• Non ci sono risultati.

Aida M., Vernoux T., Furutani M., Traas J., Tasaka M., 2002. Roles of PINFORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129: 3965–3974.

N/A
N/A
Protected

Academic year: 2021

Condividi "Aida M., Vernoux T., Furutani M., Traas J., Tasaka M., 2002. Roles of PINFORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129: 3965–3974. "

Copied!
16
0
0

Testo completo

(1)

Bibliografia

Aida M., Ishida T., Tasaka M., 1999. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUPSHAPED COTYLEDON and SHOOT MERISTEMLESS genes.

Development 126: 1563-1570.

Aida M., Vernoux T., Furutani M., Traas J., Tasaka M., 2002. Roles of PINFORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129: 3965–3974.

Albertini E., Marconi G., Reale L., Barcaccia G., Porceddu A., Ferranti F., Falcinelli M., 2005. SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant Physiol. 138: 2185-99.

Ammirato P.V., 1983. Embryogenesis. In: Handbook of Plant Cell Culture, Volume 1 (D.A. Evans, W.R. Sharp, P.V. e Y.Yamada, eds.), pp. 82-123.

Macmillan, New York.

Ammirato P.V., 1987. Organizational events during somatic embryogenenis. In: Plant Tissue and Cell Culture. C.E. Green, D. A.

Sommers, W.P. Hackett, D.D. Biesboer, eds., pp. 57-81. Alal Liss, Inc., New York.

Andres V., Chiara M.D., Mandavi V., 1994. A new bipartite DNA-binding domain: cooperative interaction between the cut repeat and homeodomain of the cup homeo proteins. Genes Dev. 8: 245-257.

Aufiero B., Neufeld E.J., Orkin S.H., 1994. Sequence-specific DNA binding of the individual cut repeats of the Human CCAAT displacement/cut homeodomain protein. Proc. Natl. Acad. Sci. USA 91: 7757-7761.

Babu M.M., Luscombe N.M., Aravind L., Gerstein M., Teichmann S.A., 2004. Structure and evolution of transcriptional regulatory networks. Curr.

Opin. Struct. Biol. 14: 283-291.

Baroux C, Pien S, Grossniklaus U., 2007. Chromatin modification and remodeling during early seed development. Curr. Opin. Genet. Dev. 17:

473-479.

Barton M.C., Madani N., Emerson B.M., 1997. Distal enhancer regulation by promoter derepression in topologically constrained DNA in vitro. Proc.

Natl. Acad. Sci. USA 94: 7257–7262.

Baud S, Mendoza MS, To A, Harscoët E, Lepiniec L, Dubreucq B., 2007.

WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis.

Plant J. 50: 825-838.

(2)

Baudino S., Hansen S., Brettschneider R., Hecht V.F.G., Dresslhaus T., Lorz H., Dumas C., Rogowsky P.M., 2001. Molecular characterization of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta 213: 1-10.

Baumlein H., Misera S., Luerben H., Kolle K., Horstmann C., Wobus U., Muller A.J., 1994. The FUS3 gene of Arabidopsis thaliana is a regulator of gene expression during late embryogenesis. Plant J. 6: 379-387.

Baxevanis A.D., Arents G., Moudrianakis E.N., Landsman D., 1995. A variety of the DNA-binding and multimeric protein contain the histone fold motif. Nucleic Acids Res. 23: 2685-2691.

Bellorini M., Lee D.K., Dantonel J.K., Zemzoumi K., Roeder R.G., Tora L., Mantovani R., 1997. CCAAT binding NF-Y-TBP interactions: NF-YB and NF- YC requie short domains adjacent to their histone fold motifs for associaton with TBP basic. Nucleic Acid Res. 25: 2174-2181.

Bewley D., Hempel F.D., McCormick S., Zambryski P., 2003. Lo sviluppo riproduttivo. In: Biochimica e biologia molecolare delle piante. Ed.

Zanichelli, pp. 909-962. Bologna

.

Birnbaum KD, Sánchez Alvarado A., 2008. Slicing across kingdoms:

regeneration in plants and animals. Cell 132: 697-710.

Boutilier K., Offringa R., Sharma V.K., Kieft H., Ouellet T., Zhang L., Hattori J., Liu C.M., van Lammeren A.A.M., Miki B.L.A., Custers J.B.M., Campagne L.M.M., 2002. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14: 1737-1749.

Bracegirdle B., Miles P.H., 1971. An atlas of plant structure. Vol. I Heinemann Educational Books, London.

