class   of   Akt   inhibitors   also   affects   other   AGC   kinases   such   as   p70S6   kinase,   protein   kinase   C   (PKC)   and   Rho   kinase.   It   is   still   to   establish   whether  such  an  inhibitory  profile  will  result  in  undesirable  side  effects   in  clinical  settings.  

Among   them   there   is   AZD5363,   a   potent   pan-­‐Akt   kinase   inhibitor   possessing  pharmacological  properties  reliable  with  Akt  inhibition  (IC50  

Akt1=3nM,  Akt2=8nM,  Akt3=8nM).  It  inhibited  the  growth  of  a  range  of   human   tumor   xenografts   and   caused   significant   regression   in   combination   with   docetaxel,   particularly   in   breast   cancer   xenografts.   AZD5363  is  currently  being  investigated  in  phase  I  clinical  trials.  

(17)

Allosteric   Akt   inhibitors   bind   to   the   PH   domain   of   the   Akt   enzyme,  

forming  a  complex  able  to  block  the  conformational  change  essential  to   Akt   phosphorylation.   Thus   the   translocation   of   Akt   to   the   plasma   membrane,  essential  for  Akt  activation,  is  disrupted.  This  mechanism  of   action   might   help   to   overcome   the   issue   of   kinase   selectivity   often   observed  with  classic  ATP-­‐competitive  inhibitors.  

MK-­‐2206  is  an  allosteric  Akt  inhibitor  able  to  selectively  inhibit  Akt1,  2,  

and   3   isoforms   in   nanomolar   concentration   (IC50:   Akt1=8nM,  

Akt2=12nM,  Akt3=65nM).  Changes  in  p-­‐Akt  before  and  after  treatment   was  measured  in  tumor  biopsies  as  well  as  surrogate  tissues,  evidencing   inhibition  of  the  target.  MK-­‐2206  is  in  phase  II  clinical  trials.  

 

 

Figure  1.8:    Akt  inhibitors  in  different  phases  of  clinical  trial.  

 

Among   the   other   Akt   inhibitors   not   covered   in   the   previous   groups,   there  are  PBI-­‐05204  and  RX-­‐0201.  

PBI-­‐05204  (phase  I/II  clinical  trial)  contains  oleandrin,  a  cardiac  glycoside  

that  inhibits  the  α-­‐3  subunit  Na/K  ATPase  pump.  Oleandrin  inhibits  the   phosphorylation  of  Akt,  but  also  the  activation  of  NF-­‐κB  and  export  of   fibroblast  growth  factor-­‐2  (FGF-­‐2).  This  compound  also  decreases  mTOR   activity   through   inhibition   of   p70S6K.   Western   blotting   of   peripheral   blood   mononuclear   cells   (PBMCs)   showed   that   PBI-­‐05204   markedly  

HN HO Cl O N NH2 N N NH AZD5363 NH2 N N HN N O MK2206 N N N N N O HO OH NH2 O POHOH O TCN.P N+ O PO O -O Perifosine

(18)

The  PI3K/Akt/PDK1  pathway  

   

reduced  phosphorylated  Akt,  p70S6K,  and  S6  levels  in  a  time-­‐dependent   manner,  suggesting  Akt  involvement.    

RX-­‐0201   (Archexin)   is   a   20-­‐mer   oligonucleotide   with   sequence  

complementary  to  Akt-­‐1  mRNA  in  phase  I  clinical  trial.    

 

1.4.  PDK1,  the  master  kinase  of  AGC    

1.4.1  Structure  

PDK1   kinase   is   a   protein   of   63kDa,   constituted   by   556   amino   acids   forming   different   domains:   the   N-­‐terminal   catalytic   or   kinase   domain   (71-­‐359),   the   C-­‐terminal   Pleckstrin   homology   domain   or   PH   domain   (459-­‐550),  the  hydrophobic  domain,  located  in  a  region  adjacent  to  the   catalytic   domain,   and   a   nuclear   export   sequence.   The   nuclear   export   sequence   is   a   four   amino   acids   sequence,   essential   for   transporting   PDK1  from  the  cell  nucleus  to  the  cytoplasm  through  a  nuclear  transport   mechanism  that  use  a  nuclear  pore  complex  (Figure  1.9).  

 

 

Figure  1.9:  Schematic  representation  of  PDK1  structure  (modified  from  [4]).  

