• Non ci sono risultati.

the Habitats grid: The on spatial dimension does matter for red-listing Journal for Nature Conservation

N/A
N/A
Protected

Academic year: 2021

Condividi "the Habitats grid: The on spatial dimension does matter for red-listing Journal for Nature Conservation"

Copied!
9
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Journal

for

Nature

Conservation

jou rn a l h o m e p a g e :w w w . e l s e v i e r . d e / j n c

Habitats

on

the

grid:

The

spatial

dimension

does

matter

for

red-listing

Daniela

Gigante

a,∗

,

Bruno

Foggi

b

,

Roberto

Venanzoni

a

,

Daniele

Viciani

b

,

Gabriella

Buffa

c

aDepartmentofChemistry,BiologyandBiotechnology,UniversityofPerugia,BorgoXXgiugno,74,I-06121Perugia,Italy bDepartmentofBiology,UniversityofFlorence,ViaG.LaPira4,I-50121Florence,Italy

cDepartmentofEnvironmentalScience,InformaticsandStatistics,UniversityCa’FoscariofVenice,ViaTorino155,I-30172VeneziaMestre,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19December2015 Receivedinrevisedform2March2016 Accepted29March2016

Keywords: Areaofoccupancy Emergentproperties Patternofspatialoccupancy Plantcommunity Spatialscale Threatassessment

a

b

s

t

r

a

c

t

BesidesspeciesRedLists,recently,avarietyofframeworkshavebeenproposedforassessinghigher levelsofbiologicalorganisation,i.e.ecosystems,habitats,plantcommunities.Mostoftheseprotocols referto‘plantspeciesassemblages’or‘vegetationtypes’asproxiesforecosystemsorhabitats.Indeed,the habitatconceptbasedonplantcommunitieshasacquiredacentralroleasakeyapproachforbiodiversity conservationabovethespecieslevel.Plantcommunities,likeeverycomplexbiologicalsystem,hold scale-dependent‘emergent’propertieswhichvaryasafunctionofthescaleofobservation.Withreferenceto red-listing,thesescale-dependentpropertieshavefar-reachingconsequencesforbothidentificationand classification,aswellasforrepresentationandevaluation,andbecomeparticularlychallengingwhen dealingwithcriteriaregardingdeclineindistributionorrestricteddistribution.Therecentdiscussion onthered-listingprotocolshasevidencedseveralaspectsthatclaimspecialeffortsforasuitableuse. Inthepresentpaper,startingwiththeanalysisofsomerecentlyproposedprotocolsforthered-listing ofhabitatsandecosystems,wediscussandtestsome‘emergent’propertiesofspeciesassemblages, providingcuesforreflection.Basedonavarietyoftheoreticalmodelsandscientificoutcomesinliterature fromthelastdecades,wetheorisethatplantcommunitiesownsomeintrinsic,ecologicallybasedand scale-dependentspatialfeatures,whichgiverisetodifferenttypesofpatternofspatialoccupancy.We discussamodelwhere,innaturalconditions,thepossiblepatternsofspatialoccupancyarereferredto 3basictypes:areal,linearandpoint.Thisapproachishereproposedasatooltodiscriminateamong differentbroadcategoriesofplantcommunity-basedhabitattypesandoptimisetheirassessmentin thered-listingprocess.Startingfromahomogeneousdataset,theproposedcasestudiesprovethatthe choiceofthescaleaffectsthecomprehensionofthehabitats’occurrence,withasubstantialrelapseon theestimatesoftheirdistributionsize.Inparticular,habitatswithlinearandpointdistribution,often naturallysmallinsizeanddispersed,aremoresusceptibletobiasedevaluationoftheiractualdistribution andconsequentlyoftheirthreatstatus.Theintrinsicspatialattributesofplantcommunitiesshouldnot beneglectedinared-listingprocessandclaimfora‘habitat-tailored’approach.Theuseofdifferent grid-cellsizesandthresholdsforthethreemainpatternsofspatialoccupancyhereproposed,mightcertainly avoidinaccuratestatements.

©2016ElsevierGmbH.Allrightsreserved.

1. Introduction

Theconservationofbiodiversityisawidelyacknowledged

tar-get for humankind (Cafaro & Primack,2014), as shown by an

increasingarrayofregional,nationalandinternationalagreements

and frameworksfor hindering biodiversity loss(see, e.g.CITES,

1973;EuropeanCommission,2011;UnitedNations,1976,1992).

Themostchallengingaspectstemsfromthecomplexityof

biodi-versity,thatinitselfcomprisesbothmultiplelevelsoforganisation

∗ Correspondingauthor.

E-mailaddress:daniela.gigante@unipg.it(D.Gigante).

(e.g.genes,species,communitiesandecosystems)andtheir

inter-actingrelationshipsatalltheintegrationlevels(Allen&Starr,1982;

Margules&Pressey,2000;Noss,1990).

Inthelastdecades,theInternationalUnionforConservationof

Nature(IUCN)hasledthedevelopmentofquantitativecriteriafor

thecreationofredlistsofthreatenedspeciesthatallowfor

trans-parent, objective and repeatable risk assessments (IUCN, 2012,

2013;Maceetal.,2008).Byrankingspeciesatriskofextinction,

theIUCNRedListsprovideaglobalindicationonthestateofone

levelofbiodiversityandmakegovernmentsandsocietyawareof

thetrendsinextinctionrisk(Baillie,Hilton-Taylor,&Stuart,2004;

Butchartetal.,2004;McCarthy,Thompson,&Garnett,2008).

http://dx.doi.org/10.1016/j.jnc.2016.03.007

(2)

DespitethecuttingedgeimportanceofspeciesRedLists,the

realisationthatanapproachfocusedexclusivelyonthespecieslevel

isunfittoconserveallcomponentsofbiodiversityledthe

scien-tificcommunity,conservationprofessionalsandinstitutionstobe

increasinglyconcernedwithbiodiversityassessments,addressing

higherlevelsofbiological organisation(Izco,2015;Keith,2009;

Keithet al.,2013,2015; Kontula&Raunio,2009; IUCN,2015a;

Nicholson,Keith,&Wilcove,2009;Rodríguezetal.,2011,2012,

2015).Ecologicalcommunitiesmaymoreefficientlyrepresentthe

biological diversity as a whole, compared to the species-level

approach,whichoftenlacksdirectinformationabout

fundamen-talabioticcomponents,thusmissingboththetargetsofprotecting

ecologicalpatternsandprocesses,andensuringthepersistenceof

ecosystemfunctionsandstructure(Balmfordetal.,2002;Cowling

etal.,2004;MillenniumEcosystemAssessment,2005;Noss,1996; SecretariatoftheConventiononBiologicalDiversity,2010).