Braybrook Siobhan A., Harada J. J., 2008 LECs go crazy in embryo development. Plant Science Vol. 13 No.12.

Burke T.W., Kadonaga J.T., 1997. The downstream promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes Dev. 11: 3020–3031.

Cappelletti C., 1975. Gli organi della riproduzione. In: Botanica Vol. 1. Ed.

UTET, pp. 489-602, Torino.

Caretti G., Salsi V., Vecchi C., Imbriano C., Mantovani R., 2003. Dynamic

recruitment of NF-Y and histone acetyltransferases on cell-cycle

promoters. J. Biol. Chem., 278: 30435-30440.

(3)

Cary A.J., Che P., Howell S.H., 2002. Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J. 32: 867-877.

Carey M, Smale ST, 2001. Concepts and strategies: I. promoter and the general transcription machinery. In: Transcriptional regulation in eukaryotes. New York: Cold Spring Harbor Laboratory Press.

Cartharius K., Frech K., Grote K., Klocke B., Haltmeier M., Klingenhoff A., Frisch M., Bayerlein M., Werner T., 2005. MatInspector and beyond:

promoter analysis based on transcription factor binding sites.

Bioinformatics 21: 2933-2942

.

Casson, S.A. and Lindsey, K. 2006. The turnip mutant of Arabidopsis reveals that LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity. Plant Physiol. 142: 526–541 Chiappetta A, Fambrini M, Petrarulo M, Rapparini F, Michelotti V, Bruno L, Greco M, Baraldi R, Salvini M, Pugliesi C, Bitonti MB., 2009. Ectopic expression of LEAFY COTYLEDON1-LIKE gene and localized auxin accumulation mark embryogenic competence in epiphyllous plants of Helianthus annuus x H. tuberosus. Ann Bot (Lond). 103: 735-747.

Chiba Y., Johnsonb M.A., Liddera P., Vogelc J.T., van Erpc H., Greena P.J., 2004. AtPARN is an essential poly(A) ribonuclease in Arabidopsis. Gene 328: 95–102.

Chugh A., Khurama P., 2002. Gene expression during somatic embryogenesis – recent advances. Curr. Sci. 83: 715-730.

Choi Y.E., KatsumiM., Sano H., 2001. Triiodobenzoic acid, an auxin polar transport inhibitor, suppresses somatic embryo formation and postembryonic shoot/root development in Eleutherococcus senticosus.

Plant Sci. 160: 1183–1190

Cooke, T.J., Racusen R.H., Cohen J.D., 1993. The role of auxin in plant embryogenesis. Plant Cell 5: 1494–1495

D’Amato F., Baroncelli S., Durante M., 1987. Genetica vegetali. Bollati Boringhieri, Torino.

de Boer G.J., Testerink C., Pielage G., Nijkamp H.J., Stuitje A.R., 1999.

Sequences surrounding the transcription initiation site of the Arabidopsis

enoyl-acyl carrier protein reductase gene control seed expression in

transgenic tobacco. Plant Mol. Biol. 39: 1197–1207.

(4)

De Klerk G.-J., Arnholdt-Schmitt B., Lieberei R., Neumann K.-H., 1997.

Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects. Biol. Plant. 39: 53-66.

Dhonukshe P, Tanaka H, Goh T, Ebine K, Mähönen AP, Prasad K, Blilou I, Geldner N, Xu J, Uemura T, Chory J, Ueda T, Nakano A, Scheres B, Friml J., 2008. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456: 962-966.

Dilaurenzio L., Wysocka-Diller J., Malamy J.E., Pysh L., Helariutta Y., Freshour G., Hahn M.G., Feldmann K.A., Benfey P.N., 1996. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:

423-433.

Dodeman V.L., Ducreux G., Kreis M., 1997. Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot. 48: 1493-1509.

Dudits D., Bögre L., Györgyey J., 1991. Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J. Cell Sci. 99: 475-484.

Edwards D., Murray J.A.H., Smith A.G., 1998. Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol. 117: 1015-1022.

Ezhova T.A., 2003. Genetic control of totipotency of plant cells in an in vitro culture. Russ. J. Develop. Biol. 34: 197-204.

Fambrini M., Fisichella M., Pugliesi C., 2001. Enhanced morphogenetic potential from in vitro regenerated plants of genus Heliantus: An overview. Recent res. Devel. Plant Biol.,1: 35-54.

Fambrini M., Durante C., Cionini G., Geri C., Giorgetti L., Michelotti V., Salvini M., 2006. Characterization of LEAFY COTYLEDON1-LIKE gene in Helianthus annuus and its relationship with zygotic and somatic embryogenesis. Dev. Genes Evol. 216: 253–264.