 

The   amino-­‐terminal   small   lobe   and   the   carboxy-­‐terminal   large   lobe   “sandwich”   one   adenosine   triphosphate   molecule   essential   for   the   subsequent  substrate  phosphorylation  (Figure  1.x)  [18].  The  Glycine-­‐rich   loop,  the  αC-­‐helix  and  an  activation  loop  around  the  ATP-­‐binding  site  of   the   enzyme   are   essential   for   the   activity.   These   three   regions   are   flexible   and   in   motion   in   the   inactive   form,   while   they   rearrange,   organizing   the   ATP-­‐binding   site   in   its   active   form,   able   to   catalyse   phosphate-­‐transfer  reactions  [19].    

     

Cancer Management and Research 2013:5 submit your manuscript | www.dovepress.com

Dovepress 273

sequence (Figure 1). The nuclear export sequence is a short sequence of four amino acids that are essential for exporting PDK1 from the cell nucleus to the cytoplasm through the nuclear pore complex using nuclear transport.

Similar to other AGC kinases, PDK1 possesses a phos-phorylation site within the activation loop (S241), which is phosphorylated in resting cells and is not affected by growth factor stimulation. The phosphorylation of PDK1 in S241 is catalyzed by an autophosphorylation reaction in trans.35

PDK1 kinase activity is therefore constitutively active, and the regulation of PDK1-activated signaling involves different mechanisms. The first mechanism was discovered investi-gating the steps involved in Akt T-loop phosphorylation in living cells. PDK1 is localized at the plasma membrane due to the interaction of its PH domain with the phosphoinositi-des PtdIns(3,4,5)P3, phosphatidylinositol-3,4-bisphosphate [PtdIns(3,4)P2 ], and PtdIns(4,5)P2, with the highest affinity toward the PI3K lipid products.33,36 Although PDK1

mem-brane localization has been largely investigated and the affinity of the PDK1-PH domain for the PI3K products suggested a potential PI3K-dependent PDK1 membrane translocation, this localization is still controversial. Indeed, the jury is still out on whether PDK1 translocates to the plasma membrane following growth factor stimulation, or it is constitutively localized to the plasma membrane. Nevertheless, it is well established that PDK1 membrane localization is essential for Akt phosphory-lation in Thr308 (Figure 2). PDK1 is constitutively associated in a homodimeric complex through PH domain interaction of two PDK1 monomers, and this interaction is important in the regulation of Akt phosphorylation.37

Many other kinases are known to be downstream of PDK1 and are attracting an increasing interest. Among these, serum glucocorticoid-dependent kinase (SGK), p70 ribosomal protein S6 kinases (S6K), p90 ribosomal protein S6 kinase (RSK), and atypical PKC isoforms are known to be direct targets of PDK1, which phosphorylates specific serine/

The mechanism of activation of these kinases differs from the Akt activation mechanism. PDK1 possesses a hydrophobic pocket, which is termed PDK1 interacting fragment pocket, and is essential for PDK1 interaction with the hydrophobic motif of the targeted protein kinases. Mutations within the PDK1 interacting fragment pocket abolish the binding of their subsequent phosphorylation and activation of PDK1 to PKC, S6K, and SGK1. The physiological role of PDK1 has been investigated in vivo in yeast, Drosophila melanogaster, and mice. These studies have shown that deletion of PDK1 is lethal, indicating that PDK1 is required for normal embryo development. PDK1–/– mice lack branchial arches, and have problems in neural crest specification and forebrain develop-ment, as well as several disruptions in the development of a functional circulatory system, which eventually causes death at the E9.5 embryonic stage. In order to study the role of PDK1 in development, hypomorphic mice for PDK1 were generated, in which the neomycin resistance gene is inserted between exons 2 and 3 of the PDK1 gene in order to reduce the expression of PDK1 by 80%–90% in all tissues.

These mice showed a decreased body size of 40%–50% compared to the wild type littermate, but no significant differences in the activation of AKT, S6K, and RSK were induced by insulin. Analysis of organs revealed that the difference in size is due to a decreased cell size rather than a reduction in cell number.

Specific function of PI3K/PDK1 in cancer

The PI3K pathway is one of the most frequently deregulated pathways in human malignancy; indeed, there are a variety of genetic abnormalities observed in this pathway in cancer, including activating and deactivating mutations, copy number changes, and posttranscriptional epigenetic irregularities. Among these, deactivating mutations in the gene encoding the tumor suppressor, PTEN, are among the most common.