Fur-thermore,theconservationofcommunitiesorecosystemscanalso

actasasurrogateforthespecies,particularlyforthosespeciesyet

undescribedorpoorlyknown(Cowling&Heijnis,2001;Nicholson

etal.,2009),thusprovidingapreciousservicewhenconsidering

that,despitestrenuousefforts,onlylessthan5%oftheestimated

numberofdescribedspecies(lessthan7%whenconsideringonly

plants)hasbeenevaluatedforinclusionintheIUCNRedListby

2015(IUCN,2015b).Theassessmentofcommunitiesorecosystems

alsoallowstoincorporatefurtherinformation,suchastheroleof

speciesrichness/diversity,offeringprecioustoolsbothforspecies

andhabitat’sprioritization(see,e.g.,Bergetal.,2014;Lindenmayer

etal.,2008;Pärteletal.,2005).

Early lists of endangered plant

communi-ties/habitats/ecosystems have been compiled since the 1980s,

focusingeitheronspecificecosystemtypesoronnational

bound-aries(seee.g.,Moravecetal.,1983;Schulte&Wolf-Straub,1986).

Manycommoncriteriawereusedfortheevaluation(e.g.rarity,

range,speciescomposition,naturalness,humanpressure,aesthetic

oreducationalvalue), buttheassessment wasmostlybasedon

expertknowledge,e.g.long-termfieldexperience(Blab,Riecken,

&Ssymank,1995;Noss,LaRoe,&Scott,1995;Paal,1998)and,in

somecases,keyconceptswerenotunderpinnedbysound

theoret-icalbackgrounds.Morerecently,avarietyofframeworks,founded

onrelevantecological theories,have beenproposedfor

assess-ingthe threat status of plantcommunities/habitats/ecosystems

(Bergetal.,2014;Biserkov,2011;Essl,Egger,&Ellmauer,2002;

Lindgaard&Henriksen,2011;Walkeretal.,2006),insomecases

promptedbygovernmentagencies.Nevertheless,differentlyfrom

species,asyetthereisnoacknowledgedinternational

methodol-ogyonwhichtobasethehabitatred-listing.InEurope,Rodwell,

Janssen,Gubbay,andSchaminée(2013)recentlystartedaproject

aimedatdevelopingaRedListoftheEuropeanhabitattypes,while

theIUCNcouncil(CEM-IUCN&Provita,2012)formallyendorsed

theprotocolproposedbyKeithetal.(2013).

Besides a common origin from the protocol developed for

species(IUCN,2013;Maceetal.,2008),thevariousmethodologies

adopted for plant communities/habitats/ecosystems red-listing

shareseveralcharacteristics:(a)althoughsomeprotocolsdefine

assessmentunitsoflargedimensions,suchas‘ecosystems’(Keith

etal.,2013)or‘Land Environments’ (Walkeretal., 2006), most

ofthemreferto‘plantspeciesassemblages’or‘vegetationtypes’,

usedasproxiesforecosystemsorhabitats;(b)asarule,the

assess-mentisbasedonquantitativecriteriaandonlyfewprotocolsrely

onqualitativeones,i.e.onthebestexpertisesupportedby

spe-cificparadigms(e.g.Biserkov,2011);(c)alltheprotocolsinclude

declineandrestrictedsizeinspatialdistributionaskeycriteria,

andalmost allidentifyquantitativethresholds,oftenanalogous

yetless severethanthose adoptedforspecies;(d)theyarestill

ratherlackinginsuitabletoolstoincorporatemeasuresof

‘ecologi-calfunction’,i.e.thecapacityofcommunitiestosupporttheirwhole

diversityofspeciesandtosustaintheirfunctionalrolesin

land-scapes(Nicholsonetal.,2009),withsomeremarkableexceptions

givingspecialimportancetospeciesdiversityortothepresenceof

threatenedtaxaintheevaluationofhabitatquality(e.g.Andreas

&Lichvar,1995;Bacchetta,Farris,&Pontecorvo,2012;Bergetal., 2014;Gauthier,Debussche,&Thompson,2010).

1.1. Emergentproperties:the“patternofspatialoccupancy”

Plantcommunities,likeeverycomplexbiologicalsystem,hold

aggregateor‘emergent’properties,whichcausethewholetobe

morethanthemeresumofitsparts(Bissonette,1997;Halley&

Winkler,2008;vanderMaarel&Franklin,2013).Innatural

con-ditions,propertiesofplantcommunitiessuchascompositionand

structurearisefromtheinteractionofbothcoarse-andfine-scale

filters(Dale,1999;Lortieetal.,2004).Onafinescale,vegetation

patternsareruledbyspeciessizeandgrowthpattern,aswellas

bytheinteractionsamongplantindividuals.Onalargerscale,they

areinfluencedbyphysicalandgeomorphologicfeatures(i.e.

val-leys,ridges,slopes,waterbodies)thatcreatespatialandecological

heterogeneity(Dale,1999;Greig-Smith,1979;Palmer,1988).

By interacting withspatially distributed environmental

gra-dients,organisms,communitiesandecologicalsystemsarethus

arrayedinspacetoformdistinctpatternsorconfigurations,i.e.

‘spe-cificarrangementofspatialelements’(Turner,Gardner,&O’Neill,

2001),thatexhibitacertainamountofpredictability(Dale,1999).

Thus,althoughtheboundariesbetweendifferentplant

commu-nitiesareinherentlymoreuncertainthanisthecaseforspecies

(Nicholsonetal.,2009),therecognitionanddelimitationofstands

ofvegetationinthefieldcanbebasedoninternalcharacteristics,

e.g.structural,physiognomicandfloristicuniformity,andexternal

ones,e.g.discontinuitywiththesurroundingvegetation(vander

Maarel&Franklin,2013).

Onthisground,itcanbeassumedthateachplantcommunity

ownsintrinsicspatialfeatures,ecologicallyfounded,whichaffect

itsspatialdistributioninnaturalconditions.Inparticular,the

envi-ronmentalheterogeneityaccountsforanintrinsicpropertyofeach

plantcommunitythatwecall‘patternofspatialoccupancy’(PSO).

InaccordancewithDale(1999),werefertospatialpatternas

‘nonrandomnessinspatialarrangement,whichthenpermits

pre-diction’.Theabioticenvironmentisspatiallystructured,resulting

inpatchypatternsorgradients.Innaturalconditions,whenthe

plantspeciesand assemblagesarenotsubjectedtohuman

con-straints,plantcommunitiescan displayseveral,yet predictable,

PSOs.Dale(1999) proposedtheconceptsof‘point pattern’ and

‘patternonanenvironmentalgradient’withreferencetothetype

of representation of plant individuals and communities

distri-bution.Withdifferentalthoughcloselyrelatedaims, theFrench

phytosociological-synusialschooldevelopedageometricapproach

to plant communities, introducing the shape (‘forme spatiale,

linéairecontinue,linéairediscontinue,ponctuelle’)asanessential

propertyofvegetationpatchesinlandscapeanalysis(Géhu,1974,

1991;Julve,1986).