Fehér A., Pasternak T.P., Dudits D., 2003. Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss. Organ Cult. 74: 201-228.

Finnegan E.J., Peacock W.J., Dennis E.S., 2000. DNA methylation, a key regulator of plant development and other processes. Curr. Opin. Genet.

Dev. 10: 217–223.

Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa

R., Jürgens G., 2003. Efflux-dependent auxin gradients establish the

apical-basal axis of Arabidopsis. Nature 426: 147-153.

(5)

Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K., 2002. AtPIN4 mediates sink- driven auxin gradients and root patterning in Arabidopsis. Cell 108: 661- 673.

Gerola F.M., 1995. Generalità degli eucarioti: la riproduzione. In: Biologia e diversità dei vegetali. Ed. UTET, pp. 241-266. Torino.

Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G., 2003. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin- dependent plant growth. Cell 112: 219-230.

Gidekel M., Jimenez B., Herrera-Estrella L., 1996. The first intron of the Arabidopsis thaliana gene coding for ELONGATION FACTOR 1 contains an enhancer-like element. Gene 170: 201–206.

Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F., and Goodman, H.M., 1992. lsolation of the Arabidopsis A613 gene by positional cloning.

Plant Cell 4: 1251-1261.

Goebel-Tourand I., Mauro M.C., Sossountzov L., Migignac E., Deloire A., 1993. Arrest of somatic embryo development in grapvein: histological characterization and the effec of ABA, BAP and Zeatin in stimulating plantlet development. Plant Cell Tiss. Organ Cult. 33: 91-103.

Goldberg R.B., de Plaiva G., Yadegari R., 1994. Plant embryogenesis:

zygote to seed. Science 266: 605-614.

Golden T.A., Schauer S.E., Lang J.D., Pien S., Mushegian A.R., Grossniklaus U., Meinke D.W., Ray A., 2002. SHORT INTEGUMENTS/

SUSPENSOR1/CARPEL FACTOR, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol. 130:

808-822.

Grafi G., 2004. How cells dedifferentiate: a lesson from plants. Dev. Biol.

268: 1-6.

Guitton AE, Berger F., 2005. Loss of function of MULTICOPY SUPPRESSOR OF IRA 1 produces nonviable parthenogenetic embryos in Arabidopsis.

Curr Biol. 15: 750-754.

Guoli J., Jianti Z., Yingjia S., Xiaohui W., Ronghan J., Yun L., Loke J.C., Davis K.M., Reese G.J, Qingshun Q.L., 2007. Predictive modeling of plant messenger RNA polyadenylation sites. BMC Bioinformatics 8: 43.

Gusmaroli G., Tonelli C., Mantovani R., 2001. Regulation of the CCAAT-

binding NF-Y subunits in Arabidopsis thaliana. Gene 264: 173-185.

(6)

Gusmaroli G., Tonelli C., Mantovani R., 2002. Regulation of novel members of the Arabidopsis thaliana of the CCAAT-binding nuclear factor Y subunits. Gene 283: 41-48.

Gutierrez L., Van Wuytswinkel O., Castelain M., Bellini C., (2007).

Combined networks regulating seed maturation. Trends Plant Sci. 12:

294–300

Haecker A., Grob-Hardt R., Geiger B., Sarkar A., Breuninger H., Herrmann A., Laux T., 2004. Expression dynamics of WOX genes mark cell fate decisions during early Arabidopsis patterning. Development 131: 657-668.

Halperin W., Jensen W.A., 1967. Ultrastuctural change during growth and embryogenesis in carrot cultures. J.Ultrastuct. Res. 18: 428-433.

Harada J.J., 1997. Seed maturation and control of germination. In:

Advances in Cellular and Molecular Bioloy of Plants. Vol. 4. Cellular and Molecular Biology Seed Development. Larkins B.A., Vasi I.K., eds., pp 545- 592. Kluwer Academic Publishers., Dordrecht.

Harada J.J., 1999. Signaling in plant embryogenesis. Curr. Opin. Plant Biol.

2: 23-27.

Harada J.J., 2001. Role of the Arabidopsis LEAFY COTYLEDON genes in seed development. J. Plant Physiol. 158: 405-409.

Harada R., Berube G., Tamplin O.J., Denis-Larose C., Nepveu A., 1995.

DNA-binding specificity of the cut repeats from the human cut-like protein. Mol. Cell. Biol. 15: 129-140.

Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE., 2003. Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol. 133: 653-663.