Catalytic domain Pleckstrinhomology

Nuclear export sequence Tyr9

Ser25 Ser163 Ser241 Ser393/396 Ser410 Thr516

Tyr373/376

Figure 1 Schematic representation of PDK1 structure.

(19)

                 

Figure  1.10:  Schematic  representation  of  PDK1  structure  in  its  a)  inactive  and  b)  active  

(modified  from  [19])  

 

Conformational   changes   dependent   activation   was   found   to   be   a   common  feature  for  many  kinases.  In  the  past  years  the  existence  of  an   allosteric  site,  accessible  only  when  the  kinase  turns  in  its  catalytically   inactive   conformation,   have   been   demonstrated.   In   the   inactive   form   the  Asp-­‐Phe-­‐Gly  /DFG  motif,  located  at  the  N  terminus  of  the  activation   loop,  is  flipped  “out”  (DFG-­‐out)  relative  to  its  conformation  in  the  active  

form  (DFG-­‐in)  [20,  21].    

1.4.2  Physiological  role  

PDK1  belongs  to  the  ACG  kinases  family  [18],  composed  of  Serine  and   Threonine   kinases,   with   a   large   sequence   homology   in   the   catalytic   domain   correlated   to   other   kinases.   Similar   to   other   kinases   of   the   family,  PDK1  has  a  phosphorylation  site  that  regulates  its  activation  on   Ser241.  This  site,  situated  in  the  activation  loop  (T-­‐loop)  located  into  the   kinase   domain,   is   phosphorylated   in   resting   cells   and   not   affected   by   growth   factor   stimulation.   The   phosphorylation   of   PDK1   in   Ser241   is   catalysed  by  an  autophosphorylation  reaction  that  occurs  with  a  trans  

mechanism  [22],  leading  to  a  constitutive  activation  of  the  PDK1  kinase  

activity.  

PDK1   was   originally   discovered   in   1997   as   a   PI3K   dependent   enzyme   responsible   for   the   phosphorylation   of   the   Akt   activation   loop   at   the   residue  Thr308  [23].  PI3K  activation  by  growth  factors  signalling  induces   growing  levels  of  PIP2  and  PIP3  and  facilitates  the  interactions  of  Akt  and  

(20)

  20  

PDK1  with  the  plasma  membrane  through  their  respective  PH  domains,   thus  allowing  PDK1  to  phosphorylate  Akt  on  Thr308  (Figure  1.11).  This   process   was   found   to   be   dependent   on   the   PIP3   concentration.  

Moreover  the  conformational  changes  induced  by  the  binding  of  PIP3  to  

Akt  also  facilitates  PDK1  phosphorylation  [24].                                  

Figure  1.11:  Schematic  representation  of  PDK1  dependent  Akt  (PKB)  activation  

(modified  from  [25]).  

 

PDK1  is  constitutively  associated  in  a  homodimeric  complex  through  PH   domain   interaction   of   two   PDK1   monomers,   and   this   interaction   is   important   in   the   regulation   of   Akt   phosphorylation   [4].   Also   PDK1   membrane   localization   is   essential   for   Akt   phosphorylation,   but,   although  it  has  been  largely  investigated  and  the  affinity  of  the  PDK1-­‐PH   domain  for  the  PIP2  and  PIP3  suggested  a  possible  PI3K-­‐dependent  PDK1  

membrane  translocation,  this  localization  is  still  controversial.  Whether   PDK1   translocates   to   the   plasma   membrane   following   growth   factor   stimulation,  or  it  is  constitutively  localized  to  the  plasma  membrane  it  is   still  to  establish.    

 

!"#$ !" #!$%& %&'()* +,- ./01213*03 4235 35216 !!78 !#9":;<=>"? 45*0 *@AB*11*C 20 D0132ED)'3*C FG> H*))1 21 A'B32'))I A5/1A5/BI)'3*C '3 231 &8)//A 123*6 '0C 3521 A5/1A5/BI)'32/0 21 0/3 20HB*'1*C J/))/420K 132ED)'32/0 /J H*))1 4235 +LM$ %M2KDB* =9,- &5*1* C'3' 1DAA/B3 35*