Asageneralmodel,weassumethatthePSOmostlytendsto

displaythreemainpatterns:areal(i.e.withanextended

distribu-tion;e.g.broadleavedtemperateforests,naturalandsemi-natural

grassland formations), linear (i.e. with a distribution in strips,

wherelengthismuchgreaterthanwidth;e.g.riparianand

water-dependant formations,coastal plantcommunities)or point(i.e.

witha naturallyscatteredspatialdistribution,e.g.vegetationof

temporaryponds).

Byreflectingtheecologicaldrivingforces,these3modelsofPSO

arerepresentativeofnaturalconditionsandassuchtheyshouldbe

consideredasanintrinsicfeatureofeachplantcommunity(namely

theydonotgiveaccountofartificial,human-induceddistribution,

(3)

Propertiesofplantcommunities,suchascompositionand

struc-tureaswellastheirspatialpattern,areinherentlyscale-dependent

concepts(Gray, Phan,&Long, 2010; Turner,O’Neill,Gardner,&

Milne,1989;Wiens,1989,1990).Scaledependencecanbedefined

asthedegreetowhichecologicalphenomenavaryasafunction

ofgrainandextent,thetwo maincomponentsofscale(Palmer

&White,1994).Sincedifferentpatternsmayemergeatdiffering

scalesofinvestigation,itiscrucialthatresolution(i.e.grainsize)

andextentbedefinedtoaccuratelyrepresenttheecological

pro-cessortheobjectunderstudy.Differently,thedetectedpatterns

willhavelittlesignificanceandwillleadtoinaccurateconclusions.

Inared-listingprocedure,thisissuebecomesparticularly

chal-lengingwhendealingwithcriteriaregardingdecliningorrestricted

distribution,i.e.traitsbasedonspatialaspectsoftheunitunder

assessment.Forinstance,oneoftheworldwideacceptedmetrics

usedtoevaluatethereductioningeographicdistributionofany

assessmentunitisthe‘Areaofoccupancy’(AOO),correspondingto

theareaofsuitablehabitatactuallyoccupiedbytheassessment

unit,usually calculatedbycrossing theoccurrenceswithagrid

andsummingtheareas(orcountingthenumber)oftheoccupied

cells(IUCN,2012,2013;CEM-IUCN&Provita,2012).Assuch,AOO

dependsonthecell’ssizeandisafunctionofthescaleatwhichitis

measured.Consequently,assessmentsaresubjectedtosignificant

distortionifthedistributionisassessedatdifferentspatialscales.

Giventhegeneralavailabilityofspatialdata,criteriabasedon

dis-tributionwilllikely bethemostfrequentlyused(Boitani,Mace,

&Rondinini,2015).Inthissense,thedevelopmentofconsistent

methodsrequiresacarefulinvestigationoftheimpactofthescale

ontheassessmentoutcomes.

Aimofthepresentpaperistoshowthatthespatialpatternof

plantcommunities,andinparticulartheirPSO,mightplayarolein

ared-listingprocedurewhenapplyingquantitativecriteria,

specif-icallythoserelatingtospatialoccurrence.Inparticular,theuseof

the‘Areaofoccupancy’(AOO)mightbringtoinconsistent

assess-mentsacrosshabitattypeswithdifferentPSO.Ourfirsthypothesis

isthat,asadirectconsequenceofthespatialdistributionof

ecolog-ical,physiognomicandstructuralvariables,thePSOsignificantly

affectsthehabitat’sassessment.Oursecondhypothesisisthatthe

useofafixedgrid-cellsizeforhabitatswithdifferentPSOisnot

appropriateandleadstobiasedassessment,evenmoredistorted

forlinearandpointPSO.

2. Materialsandmethods

ToshowhowthePSOmightaffecttheAOOcalculationand,

con-sequently,theapplicationofthered-listingcriteria,wetookinto

accountfourcasestudies.

Asassessmentunitsweconsideredthehabitatsasdefinedbythe

European‘Habitat’Directive92/43/EEC(HD;seee.g.Evans&Arvela,

2011)andlistedinitsAnnexI.ThedescriptionofHDHabitats(from

hereoncapitalised,toavoidanymisunderstandingwithother

con-ceptsofhabitat),isfoundedontherelatedplantcommunities.They

areusuallyidentified,andevenmapped,basedona

phytosociologi-calapproach(Biondi,2011;Braun-Blanquet,1964;Dengler,Chytr ´y,

&Ewald,2008;Westhoff&vanderMaarel,1978),andaremostly

describedatthelevelofasyntaxonomicalliance(Biondietal.,2012;

Bunceetal.,2013;Evans,2006,2010;Rodwelletal.,2002).Being

definedonthegroundoftheirplantcommunities,HDHabitatscan

beassumedtoownthesameintrinsic,ecologicallybased,spatial

features.

Wetookintoaccount126AnnexIHabitatsoccurringinItaly

(Biondietal.,2009).WeusedthedatareportedbytheItalian

Min-istryoftheEnvironmentandProtectionofLandandSeaforthe

3rdreportex-Art.17(Genovesietal.,2014;MATTM,2013).More

detaileddata,derivedfromtheHabitatmapsincludedinNatura

2000SitesManagementPlansfromtheRegionsUmbria,Veneto

andTuscany(unpublisheddata),havebeenusedforasubsetof41

habitats.

Totestourhypotheses,AnnexIHabitatsweregroupedonthe

groundoftheirPSO.TheadoptedcriteriaforHabitatattribution

tooneofthethreePSO(point,linearorareal)tookintoaccount,

asmaindrivers,theirintrinsicecologicfeatures,suchasthe

pres-enceofastrongecologicalgradient,andtheenvironmentalspatial

heterogeneity.

WeconsideredaslineartheriparianandcoastalHabitats,plus

allthoseHabitatswhich,forintrinsicreasons,whenrepresented

onamapappearintheshapeofastretch(e.g.rockywalls,steep

slopes withchasmophytic vegetation). We considered as point

thoseHabitatswhich,forintrinsicreasons,whenrepresentedon

amapappearintheshapeofspots,e.g.,thetemporaryponds,the

inlandsaltmeadows,theshallowstandingoligotrophicwaters,all

characterisedbyarestricteddistributionduetotheirecological

peculiarity.TheHabitatswhosedistributiondidnotfallinthe

for-mertwotypeshavebeenreferredtothearealPSO.Thecomposition

ofthegroupsisreportedinTable1;forHabitatdescriptionssee

Biondietal.(2009,2012).

Totest ifdifferentHabitats,groupedaccordingtotheirPSO,

exhibitsignificantdifferencesintheaveragespatialextent,firstly

weconsideredatheoreticalcasestudy(a),representedbythree

HabitatswiththesameactualsurfacebutdifferenttypesofPSO,

andtheirinterrelationwitha10×10km2grid,onwhosebasethe

AOOhasbeencalculated.