Hays DB, Yeung EC, Pharis RP., 2002. The role of gibberellins in embryo axis development. J Exp Bot. 53:1747-51.

Hecht V., Vielle-Calzada J.P., Hartog M.V., Schmidt E.D., Boutilier K., Grossniklaus U., de Vries S.C., 2001. The Arabidopsis somatic receptor kinase 1 gene is espresse in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127: 803- 816.

Helariutta Y., Fukaki H., Wysocka-Diller J., Nakajima K., Jung J., Sena G.,

Hauser M.T., Benfey P.N., 2000. The SHORT-ROOT gene controls radial

patterning of the Arabidopsis root through radial siganalig. Cell 101: 555-

567.

(7)

Henderson J.T., Li H.C., Rider S.D., Mordhorst A.P., Romero-Severson J., Cheng J.C., Robey J., Sung Z.R., de Vries S.C., Ogas J., 2004. PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol. 134: 995- 1005.

Howell S.H., 1998. Embryogenesis. In: Molecular genetics of plant development. Ed. Cambridge University Press, pp. 55-82. Cambridge.

Hyman A.A., Stearns T., 1992. Spindle positioning and cell polarity. Cell Division 9: 469-471.

Ikeda-Iwai M., Umehara M., Satoh S., Kamada H. 2003. Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana.

Plant J. 34: 107-114.

Ikeda, M. et al. (2006). Embryogenesis-related genes; its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnol. 23: 153–161

Kagaya Y., Okuda R., Ban A., Toyoshima R., Tsutsumida K., Yamamoto A., Hattori T., 2005a. Indirect ABA-dependent regulation of seed storage protein genes by FUSCA3 transcription factor in Arabidopsis.

Plant Cell Physiol. 46: 300–311

Kagaya Y., Toyoshima R., Okuda R., Usui H., Yamamoto A., Hattori T., 2005b. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol. 46: 399–406

Keith K., Kraiml M., Dengler N.G., McCourt P., 1994. fusca3:

hereterochronic mutation affecting late embryo development in Arabidopsis. Plant Cell 6: 589-600.

Kikuchi A., Sanuki N., Higashi K., Koshiba T., Kamada H., 2006. Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223: 637–645 Kim J.H., Richter J.D., 2006. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol. Cell. 24: 173-183.

Kohler C., Hennig L., Bouveret R., Gheyselinck J., Grossniklaus U., Gruissem W., 2003. Arabidopsis MSI1 is a component of MEA/FIE Polycomb group complex and required for seed development. EMBO J.

22: 4804-4814.

(8)

Koltunow A.M., Grossniklaus U., 2003. Apomixis: a developmental perspective. Ann. Rev. Plant Biol. 54: 547-574.

Komamine A., Matsumoto M., Tsukahara M., Fujiwara A., Kawahara R., Ito M., Smith J., Nomura K., Fujimura T., 1990. Mechanisms of somatic embryogenesis in cell cultures: physiology, biochemistry, and molecular biology. In: Progress in plant cellular and molecular biology. Eds. Nijkamp H.J.J., Van der Plas L.H.V., Van Aartrijk J., eds., pp. 307-313. Kluwer, Dordrecht.

Kozak M. 1987. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acid Res. 15: 8125-8148.

Kwong R. W., Bui A.Q., Lee H., Kwong L.W., Fischer R.L., Goldberg R.B., Harada J. J., 2003. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15: 5–18.

Larkin J.C., Oppenheimer D.G., Pollock S., Marks M.D., 1993. Arabidopsis GLABROUS1 gene requires downstream sequences for function. Plant Cell 5: 1739–1748.

Laux T., Mayer K.F., Berger J., Jürgens G., 1996. The WUSCHEL gene is requiered for shoot and floral meristem integrity in Arabidopsis.

Development 122: 87-96.

Laux T, Würschum T, Breuninger H., 2004. Genetic regulation of embryonic pattern formation. Plant Cell. 16 Suppl:S190-202.

Lee H., Fischer R.L., Goldberg R.B., Harada J.J., 2003. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc. Natl. Acad. Sci. USA 100: 2152–2156.

Leyser O., Day S., 2003. Primary axis development. In: Mechanisms in plant development. Ed. Blackwell Publishing, pp. 48-73. Oxford.

Li Q., Hunt A.G., 1997. The polyadenylation of RNA in plants. Plant Physiol.

115: 321-325.

Li X.Y., van Huijsduijnen H., Mantovani R., Benoist C., Mathis D., 1992.

Intron- exon organitation of the NF-Y genes. Tissue specific splicing modifies an activation domain. J. Biol. Chem. 267: 8984-8990.