N2*4 35'3 45*0 !!78!#9" 21 *@AB*11*C 20 H*))16

!3C+01%>6<6O,!>P!3C+01%>6<,!FC/*1 0/3 'H32N'3* !"#$ (D3

2013*'C 20CDH*1 A5/1A5/BI)'32/0 /J ;*B<=> 35B/DK5 35* 1'E* 5ICB/A5/(2H E/32J Q20'1*%1, 35'3 A5/1A5/BI)'3*1

;R#$ '0C ;L#$6 35*B*(I H/0N*B320K!!78!#9" 203/ '0

*JSH2*03 !"#$

1D(13B'3*-T5*0 !U#F 21 /N*B*@AB*11*C 20 D0132ED)'3*C FG> H*))16 D0)2Q* ;R#$6 ;L#$ '0C !#96 23 (*H/E*1 A5/1A5/BI)'3*C '3 231 &8)//A B*12CD* 3/ ' 52K5 13/2H52/E*3BI %9')*0CB'0 '$ ()-6 FVVV,- +0 M2KDB* R 4* C*E/013B'3* 35'3 35* 5ICB/A5/(2H E/32J /J !U#F %!+M, 203*B'H31 4235 W$VVV8 J/)C 52K5*B B*)'32N* 'JS023I 4235 !"#$ 35'0 35* 5ICB/8 A5/(2H E/32J1 /J ;R#$6 ;L#$ '0C !#9"- MDB35*BE/B*6

45*0 35* 5ICB/A5/(2H E/32J /J!!78!#9"6 JD))8)*0K35

!#9" /B ;L#$ 21 B*A)'H*C 4235 !+M6 23 (*H/E*1 A5/1A5/BI)'3*C '3 35* &8)//A 20 D0132ED)'3*C H*))1-&5*1* /(1*BN'32/01 C*E/013B'3* 35'36 20 H/03B'13 3/ 35* 5ICB/A5/(2H E/32J1 /J !#9 '0C ;L#$6 35* 5ICB/A5/(2H E/32J /J !U#F 21 '()* 3/ 203*B'H3 4235 !"#$6 B*1D)320K 20

!U#F6 !!78!#9":7X8!U#F? '0C ;L#$:7X8!U#F?

(*H/E20K A5/1A5/BI)'3*C '3 35*2B &8)//A B*12CD*1 20 35* '(1*0H* /J 132ED)D1- &5* S0C20K 35'3 'B32SH2'))I AB/E/320K 35* 203*B'H32/0 /J YL.8Q20'1*1 4235 !"#$ 132ED)'3*1 35*2B A5/1A5/BI)'32/0 '3 35* &8)//A 1DAA/B31 /DB E/C*) 35'3 A5/1A5/BI)'32/0 /J !"#$ 1D(13B'3*1 H'0 (* B*KD)'3*C 35B/DK5 35* 203*B'H32/0 /J 35* !+M8(20C20K A/HQ*3 /J !"#$

4235 35* 5ICB/A5/(2H E/32J /J 35*1* *0ZIE*1- &521 52K5 'JS023I /J !+M J/B !"#$ H/EA'B*C 4235 35* *[D2N')*03 E/32J JB/E !#96 ;R#$ '0C ;L# 1DKK*131 35'3 35*B* 'B* B*12CD*1 *0H/EA'1120K 35* 5ICB/A5/(2H E/32J /J !U#F 35'3 'B* 0/3 AB*1*03 20 !#96 ;R# '0C ;L# 452H5 H/03B2(D3* 3/ 35* N*BI 52K5 'JS023I /J !+M J/B