Then,inthecasestudy(b),weanalysedtheaveragetotalsurface

perNatura2000siteoccupiedbyeachoftheconsidered126Annex

IHabitats,mappedandmeasuredallovertheItalianNatura2000

network(2585sites).

Incase study(c)dataontheactualsurface(km2)have been

relatedtothecalculatedAOO(basedona10×10km2grid),with

theaimtocheckifthe3PSO-basedgroupsofHabitatsevidenced

any differentialresponse. In order to normalise data, we

com-paredtheratiobetweenthetotalgrid-basedAOOsurfaceandthe

totalactualsurface(km2)foreachHabitat.Thismetricsgivesalso

accountonhowlargeisthegapbetweenthetwoconsideredvalues.

Eventually,inthecasestudy(d),weappliedtheAOOcalculation

processtoarestrictednumber (41)of Habitatspresent inItaly,

forwhichdetailedcartographicdatawereavailable,withtheaim

todetectiftheAOOcalculationisaffectedbythePSOandbythe

adoptedgridcell-size.The41Habitattypesusedforcasestudy(d)

areincludedinthecompletelist(Table1),withtheindicationofthe

territorialscaletheyhavebeenconsideredat(national,regionalor

local).ForeachconsideredHabitattype,thedetailedcartographic

dataallowedtocalculatetheAOOsurfaceatfourdifferentgrid-cell

sizes(10×10km2,2×2km2,1×1km2and0.5×0.5km2).

Forallthecasestudies,thestatisticalsignificanceofthe

differ-encesamongtheconsideredgroupsofdatahasbeenanalysedby

applyingthenonparametricKruskal-WallisTest.Thecorrelation

analyseshavebeenbasedonthenon-parametricSpearman’srank

coefficient.ThesoftwareAnalystSoftStatPlus:macv2009hasbeen

usedforstatisticalanalyses.Thecartographicdatahavebeen

pro-cessedbyusingtheOpenSourceGeographicInformationSystem

QuantumGISQGIS2.0.1(QGISProject,2014).

3. Results

3.1. Casestudy(a):asimpleexerciseof‘form’

The three theoretical Habitats sharing the same surface

(2092.5ha)anddifferinginthetypeofPSO(areal,linearandpoint),

arespatiallyrepresentedinFig.1.Theymightcorrespond,e.g.,toa

(4)

Fig.1. Exemplificativerepresentationofthreetheoreticalhabitatswiththesameactualsurface(2,092.5ha)butdifferenttypesofPSO,andtheirinterrelationwitha 10×10km2grid;therespectivecalculatedvaluesoftheAOOsurfacesarereported(mapprocessedbyusingQGIS2.0.1).

gallery(92A0)andaMediterraneantemporarypondwithIsoëtes

hystrix(3170),respectively.ThecalculatedAOOsurface,basedona

10×10km2grid,resultedrespectivelyin400,900and1500km2.

3.2. Casestudy(b):rangesofsizeofHabitats:scaleandgrain

playarole

Resultsofthecomparisonamongtheaveragetotalsurfaceof

AnnexIHabitatsperNatura2000site,groupedaccordingtotheir

PSO,areshowninFig.2.ThemeanHabitatsurfacepersiteshoweda

decreasingtrendfromareal(311.8ha),tolinear(79.5ha),topoint

Habitats(28.0ha),resultinginstatisticallysignificantdifferences

(p<0.001)amongthethreePSOtypes,onawide(national)scale.

ThisindicatesthatthethreePSO-basedgroupsof Habitattypes

showdistinctranges ofsize andask forown peculiar scalesof

representation.

3.3. Casestudy(c):atheoreticalexerciseofformappliedtoactual

distributiondata

Resultsoftheanalysisontherelationbetweenthecalculated

AOOandtheactualsurfaceofeachHabitattypeareshowninFig.3.

BothHabitatswithapointandalinearPSOwereheavilyshifted

infavourofinflatedvaluesofthegrid-basedsurface(respectively:

R=0.952,p<0.001;R=0.759,p<0.001).Conversely,Habitatswith

anarealPSOshowedacleartendencytocorrelatewith

proportion-allylowervaluesoftheAOOsurface(R=0.807,p<0.001).

3.4. Casestudy(d):effectsofgridsizeandpatternofspatial

occupancyonAOO

TheeffectofAOObasedonafixedgrid-cellsizeforHabitats

withdifferentPSOisshowninFig.4.Theyaxisshowstheratio

AOO/actualsurface,foreachPSO-basedgroupofHabitats

(aver-agevaluespergrouparerepresented);thexaxisshowsfourseries

ofdata,referringtothefourgrid-cellsizesusedfortheAOO

cal-culation(10×10km2,2×2km2,1×1km2and0.5×0.5km2).For

pointHabitats(and,atalesserextent,forlinearHabitats)thegap

betweenAOOand actualsurfacewasalwaysremarkablyhigher

thanforarealhabitats.Thisgaplargelyincreasedwhen shifting

fromasmall-toalarger-sizedgrid.Overall,alargegrid-cellsize

producedhighAOOestimates,whileasmallersizeproducedAOO

surfacesthat betterapproximatedtherealsurfaces(Spearman’s

correlation,respectively:R=0.952,p<0.001;R=0.759,p<0.001;

R=0.807,p<0.001). Furthermore,ifwe considerthetrendlines,

whichrepresenthowtheratioAOO/actualsurfaceincreaseswith

theprogressiveenlargementofthegrid-cellsize,afurtherinsight

becomesevident:theinflationissignificantlymorepronounced

whenconsideringHabitatswithapointorlinearPSOcomparedto

anarealPSO,showingdifferencesofseveralordersofmagnitude

(5)

Fig.2.AverageAnnexIHabitat(H)surface(ha)perNatura2000SiteinItaly,withHabitatsgroupedaccordingtotheirPSO:point,linearorareal;elaborationbasedonoriginal datafrom2585SCIand/orSPAfromItaly;thestatisticalsignificanceofthedifferencesamonggroupsisreported,basedonKruskal-WallisTest(DataSource:MATTM,2013).

Fig.3.RelationsbetweentheAOOsurface(basedona10×10km2grid)andthetotalactualsurface(km2)for126HabitatsoccurringinItaly;symbolsandtrendlinesare

(6)

Fig.4.RatiobetweentheAOOsurface(calculatedwithprogressivelylargergrid-cellsize:0.5×0.5,1×1,2×2,10×10km2)andtheactualmeasuredsurface,for41Italian

AnnexIHabitattypesforwhichexhaustiveanalyticdatawereavailableatdifferentscales.Habitatsaregroupedaccordingtothe3modelsofPSO;bars:standarderror;the statisticalsignificanceofthedifferencesamonggroupsisreported,basedonKruskal-WallisTest:*p<0.05;**p<0.01;***p<0.001(Datasources:Natura2000Management Plans;MATTM,2013).