Liberati C., Ronchi A., Lievens P., Ottolenghi S., Mantovani R., 1998. NF-Y

organizes the g-globin CCAAT boxes region. J. Biol. Chem. 273: 16880-

16889.

(9)

Lohmann, J.U.; Hong, R.L.; Hobe, M.; Busch, M.A.; Parcy, F.; Weigel., S.R., 2001. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:703-803.

Loidl P., 2004. A plant dialect of the histone language. Trends Plant Sci.

9:84-90.

Loke J.C., Stahlberg E.A., Strenski D.G., Haas B.J., Wood P.C., Li Q.Q., 2005. Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures. Plant Physiol. 138: 1457–1468

.

Long J.A., Moan E.I., Medford J.I., Barton M.K., 1996. A member of the knotted class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379: 66-69.

Lo Schiavo F., 2003. Modelli di sviluppo: dall’embrione alla pianta. In:

Biologia vegetale. Ed. Zanichelli, pp. 338-348. Bologna.

Lotan T., Ohto M., Yee K. M., West M.A. L., Lo R., Kwong R. W., Yamagishi K., Fischer R. L., Goldberg R.B., Harada J.J., 1998. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93: 1195–1205.

Mangus D.A, Evans M.C, Jacobson A., 2003. Poly(A)-binding proteins:

multifunctional scaffolds for the posttranscriptional control of gene expression. Genome Biol. 4: 223.

Mantovani R., 1998. A survey of 178 Nf-Y binding CCAAT boxes. Nucleic Acids Res. 26: 1135-1143.

Mantovani R., 1999. The molecular biology of the CCAAT-binding factor NF-Y. Gene 239: 15–27.

Mantovani R., Pessara U., Tronche F., Li X.Y., Knapp A.M., Pasquali J.L., Benoist., Mathis D., 1992. Monoclonal antibodies to NF-Y define its function in MHC class II and albumin gene transcripton. EMBO J. 11: 3315- 3322.

Mayer K.F.X., Schoof H., Haecker A., Lenhard M., Jüngens G., Laux T., 1998. Role of WUSCHEL in regulating stem cell fate in Arabidopsis shoot meristem. Cell 95: 805-815.

Mazhar H., Quayle R., Fido R.J., Stobart A.K., Napier J.A., Shewry P.R., 1998. Synthesis of storage reserves in developing seeds of sunflower.

Phytochemistry 48: 429-432.

(10)

McNabb D.S., Xing Y., Guarente L., 1995. Cloning of yeast HAP5: a novel subunit of a heteromeric complex required for CCAAT binding. Genes Dev. 9: 47-58.

Meinke D.W., 1992. A homeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258: 1647-1650.

Meinke D.W., Yeung E.C., 1993. Embryogenesis in angiosperms:

development of the suspensor. Plant Cell 5: 1371-1381.

Meinke D.W., Franzemman L.H., Nickle T.C., Yeung E.C., 1994. leafy cotyledon mutants of Arabidopsis. Plant Cell 6: 1049-1064.

Mendez R., Richter J.D, 2001. Translational control by CPEB: a means to the end. Nat. Rev. Mol. Cell. Biol. 2: 521-529.

Molina C., Grotewold E., 2005. Genome wide analysis of Arabidopsis core promoters. BMC Genomics, 6: 25.

Mordhorst A.P., Toonen M.A.J., de Vries S.C. 1997. Plant embryogenesis.

CRC Cri. Rev. Plant Sci. 16: 535-576.

Motta MC, Caretti G, Badaracco GF, Mantovani R., 1999. Interactions of the CCAAT-binding trimer NF-Y with nucleosomes. J Biol Chem. 274 :1326- 1333.

Nakamura M, Tsunoda T, Obokata J, 2002: Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiator. Plant J. 29: 1-10.

Natesh S., Rau M.A., 1984. The embryo. In: Embryology of Angiosperm.

Johri B.M., ed., pp. 377-443. Springer-Verlag, Berlin.

Newcomb W., 1973. The development of the embryo sac of sunflower heliantus annuus after fertilization. Can J Bot 51. 879-890.

Nishimura N., Kitahata N., Seki M., Narusaka Y., Narusaka M., Kuromori T., Asami T., Shinozaki K., Hirayama T., 2005. Analysis of ABA HYPERSENSITIVE GERMINATION2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant J. 44: 972-984.

Nogler G.A, 1984. Gametophytic apomixis. In: Embryology of Angiosperm Johri B.M., ed., pp. 475-518. Springer-Verlag, Berlin.