!"#$-&5* E/C*) 4* AB/A/1* 20 M2KDB* \ 52K5)2K531 /DB H/0H)D12/0 35'3 A5/1A5/BI)'32/0 /J 35* !"#$ 1D(13B'3*1 ;R# '0C ;L# 21 B*KD)'3*C (I 35* C2B*H3 203*B'H32/0 /J 35*2B 5ICB/A5/(2H E/32J1 4235 35* !+M8(20C20K A/HQ*3 /J !"#$-+0 H/03B'136 !#9 C/*1 0/3 B*)I DA/0 35* !+M8(20C20K A/HQ*3 /J !"#$ J/B 231 &8)//A A5/1A5/BI)'32/0- Y0/35*B 2EA/B3'03 J*'3DB* /J /DB E/C*) 21 35'3 !"#$ 'H32N23I C/*1 0/3 0**C 3/ (* B*KD)'3*C '0C 21 H/012C*B*C 3/ (* H/01323D32N*)I 'H32N*- +013*'C6 23 21 35* 1D(13B'3*1 /J !"#$ 35'3 'B* 1D(]*H3*C 3/ B*KD)'32/0 '0C 'B* H/0N*B3*C 203/ J/BE1 35'3 H'0 203*B'H3 4235 !"#$6 35*B*(I *0'()20K 35*E 3/ (* A5/1A5/BI)'3*C '3 35*2B &8)//A B*12CD*- Y)35/DK5 !U#F '0C !#.# H'0 203*B'H3 C2B*H3)I 4235 !"#$ 45*0 /N*B*@AB*11*C 20 FG> H*))1 %9')*0CB'0 '$ ()-6 FVVV,6 35* 203*B'H32/0 /J ;R#$ '0C ;L#$ 21 B*KD)'3*C (I 35* A5/1A5/BI)'32/0 /J 35*1* *0ZIE*1 '3 35*2B .83*BE20') B*12CD*%1,- +0 H/03B'136 /DB B*1D)31 1DAA/B3 35* E/C*) 35'3 !#9 'H32N'32/0 *03'2)1 SB13 35* 203*B'H32/0 /J !#9 4235 !3C+01%>6<6O,!>B*1D)320K 20 ' H/0J/BE'32/0') H5'0K* 35'3

21 B*[D2B*C J/B !"#$8E*C2'3*C A5/1A5/BI)'32/06 '0C 1*H/0C)I6 35* H/8)/H')2Z'32/0 /J !#9 '0C !"#$ 35B/DK5 35*2B ED3D') 203*B'H32/0 4235 !3C+01%>6<6O,!>- &521 E/C*)

H/D)C 'HH/D03 J/B 35* C2JJ*B*0H*1 20 35* 32E* H/DB1* /J 'H32N'32/0 /J ;R#$6 ;L#$ '0C !#9 20 201D)20PKB/435 J'H3/B8132ED)'3*C H*))1- &5* 203*B'H32/0 /J 35* 5ICB/A5/(2H !"#$ %$ X/C*) (I 452H5 !"#$ 1A*H2SH'))I B*H/K02Z*1 ;R#6 ;L# '0C !#9- %&, "/E'20 13BDH3DB* /J !"#$ 20C2H'320K 45*B* 35* !+M8(20C20K A/HQ*3 21 )/H'3*C /0 35* 1E')) )/(* /J 35* Q20'1* C/E'20- %', ;DEE'BI /J 35* E/C*) (I 452H5 !"#$ H'0 B*H/K02Z*6 203*B'H3 '0C 35*0 A5/1A5/BI)'3* ;R# '0C ;L#- +0 3521 E/C*) !3C+01%>6<6O,!>B*KD)'3*1 35* 'H32N23I /J '0 D02C*032S*C 5ICB/A5/(2H E/32J %7X, Q20'1* 35'3 A5/1A5/BI)'3*1 ;R#$ '0C ;L#$6 35D1

3B2KK*B20K 35* C/HQ20K 3/ 35* !+M8(20C20K A/HQ*3 /J !"#$- %(, +0 H/03B'136 35* !+M8(20C20K A/HQ*3 /J !"#$ 21 0/3 20N/)N*C 20 35* (20C20K /J !"#$ 3/ !#9- +013*'C 23 21 35* 203*B'H32/0 /J 35* !7 C/E'201 /J !#9 '0C !"#$ 4235 !3C+01%>6<6O,!>35'3 (B20K1 !#9 '0C !"#$

3/K*35*B-!"#"$%&'(% !" #$%

!"#$ !" #!$%& %&'()* +,- ./01213*03 4235 35216 !!78 !#9":;<=>"? 45*0 *@AB*11*C 20 D0132ED)'3*C FG> H*))1 21 A'B32'))I A5/1A5/BI)'3*C '3 231 &8)//A 123*6 '0C 3521 A5/1A5/BI)'32/0 21 0/3 20HB*'1*C J/))/420K 132ED)'32/0 /J H*))1 4235 +LM$ %M2KDB* =9,- &5*1* C'3' 1DAA/B3 35*