4. Discussion:lessonslearnedandperspectives

Theresults of thefourcase studieshelp pointing out some

issuesthatmightbeworththinkinganddiscussing.Asmain

out-come,resultshighlighttheprominentroleofscaleandgrainwhen

quantifyingthedistributionrangeofa Habitatandofanyplant

community-basedhabitattype.

Theimportanceofthescalehasbeenwidelyrecognisedasit

concernsalltypesofecologicaldataandisafundamentalaspect

oftheenvironmentalheterogeneity,whoseinterpretationdepends

onthelevelofobservationestablishedwhenstudyinganecological

system(Battisti&Fanelli,2015;Levin,1992;O’Neilletal.,1991,

1996).

Intheory,anyscalecanbeusedtostudyecologicalproblems,

andnospecificspatialscalemaybeuniversallyapplied;

never-theless,thescaleatwhichenvironmentalpatternsarequantified

influencestheresult(Brandt,1998; Turneret al.,2001; Wiens,

1989; Wu,2004)andinappropriatescalesmayfailindetecting

patterns(Li&Wu,2004;Kirchheimeretal.,2015).With

increas-inggrainsize(anddecreasingscale),unitswhichareintrinsically

rareornaturallyoccurasverysmallstandsmaybecomeless

rep-resentedorevendisappear(Turneretal.,2001).Thisisgenerally

truewhendistributionmapsbasedonpolygonsareused.Butitis

trueaswellwhenadoptingtheAOOasaproxyfordistribution.

EstimatesofAOOappeartobehighlysensitivetospatialgrain,as

alsosuggestedbyotherAuthors(seee.g.,Hartley&Kunin,2003;

Nicholsonetal.,2009).Thesurface(andthenumberofcells)

cor-respondingtotheAOOobviouslydependsonthecellsizeandisa

functionofthescaleatwhichitismeasured.

The here discussed case studies show that the AOO

scale-dependenceisalsostronglyaffectedbyanemergentpropertyof

plantcommunities:thePSO,aninherentlyscale-dependent

con-cept. With reference to red-listing, scale-dependent properties

havefar-reachingconsequencesforbothidentificationand

classi-fication,aswellasforrepresentationandevaluation.Inconsistency

intheclassificationandmappingscaleofecologicalcommunities

mayleadtoinaccuratestatementsandaffecttheoutcomesofthe

assessment(Nicholsonetal.,2009).

Thecasestudy(a)showedthedramaticeffectofthePSOonthe

AOOcalculation:thePSOaffectsthenumberofunitsofoccurrence,

regardlessofthegrid-cellsize.Weusedagridwith10×10km2

cellsize,asrecommendedbyKeithetal.(2013),butsimilarresults

wouldbeobtainedwithothertheoreticalhabitatsandgridswith

largerorsmallercells.Althoughsharingthesametotaldistribution

surface,theAOOofthe3theoreticalHabitatsdrasticallyvaried.

TheinappropriatenessofAOObecomesparticularlyapparentfor

thoseHabitats(andrelatedplantcommunities)whosenaturalPSO

istheresultofstrongenvironmentaldrivingforces,which

deter-minepeculiargeometriesintheirspaceoccupancy.Itmightbethe

case,forinstance,ofthevegetationcolonisingtheland

immedi-atelyadjacenttoariver,thesocalled‘riparianzone’,adefinition

thataccountsforitsmoreorlessnarrowandlineardistribution

(Cressie,1993;Diggle,1983;Malanson,1993;Upton&Fingleton, 1985,1989).Similarly,theintrinsicfragmentationofapointHabitat

typewillalwaysresultinaremarkableinflationofitsAOO,which

inFig.3isoneorderofmagnitudehigherthanthearealone,dueto

itsscattereddistribution.

ThethreemodelsofPSOadoptedinouranalysisshow,with

asimpleapproach,thattheintrinsicspatialpatternsofplant

com-munitiesshouldnotbeneglectedwhenassessingtheirdistribution

size.Starting from a homogeneousdata set,theproposed case

studiesprovedthatthechoiceoftheresolutionscaleaffectsthe

comprehensionofthepatternsofspaceoccupancyandoccurrence

oftheHabitatsandthecorrelationsbetweenHabitatsand

envi-ronment(Greig-Smith,1983;Juhász-Nagy&Podani,1983;Reed,

Peet,Palmer,&White, 1993),witha substantialrelapse onthe

measurementoftheirAOO.

Casestudy(c)demonstratedthattheuseofacommongridfor

theAOOcalculationaffectstheoutcomesinadifferentialwayfor

the3PSOtypes,generatinginconsistentresults.Habitatswitha

pointorlinearPSOarethosewithamajorrisktobeover-estimated

whenrelyingonAOO,whileforthosewithanarealPSOtheAOO

(7)

Table1

AttributionoftheItalianAnnexIHabitatstothe3PSO.

ListoftheAnnexIHabitatsoccurringinItaly,withtherelatedcodes(datasources: MATTM,2013),consideredinthedataanalyses,groupedonthegroundoftheir patternofspatialoccupancy(PSO);thelettersinbrackets‘N’,‘R’and‘P’indicatethe Habitattypesselectedforcasestudy(d)andreporttheterritorialrangethedata referto(respectively:national,regional,provincial).

HabitatswithanarealPSO

•Openseaandtidalareas:1110,1120,1130,1140,1150,1160,1170 •Temperateheathandscrub:4030,4060,4070,4080,4090 •Sub-Mediterraneanandtemperatescrub:5110,5130 •Mediterraneanarborescentmatorral:5210,5230

•Thermo-Mediterraneanandpre-steppebrush(except5320because relatedtothegradientofthelittoralsystems):5330

•Phrygana:5410,5420,5430

•Naturalgrasslands:6110,6130,6150,6170

•Semi-naturaldrygrasslandsandscrublandfacies:6210,6220,6230, 6240,62A0

•Sclerophillousgrazedforests(dehesas):6310

•Moliniameadowsoncalcareous,peatyorclayey-siltladensoils(Molinion caeruleae):6410

•Mesophilegrasslands:6510,6520

•Sphagnumacidbogs:7110(N,R),7120,7140(P),7150 •Alkalinefens:7230(R,P)

•AlpinepioneerformationsofCaricionbicoloris-atrofuscae:7240 •Scree:8110,8120,8130

•SiliceousrockwithpioneervegetationoftheSedo-Scleranthionorofthe Sedoalbi-Veroniciondillenii:8230

•Limestonepavements:8240

•Fieldsoflavaandnaturalexcavations:8320 •Permanentglaciers:8340

•ForestsoftemperateEurope(except91B0,91E0,91F0becausedepending onthepresenceofwatergradients):9110(R),9120,9130,9140,9150, 9160,9180(R),9190,91AA,91D0,91H0,91K0,91L0(R),91M0(R) •Mediterraneandeciduousforests(except92A0,92C0,92D0because dependingonthepresenceofwatergradients):9210(R),9220,9250,9260 (R)