Nolan K.E., Irwanto R.R., Rose R.J., 2003. Auxin up-regulates MtSERK1

expression in both Medicago truncatula root-forming and embryogenic

cultures. Plant Physiol. 133: 218-230.

(11)

Ogas J, Cheng JC, Sung ZR, Somerville C., 1997. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant.

Science 277: 91-94.

Ogas J., Kaufmann S., Henderson J., Somerville C., 1999. PICKLE is a CHD3 chromatin-remodelling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc. Natl. Acad.

Sci. USA 96: 13839– 13844.

Osada S., Yamamoto H., Nishihara T., Imagawa M., 1996. DNA binding specificity of the CCAAT/Enhancer-bindinf protein transcription factor family. J. Biol. Chem. 271: 3891-3896.

Pandey R.R., Cerebelli M., Singh P.B., Ericsson J., Mantovani R., Kanduri C., 2004. NF-Y regulates the antisense promoter, bidirectional silencing and differential epigenetic marks of the Kcnq1 imprinting control region.

J. Biol. Chem. 279: 52685-52693.

Parrot W.A., Merkle S.A.,Williams E.G., 1991. Somatic embryogenesis:

potential for use in propagation and gene tranfer systems. In: Advanced Methods in Plant Breeding and Biotechnology. Murray D., Ed., pp. 158- 200. University of Sidney, Sidney.

Passarinho P., Ketelaar T., Xing M., van Arkel J., Maliepaard C., Hendriks M. W., Joosen R., Lammers M., Herdies L., den Boer B., van der Geest L., Boutilier K., 2008. BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways. Plant Mol Biol 68: 225–

237.

Piccioni F., Zappavigna V., Verrotti A.C., 2005. Translational regulation during oogenesis and early development: the cap-poly(A) tail relationship. C. R. Biol. 328: 863–881.

Purves W.K., Sadava D., Orians G.H., Heller H.C., 2001. La riproduzione delle Angiosperme. In: Biologia: la biologia delle piante. Ed. Zanichelli, pp., 862 - 877. Bologna.

Raghavan, V. (2004). Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. Am. J. Bot. 91: 1743–1756

Raven P.H., Evert R.F., Curtis H. 1984. Prime fasi dello sviluppo del corpo della pianta. In: Biologia delle piante. Ed. Zanichelli, pp. 367-376. Bologna Ray P.M., Steeves T.A., Fultz S.A., 1983. Riproduzione delle Angiosperme.

In: Botanica. Ed. Zanichelli, pp. 277-354. Bologna.

(12)

Reinert J., 1958. Morphogenese und ihre kontrolle an gewebekulturen aus carotten. Naturwissenshaften 45: 344-345.

Reverdatto S.V., Dutko J.A., Chekanova J.A., Haminlton D.A., Belostotsky D.A., 2004. mRNA deadenylation by PARN is essential for embryogenesis in higher plants. RNA 10: 1200-1214.

Reyes D, Rodríguez D, González-García MP, Lorenzo O, Nicolás G, García-Martínez JL, Nicolás C., 2006. Overexpression of a protein phosphatase 2C from beech seeds in Arabidopsis shows phenotypes related to abscisic acid responses and gibberellin biosynthesis. Plant Physiol. 141:1414-1424.

Ribnicky D.M., Cohen J.D., Hu W.S., Cooke T.J., 2001. An auxin surge following fertilization in carrot: a mechanism for regulating plant totipotency. Planta 214: 505-509.

Richter J.D., 1999. Cytoplasmic polyadenylation in development and beyond. Microbiol. Mol. Biol. Rev. 63: 446-456.

Rombauts S., Florquin K., Lescot M., Marchal K., Rouze P., Van de Peer Y., 2003. Computational approaches to identify promoters and cis- regulatory elements in plant genomes. Plant Physiol. 132: 1162-1176

.

Salsi V., Caretti G., Wasner M., Reinhard W., Haigwitz U., Engeland K., Mantovani R., 2003. Interactions between p300 and multiple NF-Y trimers govern cyclin B2 promoter function. J. Biol. Chem., 278: 6642-6650.

Santos Mendoza M., Dubreucq B., Miquel M., Caboche M., Lepiniec L., 2005. LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett. 579: 4666-4670.

Santos Mendoza M., Dubreucq B., Baud S., Parcy F., Caboche M., Lepiniec L., 2008. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J. 54: 608–620 Schmidt E.D., Guzzo F., Toonen A.A., de Vries S.C., 1997. A leucin-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124: 2049-2062.