N2*4 35'3 45*0 !!78!#9" 21 *@AB*11*C 20 H*))16

!3C+01%>6<6O,!>P!3C+01%>6<,!FC/*1 0/3 'H32N'3* !"#$ (D3

2013*'C 20CDH*1 A5/1A5/BI)'32/0 /J ;*B<=> 35B/DK5 35* 1'E* 5ICB/A5/(2H E/32J Q20'1*%1, 35'3 A5/1A5/BI)'3*1

;R#$ '0C ;L#$6 35*B*(I H/0N*B320K!!78!#9" 203/ '0

*JSH2*03 !"#$

1D(13B'3*-T5*0 !U#F 21 /N*B*@AB*11*C 20 D0132ED)'3*C FG> H*))16 D0)2Q* ;R#$6 ;L#$ '0C !#96 23 (*H/E*1 A5/1A5/BI)'3*C '3 231 &8)//A B*12CD* 3/ ' 52K5 13/2H52/E*3BI %9')*0CB'0 '$ ()-6 FVVV,- +0 M2KDB* R 4* C*E/013B'3* 35'3 35* 5ICB/A5/(2H E/32J /J !U#F %!+M, 203*B'H31 4235 W$VVV8 J/)C 52K5*B B*)'32N* 'JS023I 4235 !"#$ 35'0 35* 5ICB/8 A5/(2H E/32J1 /J ;R#$6 ;L#$ '0C !#9"- MDB35*BE/B*6

45*0 35* 5ICB/A5/(2H E/32J /J!!78!#9"6 JD))8)*0K35

!#9" /B ;L#$ 21 B*A)'H*C 4235 !+M6 23 (*H/E*1 A5/1A5/BI)'3*C '3 35* &8)//A 20 D0132ED)'3*C H*))1-&5*1* /(1*BN'32/01 C*E/013B'3* 35'36 20 H/03B'13 3/ 35* 5ICB/A5/(2H E/32J1 /J !#9 '0C ;L#$6 35* 5ICB/A5/(2H E/32J /J !U#F 21 '()* 3/ 203*B'H3 4235 !"#$6 B*1D)320K 20

!U#F6 !!78!#9":7X8!U#F? '0C ;L#$:7X8!U#F?

(*H/E20K A5/1A5/BI)'3*C '3 35*2B &8)//A B*12CD*1 20 35* '(1*0H* /J 132ED)D1- &5* S0C20K 35'3 'B32SH2'))I AB/E/320K 35* 203*B'H32/0 /J YL.8Q20'1*1 4235 !"#$ 132ED)'3*1 35*2B A5/1A5/BI)'32/0 '3 35* &8)//A 1DAA/B31 /DB E/C*) 35'3 A5/1A5/BI)'32/0 /J !"#$ 1D(13B'3*1 H'0 (* B*KD)'3*C

4235 35* 5ICB/A5/(2H E/32J /J 35*1* *0ZIE*1- &521 52K5 'JS023I /J !+M J/B !"#$ H/EA'B*C 4235 35* *[D2N')*03 E/32J JB/E !#96 ;R#$ '0C ;L# 1DKK*131 35'3 35*B* 'B* B*12CD*1 *0H/EA'1120K 35* 5ICB/A5/(2H E/32J /J !U#F 35'3 'B* 0/3 AB*1*03 20 !#96 ;R# '0C ;L# 452H5 H/03B2(D3* 3/ 35* N*BI 52K5 'JS023I /J !+M J/B

!"#$-&5* E/C*) 4* AB/A/1* 20 M2KDB* \ 52K5)2K531 /DB H/0H)D12/0 35'3 A5/1A5/BI)'32/0 /J 35* !"#$ 1D(13B'3*1 ;R# '0C ;L# 21 B*KD)'3*C (I 35* C2B*H3 203*B'H32/0 /J 35*2B 5ICB/A5/(2H E/32J1 4235 35* !+M8(20C20K A/HQ*3 /J !"#$-+0 H/03B'136 !#9 C/*1 0/3 B*)I DA/0 35* !+M8(20C20K A/HQ*3 /J !"#$ J/B 231 &8)//A A5/1A5/BI)'32/0- Y0/35*B 2EA/B3'03 J*'3DB* /J /DB E/C*) 21 35'3 !"#$ 'H32N23I C/*1 0/3 0**C 3/ (* B*KD)'3*C '0C 21 H/012C*B*C 3/ (* H/01323D32N*)I 'H32N*- +013*'C6 23 21 35* 1D(13B'3*1 /J !"#$ 35'3 'B* 1D(]*H3*C 3/ B*KD)'32/0 '0C 'B* H/0N*B3*C 203/ J/BE1 35'3 H'0 203*B'H3 4235 !"#$6 35*B*(I *0'()20K 35*E 3/ (* A5/1A5/BI)'3*C '3 35*2B &8)//A B*12CD*- Y)35/DK5 !U#F '0C !#.# H'0 203*B'H3 C2B*H3)I 4235 !"#$ 45*0 /N*B*@AB*11*C 20 FG> H*))1 %9')*0CB'0 '$ ()-6 FVVV,6 35* 203*B'H32/0 /J ;R#$ '0C ;L#$ 21 B*KD)'3*C (I 35* A5/1A5/BI)'32/0 /J 35*1* *0ZIE*1 '3 35*2B .83*BE20') B*12CD*%1,- +0 H/03B'136 /DB B*1D)31 1DAA/B3 35* E/C*) 35'3 !#9 'H32N'32/0 *03'2)1 SB13 35* 203*B'H32/0 /J !#9 4235 !3C+01%>6<6O,!>B*1D)320K 20 ' H/0J/BE'32/0') H5'0K* 35'3