•Mediterraneansclerophyllousforests:9320,9330,9340(N),9350,9380 •Temperatemountainousconiferousforests:9410(R),9420,9430 •MediterraneanandMacaronesianmountainousconiferousforests:9510, 9530,9540,9560,9580,95A0

HabitatswithalinearPSO

•Seacliffsandshingleorstonybeaches:1210,1240 •Salicorniaandotherannualscolonisingmudandsand:1310 •Spartinaswards(Spartinionmaritimae):1320

•Mediterraneanandthermo-Atlanticsaltmarshesandsaltmeadows: 1410,1420,1430

•Saltandgypsuminlandsteppes:1510

•SeadunesoftheAtlantic,NorthSeaandBalticcoasts:2110,2120(R), 2130(R),2160

•SeadunesoftheMediterraneancoast:2210,2230,2240,2250,2260, 2270

•Hardoligo-mesotrophicwaterswithbenthicvegetationofCharaspp.: 3140

•NaturaleutrophiclakeswithMagnopotamionorHydrocharition–type vegetation:3150

•Runningwater:3220,3230,3240(R),3250,3260,3270,3280(R),3290 •LowformationsofEuphorbiaclosetocliffs:5320

•Semi-naturaltall-herbhumidmeadows(except6410):6420,6430(R) •Calcareousfens(except7230,7240whichhaveanarealdistribution): 7210(R),7220(P)

•Calcareousrockyslopeswithchasmophyticvegetation:8210(R) •Siliceousrockyslopeswithchasmophyticvegetation:8220(R) •ForestsoftemperateEuropedependingonwaterorimpluvia:91B0, 91E0(R),91F0(R)

•Mediterraneandeciduousforestsdependingonwaterorimpluvia:92A0 (R),92C0,92D0(R)

HabitatswithapointPSO •Inlandsaltmeadows:1340(N)

•InlandduneswithopenCorynephorusandAgrostisgrasslands:2330(N) •Standingwater(except3140,3150):3110,3120,3130,3160,3170(R) •Submergedorpartiallysubmergedseacaves:8330

evidencedincasestudy(d),theappropriatenessofagrid-cellsize fortheAOOcalculationisdeeplycontingentontheHabitatPSO, andHabitattypeswithapointorlinearPSOwillalwaysrisktobe overestimatedwhentheirAOOiscalculatedbasedonacommon grid-cellsize.

Theissuehasalreadybeenfacedwithreferencetospecies red-listing.Manyauthorsagreedinrecognisingthatdifferentspatial scalesofobservationcanrevealdifferentthresholdpatternsfor differentspecies(Forman,1995;Huggett,2005;MacNallyetal.,

2002).TheriskofinconsistenciesandbiascausedbytheAOO

esti-mationat differentscaleswasalready emphasised byIUCN for

species,withreferencetospecialisedtaxawithapatchy

distribu-tion,evidencingtheneedforscalecorrectionfactors(IUCN,2012,

2013).IUCNevenapproachedtheproblemofspecieswith‘linear’

habitats,eventuallysuggestingtoneglectthispeculiarecological

distribution,sinceinsuchcasesthehabitatactualsurfacemightbe

sonarrowthatitshouldnearlyalwaysbeassignedtoathreatened

status,basedonthe‘B’criterion(IUCN,2013).

Nevertheless,thereisageneralagreementontherecognition

ofintrinsic(specific)needsofdifferentspecieswithreferenceto

pressuresandextinctionrisk(Johnson,2013).

Dykstra (2004) reported that there are no generalresponse

modelsinspeciesdecline,makingtheidentificationofgenerally

validthresholdsparticularlyhard.Indeed,ageneralisationishard

tofindforsinglespecies,duetotheenormousvarietyofecological

requirementsandtraits,includingsizeandspecialisation.Similarly,

itispracticallyimpossibletoadoptspecificrulesforeachsingle

Habitat.However,someintrinsicspatialpropertiesofeachplant

community-basedhabitattype(e.g.thehereproposedPSO)might

representagoodmodelandofferamajoradvantageinthatthey

allowtotakeintoaccount,atleastinpart,someprominent

commu-nityattributesandtomodulatenotonlymetricsbutalsothresholds

andcriteriaofassessment.Additionally,itisperhapsworthto

con-siderthat,althoughAOOisoneofthemostusedmetricstoassess

theconservationstatusofahabitat,itshouldnotbeusedalone,but

shouldbeonlyoneinasetofproxies.

IUCN(2012)recommendstouseascalethatis‘appropriateto

relevantbiologicalaspects’oftheassessmentunit.Inthislight,the

proposalbyKeithetal.(2013)tocalculateAOOonthebaseofa

standardisedspatialgrain,recommendinga10×10km2gridand

fixingcommonquantitativethresholdsforalltheassesseditems,

appearsratherdifficulttounderstand,ifnotevenlackingaclear

theoreticalbasis,assuggestedbyBoitanietal.(2015).

Ourfindingshighlighttheneedofacertainadaptabilityinthe

red-listcriteriawhenassessingecologicalcommunities,with

par-ticular referencetotheirspatialdimension, in accordance with

Nicholsonetal.(2009)whoarguedthatcommunitiesshouldbe

listedatthebroadestscaleatwhich theymeetcriteriafor

list-ing.Habitat types witha linearor a pointPSO, naturallysmall

in size,scatteredorwitha stretcheddistribution,need a

finer-scaleapproachtobeaccuratelyidentifiedandcorrectlyassessed,

asalreadyemphasisedforspecies(seee.g.,Jiménez-Alfaro,Draper,

&Nogués-Bravo,2012).

Although it is beyond thescope of this study, the reported

casestudiesconcurtoconfirmthatplantcommunitiesare

suit-ableoperationalobjectsinthered-listingprocess.Despite their

greatcomplexity,plantcommunitiesandplantcommunity-based

habitattypesareorganizedintheformofspatiallyrecognisable

patches.Theyappeartobeunequivocalassessmentunits,better

definedcomparedtotheconceptof‘ecosystem’usedbyKeithetal.

(2013),asalreadyindicatedbyBoitanietal.(2015).Thereisahuge

convergencebetweenplantcommunities,HDHabitatsandother

officiallyacknowledgedvegetationclassificationsystems,suchas

EUNIS(Davies,Moss,&Hill,2004)orCORINEbiotopes(Commission

oftheEuropeanCommunities,1991),asclearlyexemplifiedbythe

(8)

aremanyeffortstofindaninteroperabilitybetweenexisting

classi-ficationsofhabitatsandplantcommunities(see,e.g.,Rodwelletal.,

2002;Schaminéeetal.,2012,2013a,2013b).