Schubert D, Clarenz O, Goodrich J., 2005. Epigenetic control of plant development by Polycomb-group proteins. Curr Opin Plant Biol. 8: 553- 561.

Seiler G.J. 1997. Anatomy and morphology of sunflower. In: Sunflower

technology and production. Ed. American Society of Agronomy, pp. 67-

111. Madison.

(13)

Shah K., Russinova E., Gadella T.W.J., Willemse J., de Vries S.C., 2002. The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes Dev. 16: 1707-1720.

Shahmuradov I.A., Gammerman A.J., Hancock J.M., Bramley P.M., Solovyev V.V., 2003. PlantProm: a database of plant promoter sequences. Nucleic Acids Res. 31: 114-117.

Shahmuradov A., Solovyev V.V., Gammerman A.J., 2005. Plant promoter prediction with confidence estimation. Nucleic Acids Res. 33: 1069–1076.

Sharp W.R., Evans D.A., Sondahl M.R., 1982. Application of somatic embryogenesis to crop improvement. In: Plant Tissue Culture 1983. Proc.

5th Int. Congress Plant Tissue Culture. Fujiwara A., ed. Jap. Assc. Plant Tissue Culture, pp. 759-762. Tokio.

Shwartz B.W., Yeung E.C., Meinke D.W., 1994. Disruption of morphogenesis and trasformation of the suspensor in abnormal suspensor mutants of Arabidopsis. Development 120: 3235-3245.

Sinha S., Maity S.N., Lu J., de Crombrugghe B., 1995. Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc.

Natl. Acad. Sci. USA 92: 1624-1628.

Smale S.T., 1997. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim. Biophys. Acta 1351: 73–88.

Somleva M.N., Schmidt E.D.L., de Vries S.C., 2000. Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identifies by cell tracking and SERK expression. Plant Cell Rep. 19: 718-726.

Srivastava L.M., 2001. Embryogenesis. In: Plant growth and development:

hormones and environment. Ed. Academic press, pp. 75-92. San Diego.

Steeves T.A., Sussex I.M., 1989. Alternative patterns of development. In:

Patterns in Development. Cambridge University Press, pp. 348-370.

Cambridge.

Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G., 1999. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286: 316-318.

Steward F.C., Mapes M.O., Mears K., 1958. Growth and organized

development of cultured cells. II. Am. J. Bot. 45: 705-708.

(14)

Stone S.L., Kwong L.W., Yee K.M., Pelletier J., Lepiniec L., Fischer R.L., Goldberg R.B., Harada J.J. 2001. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc.

Natl. Acad. Sci. USA 98: 11806-11811.

Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada JJ., 2008. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. Proc. NAtl. Acad. Sci. USA 105: 3151- 3156.

Suzuki M, Wang HH, McCarty DR. 2007. Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol. 143: 902- 911.

Taylor R.L., 1967. The foliar embryos of Malaxis paludosa. Can. J. Bot. 45:

1553-1556.

Thibaud-Nissen F., Shealy R.T., Khanna A., Vodkin L.O., 2003. Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol. 132: 118-136.

Thomas C, Bronner R, Molinier J, Prinsen E, van Onckelen H, Hahne G., 2002. Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos.

Planta 215: 577-583.

Thomas C., Meyer D., Himber C., Steinmetz A., 2004. Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol. Biochem. 42: 35-42.

Thomas T.L., 1993. Gene expression during plant embryogenesis and germination: An overview. Plant Cell 5: 1401-1410.

Tiwari SB, Hagen G, Guilfoyle T., 2003. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell. 15: 533-543.

Vandepoele K., Casneuf T., Van de Peer Y., 2006. Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics. Genome Biol. 7: R103.

Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ., 2007. Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci. 12: 245-252.

Veron D.M., Meinke D.W., 1994. Embryogenetic trasformation of the suspensor in twin, a polyembryonic mutant of Arabidopsis. Dev. Biol. 165:

566-573.

(15)

von Arnold S., Sabala I., Bozhkov P., Dyachok J., Filonova L., 2002.

Developmental pathways of somatic embryogenesis. Plant Cell Tissue Org. Cult. 69: 233-239.

Vogel G., 2008. Breakthrough of the year. Reprogramming Cells.

Science. 322: 1766-1767.

Wasserman W.W., Palumbo M., Thompson W., Fickett J.W., Lawrence C.E., 2000. Human-mouse genome comparisons to locate regulatory sites.

Nat. Genet. 26: 225–228.