21 B*[D2B*C J/B !"#$8E*C2'3*C A5/1A5/BI)'32/06 '0C 1*H/0C)I6 35* H/8)/H')2Z'32/0 /J !#9 '0C !"#$ 35B/DK5 35*2B ED3D') 203*B'H32/0 4235 !3C+01%>6<6O,!>- &521 E/C*)

H/D)C 'HH/D03 J/B 35* C2JJ*B*0H*1 20 35* 32E* H/DB1* /J 'H32N'32/0 /J ;R#$6 ;L#$ '0C !#9 20 201D)20PKB/435 !"#$ %$ X/C*) (I 452H5 !"#$ 1A*H2SH'))I B*H/K02Z*1 ;R#6 ;L# '0C !#9- %&, "/E'20 13BDH3DB* /J !"#$ 20C2H'320K 45*B* 35* !+M8(20C20K A/HQ*3 21 )/H'3*C /0 35* 1E')) )/(* /J 35* Q20'1* C/E'20- %', ;DEE'BI /J 35* E/C*) (I 452H5 !"#$ H'0 B*H/K02Z*6 203*B'H3 '0C 35*0 A5/1A5/BI)'3* ;R# '0C ;L#- +0 3521 E/C*) !3C+01%>6<6O,!>B*KD)'3*1 35* 'H32N23I /J '0 D02C*032S*C 5ICB/A5/(2H E/32J %7X, Q20'1* 35'3 A5/1A5/BI)'3*1 ;R#$ '0C ;L#$6 35D1

3B2KK*B20K 35* C/HQ20K 3/ 35* !+M8(20C20K A/HQ*3 /J !"#$- %(, +0 H/03B'136 35* !+M8(20C20K A/HQ*3 /J !"#$ 21 0/3 20N/)N*C 20 35* (20C20K /J !"#$ 3/ !#9- +013*'C 23 21 35* 203*B'H32/0 /J 35* !7 C/E'201 /J !#9 '0C !"#$ 4235 !3C+01%>6<6O,!>35'3 (B20K1 !#9 '0C !"#$

Riferimenti

Documenti correlati

IL RUOLO DEGLI ENTI CREDITIZI E DEGLI INTERMEDIARI FI- NANZIARI NELLA LEGISLAZIONE DI CONTRASTO AL RICICLAGGIO. IN PARTICOLARE: L'OBBLIGO DI IDENTIFICA- ZIONE E DI

La tensione tra necessità di trasparenza informativa da un lato, in funzione di un corretto funzionamento del mercato ispirato al principio, condiviso in tutto gli ordinamenti, del

De plus, le rebondissement du désir mimé- tique sur le lecteur intègre d’une manière subliminale, au-delà des sources originaires de prestige et de charme (les noms,

Se, ad esempio, nel testo trova spazio un elenco piuttosto prolisso delle intitola- zioni e formule di congedo rilevate nel carteggio all’incipit ed explicit (p. 189-191), manca

Quest’opera potrà servire con qualche merito ed essere uno strumento di lavoro per quelli che sono stati definiti come “memorizzatori sociali”, coloro che conservano e si prendono

A One-Health approach to tackle tick-borne diseases: analysis of European surveillance initiatives.. Terms

[r]

Neuroendocrinology of prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone secretagogues.. Van den Berghe G,