4.1. Conclusions

Withthepresentpaperweaimtoadvancesomeviewpointsthat

mightconsolidatethegroundsbutalsoopennewperspectivesfor

theincreasinginterestintheassessmentofhigher-than-species

biodiversitylevels.Facingtheriskofunreliableassessments,some

possiblesolutionsshouldgo inthefollowing directions:(i)the

actualdistributionsurfaceofaHabitatshouldalwaysbeseenas

theoptimalproxytotakeintoaccount;(ii)gridsshouldonlybe

limitedtocaseswherethelevelofknowledgeisreallylow;(iii)

whenusinggrids,thecellsize(or,possibly,thethresholdvalues

fordifferentthreatcategories)shouldbeselectedbasedonthePSO

oftheassessmentunit.

Thereissubstantialscopeforexploringthespatialdimensionof

Habitatsandfuturestudiesshouldimplementresearches

specifi-callydesignedtoaddressthisissue.Itisindeedacentralpointfor

red-listassessmentsandhighlightswhatwebelievetobesome

novelfuturedirectionforthisfield.

References

Allen,T.F.H.,&Starr,T.B.(1982).Hierarchy:perspectivesforecologicalcomplexity. Chicago,USA:UniversityofChicagoPress.

Andreas,B.K.,&Lichvar,R.W.(1995).Floristicindexforassessmentstandards:a casestudyfornorthernOhio.WetlandsResearchProgramTechnicalReport WRP-DE-8.ExperimentStation,Vicksburg,MA:U.S.ArmyCorpsofEngineers Waterways.

Bacchetta,G.,Farris,E.,&Pontecorvo,C.(2012).Anewmethodtosetconservation prioritiesinbiodiversityhotspots.PlantBiosystems,146(3),638–648. Baillie,J.E.M.,Hilton-Taylor,C.,&Stuart,S.N.(2004).IUCNredlistofthreatened

species.aglobalspeciesassessment.GlandandCambridge:IUCN.

Balmford,A.,Bruner,A.,Cooper,P.,Costanza,R.,Farber,S.,Green,R.E.,etal.(2002). Economicreasonsforconservingwildnature.Science,297,950–953. Battisti,C.,&Fanelli,G.(2015).Don’tthinklocal!Scaleinconservation,

parochialism:dogmaticbureaucracyandtheimplementingoftheEuropean Directives.JournalforNatureConservation,24,24–30.

Berg,C.,Abdank,A.,Isermann,M.,Jansen,F.,Timmermann,T.,&Dengler,J.(2014). RedListsandconservationprioritizationofplantcommunities—a

methodologicalframework.AppliedVegegetationScience,17(3),504–515. Biondi,E.(2011).Phytosociologytoday:methodologicalandconceptualevolution.

PlantBiosystems,145(1),19–29.

Biondi,E.,Blasi,C.,Burrascano,S.,Casavecchia,S.,Copiz,R.,DelVico,E.,etal. (2009).ManualeItalianodiinterpretazionedeglihabitatdellaDirettiva92/43/CEE. S.B.I.,M.A.T.T.M.,D.P.N..Accessed10.02.15.http://vnr.unipg.it/habitat Biondi,E.,Burrascano,S.,Casavecchia,S.,Copiz,R.,DelVico,E.,Galdenzi,D.,etal.

(2012).DiagnosisandsyntaxonomicinterpretationofAnnexIHabitats(Dir. 92/43/EEC)inItalyatthealliancelevel.PlantSociology,49(1),5–37. Biserkov,V.(Ed.).(2011).ReddatabookoftherepublicofBulgaria.Bulgarian

AcademyofSciences&MinistryofEnvironmentandWater.Accessed12.04.15. http://e-codb.bas.bg/rdb/en/vol3

Bissonette,J.A.(Ed.).(1997).Wildlifeandlandscapeecology:effectsofpatternand scale.NewYork:Springer-Verlag.

Blab,J.,Riecken,U.,&Ssymank,A.(1995).Proposalonacriteriasystemfora NationalRedDataBookofBiotopes.LandscapeEcology,10,41–50. Boitani,L.,Mace,G.M.,&Rondinini,C.(2015).Challengingthescientific

foundationsforanIUCNRedListofEcosystems.ConservationLetters,8(2), 125–131.

Brandt,J.(1998).Keyconceptsandinterdisciplinarityinlandscapeecology:a summing-upandoutlook.InJ.W.Dover,&R.G.H.Bunce(Eds.),Keyconceptsin landscapeecology(pp.421–434).Garstang,GreatBritain:IALE-UK.

Braun-Blanquet,J.(1964).Pflanzensoziologie.grundzügedervegetationskunde(3 ed.).Wien-NewYork.

Bunce,R.G.H.,Bogers,M.M.B.,Evans,D.,Halada,L.,Jongman,R.H.G.,Mucher,C. A.,etal.(2013).Thesignificanceofhabitatsasindicatorsofbiodiversityand theirlinkstospecies.EcologicalIndicators,33,19–25.

Butchart,S.H.M.,Stattersfield,A.J.,Bennun,L.A.,Bennun,L.A.,Shutes,S.M., Akc¸akaya,H.R.,etal.(2004).Measuringglobaltrendsinthestatusof biodiversity:RedListIndicesforbirds.PLoSOneBiology,2,2294–2304. Cafaro,P.,&Primack,R.(2014).Speciesextinctionisagreatmoralwrong.

BiologicalConservation,170,1–2.

CEM-IUCN,&Provita.(2012).IUCNredlistofecosystems.thecommissionon ecosystemmanagement(CEM)ofinternationalunionforconservationofnature (IUCN)andprovita,caracas,Venezuela..Accessed21.09.12.http://www. iucnredlistofecosystems.org

CITES.(1973).Conventiononinternationaltradeinendangeredspeciesofwildfauna andflora.signedatwashington,D.C.,on3march1973.amendedatbonn,on22 june1979..Accessed16.06.15.http://www.cites.org/eng/disc/text.php CommissionoftheEuropeanCommunities(1991).HabitatsoftheEuropean

Community.CORINEbiotopesmanual.Luxembourg:Commissionofthe EuropeanCommunities.

Cowling,R.M.,Knight,A.T.,Faith,D.P.,Ferrier,S.,Lombard,A.T.,Driver,A.,etal. (2004).Natureconservationrequiresmorethanapassionforspecies. ConservationBiology,18,1674–1676.

Cowling,R.M.,&Heijnis,C.E.(2001).Theidentificationofbroadhabitatunitsas biodiversityentitiesforsystematicconservationplanningintheCapeFloristic Region.SouthAfricanJournalofBotany,67,15–38.

Cressie,N.A.C.(1993).Statisticsforspatialdata(reviseded.).NewYork:Wiley. Dale,M.R.T.(1999).Spatialpatternanalysisinplantecology.Cambridge:

Cambridge:UniversityPress.