Weijers, D. and Jürgens, G., 2005. Auxin and embryo axis formation: the ends in sight? Curr. Opin. Plant Biol. 8: 32–37

West M.A.L., Yee K.M., Danao J., Zimmerman J.L., Fischer R.L., Goldberg R.B., Harada J.J., 1994. LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6:

1731-1745.

Williams E.G., Maheswaran G., 1986. Somatic embryogenesis factor influencing coordinated behaviour of cell as a embryogenic group. Ann.

Bot. 57: 443-462.

Xu YY, Wang XM, Li J, Li JH, Wu JS, Walker JC, Xu ZH, Chong K., 2005.

Activation of the WUS gene induces ectopic initiation of floral meristems on mature stem surface in Arabidopsis thaliana. Plant Mol Biol. 57: 773- 784.

Yadegari R., De Paiva G.R., Laux T., Koltunow A.M., Apuya N., Zimmerman J.L., Fischer R.L., Harada J.J., Goldberg R.B., 1994. Cell differentiation and morphogenesis are uncoupled in Arabidopsis raspberry embryos. Plant Cell 6: 1713-1729.

Yamamoto A., Kagaya Y.

,

Toyoshima R. , Kagaya M., TakedaS., and Hattori T., 2009. Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors. Plant J 58: 843-856.

Yamamoto Y.Y., Ichida H., Matsui M., Obokata J., Sakurai T., Satou M., Seki M., Shinozaki K., Abe T., 2007. Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics 8: 67.

Yamamoto N, Kobayashi H, Togashi T, Mori Y, Kikuchi K, Kuriyama K,

Tokuji Y., 2005. Formation of embryogenic cell clumps from carrot

epidermal cells is suppressed by 5-azacytidine, a DNA methylation

inhibitor. J Plant Physiol. 162: 47-54.

(16)

Yan H., Yang Hong-yuan, Jensen W. A., 1991. Ultrastructure of the micropyle and its relationship to pollen tube growth and synergid degeneration in sunflower. Sex Plant Reprod 4:166-175.

Yun J., Chae H.D., Choi T.S., Kim E.H., Bang Y.J., Chung J., Choi K.S., Mantovani R., Shin D., 2003. Cdk2-dependent phosphorilation of the NF-Y transcriptional factor and its involvement in the p53-p21 signaling pathway. J. Biol. Chem. 278: 36966 -36972.

Zhang S.H., Lawton M.A., Hunter T., Lamb C.J., 1994. atpk1, a novel ribosomal protein kinase gene from Arabidopsis: I. Isolation, characterization, and expression. J. Biol. Chem. 269: 17586–17592.

Zhao XY, Su YH, Cheng ZJ, Zhang XS., 2008. Cell fate switch during in vitro plant organogenesis. J Integr Plant Biol. 50: 816-824.

Zimmermann J.L., 1993. Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5: 1411-1423.

Zorbas H., Rein T., Krause A., Hoffmann K., Winnaker E.L., 1992. Nuclear Factor I (NFI) binds to an NFI-type site but not to the CCAAT site in the human l-globin gene promoter. J. Biol. Chem. 267: 8478-8484.

Zuo J., Niu Q-.W., Frugis G., Chua N.-H. 2002. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 30:

349-359.

Zwicker J., Muller R., 1997. Cell cycle regulation of gene expression by

transcriptional repression. Trends Gen. 13: 3-6.

Riferimenti

Documenti correlati

We found that 3,5-T2 sustained the intestinal alteration caused by D.I.O., as indicated by the high levels of pro-inflammatory cytokines, accompanied by a significant effect of

We overcome these problems by first reducing the linearized operators, obtained at each approximate quasi-periodic solution along a Nash-Moser iterative scheme, to constant

6 Reasoning about epistemic knowledge and incomplete states As we have seen in the previous sections, our approach to action theories verification is defined for domain

To the best of our knowledge, no study has yet looked at the relationship between institutional quality and other local covariates, on the one hand, and firm employment growth, on

lano, 2000..  Le categorie di routine: sono quelle in cui l’impresa deve mantenersi competiti- va, ma non c’è più spazio per significative politiche di differenziazione. Sono

Si ritiene assodato che normalmente l’appartenenza familiare permetta di sopportare livelli di sacrificio maggiori per il bene dell’azienda; si pensi, ad esempio,

Scopo del presente studio è stato quello di valutare, in un gruppo di pazienti con IBS, i possibili effetti della LFD e del successivo reinserimento degli alimenti sulla

In conclusione, quindi, da un lato, il Codice sembra aver coniugato il rispetto del principio del contraddittorio in ossequio ai canoni del giusto processo, ormai