Davies,C.E.,Moss,D.,&Hill,M.O.(2004).EUNIShabitatclassificationrevised2004.. Availableat.http://eunis.eea.europa.eu/upload/EUNIS2004report.pdf Dengler,J.,Chytr ´y,M.,&Ewald,J.(2008).Phytosociology.InS.E.Jørgensen,&B.D.

Fath(Eds.),Generalecology.encyclopediaofecology(Vol.4)(pp.2767–2779). Oxford:Elsevier.

Diggle,P.J.(1983).Statisticalanalysisofspatialpointpatterns.London:Academic Press.

Dykstra,P.D.(2004).ThresholdsinHabitatSupply:AReviewoftheLiterature. WildlifeReportNo.R-27,Victoria,BritishColumbia:BritishColumbiaMinistry ofSustainableResourceManagement.

Essl,F.,Egger,G.,&Ellmauer,T.(2002).Rotelistegefährdeterbiotoptypen österreichs.Wien:Konzept,UmweltbundesamtGmbH.

EuropeanCommission(2011).CommunicationfromthecommissiontotheEuropean parliament,thecouncil,theeconomicandsocialcommitteeandthecommitteeof theregions.Ourlifeinsurance,ournaturalcapital:anEUbiodiversitystrategyto 2020.Brussels:COM(2011)244final.

EuropeanCommission.(2013).Interpretationmanualofeuropeanunion habitats—EUR28.Brussels:EuropeanCommission.

Evans,D.(2006).ThehabitatsoftheEuropeanunionhabitatsdirective.Biologyand Environment:ProceedingsRoyalIrishAcademy,B,106b(3),167–173.

Evans,D.(2010).InterpretingthehabitatsofAnnexI.Past,presentandfuture.Acta BotanicaGallica,157(4),677–686.

Evans,D.,&Arvela,M.(2011).AssessmentandreportingunderArticle17ofthe HabitatsDirective–ExplanatoryNotes&Guidelinesfortheperiod2007–2012– Finalversion.ETC-BD.

Forman,R.T.T.(1995).Landmosaics:theecologyoflandscapesandregions. Cambridge,UK:CambridgeUniversityPress.

Gauthier,P.,Debussche,M.,&Thompson,J.D.(2010).Regionalprioritysettingfor rarespeciesbasedonamethodcombiningthreecriteria.Biological

Conservation,143,1501–1509.

Géhu,J.M.(1974).Surl’emploidelaméthodephytosociologiquesigmatistedans l’analyse:ladéfinitionetlacartographiedespaysages.ComptesRendusde l’AcadémiedesSciences,279,1167–1170.

Géhu,J.M.(1991).L’analysesymphytosociologiqueetgéosymphytosociologique del’espace:Théorieetméthodologie.ColloquesPhytosociologique

‘PhytosociologieEtPaysages(1988)’,17,12–46.

Genovesi,P.,Angelini,P.,Bianchi,E.,Dupré,E.,Ercole,S.,Giacanelli,V.,etal.(2014). SpecieehabitatdiinteressecomunitarioinItalia:distribuzione,statodi conservazioneetrend.,dataavailableat.http://cdr.eionet.europa.eu/it/eu/ art17/envupyjhw

Gray,T.N.E.,Phan,C.,&Long,B.(2010).Modelingspeciesdistributionatmultiple spatialscales:gibbonhabitatpreferencesinafragmentedlandscape.Animal Conservation,13(3),324–332.

Greig-Smith,P.(1979).Patterninvegetation.JournalofEcology,67(3),755–779. Greig-Smith,P.(1983).Quantitativeplantecology.studiesinecology,9(3rded.).

UniversityofCalifornia:BlackwellScientificPublications.

Halley,J.D.,&Winkler,D.A.(2008).Classificationofemergenceanditsrelationto self-organization.Complexity,13(5),10–15.

Hartley,S.,&Kunin,W.(2003).Scaledependencyofrarity,extinctionrisk:and conservationpriority.BiologicalConservation,17,1559–1570.

Huggett,H.J.(2005).Theconceptandutilityof‘ecologicalthresholds’in biodiversityconservation.BiologicalConservation,124,301–310. IUCN(2012).IUCNRedListCategoriesandCriteria.Version3.1.2nded.Gland,

SwitzerlandandCambridge,UK.

IUCN.(2013).GuidelinesforusingtheIUCNredlistcategoriesandcriteria.version 10.1.preparedbythestandardsandpetitionssubcommittee.,availableat.http:// www.iucnredlist.org/documents/RedListGuidelines.pdf

IUCN.(2015a).InL.M.Bland,D.A.Keith,N.J.Murray,&J.P.Rodríguez(Eds.), GuidelinesfortheapplicationofIUCNredlistofecosystemscategoriesandcriteria, version1.0.Gland,Switzerland:IUCN,ix+93pp.

IUCN.(2015b).TheIUCNredlistofthreatenedspecies.version2015-4..Downloaded on1March2016.dataavailableat.http://www.iucnredlist.org/about/ summary-statistics

Izco,J.(2015).Riskofextinctionofplantcommunities:riskandassessment categories.PlantBiosysystems,149(3),589–602.

Jiménez-Alfaro,B.,Draper,D.,&Nogués-Bravo,D.(2012).Modelingthepotential areaofoccupancyatfineresolutionmayreduceuncertaintyinspeciesrange estimates.BiologicalConservation,147(1),190–196.

Johnson,C.J.(2013).Identifyingecologicalthresholdsforregulatinghuman activity:effectiveconservationorwishfulthinking?BiologicalConservation, 168,57–65.

(9)

Juhász-Nagy,P.,&Podani,J.(1983).Informationtheorymethodsforthestudyof spatialprocessesandsuccession.Vegetatio,51,129–140.

Julve,P.(1986).Problèmesconceptuelsdansladéfinitiondesunitésdeperception dupaysagevégétalenrapportaveclagéomorphologie.Colloques

Phytosociologiques‘VégétationEtGéomorphologie(1985),13,65–84. Keith,D.A.(2009).Theinterpretation:assessmentandconservationofecological

communities.EcologicalManagementandRestoration,10,3–15.

Keith,D.A.,Rodríguez,J.P.,Rodríguez-Clark,K.M.,Nicholson,E.,Aapala,K.,Alonso, A.,etal.(2013).ScientificfoundationsforanIUCNredlistofecosystems.Public LibraryofScience,5,62–111.

Keith,D.A.,Rodríguez,J.P.,Brooks,T.M.,Burgman,M.A.,Barrow,E.G.,Bland,L., etal.(2015).TheIUCNredlistofecosystems:motivations,challenges,and applications.ConservationLetters,8(3),214–226.

Kirchheimer,B.,Schinkel,C.C.F.,Dellinger,A.S.,Klatt,S.,Moser,D.,Winkler,M., etal.(2015).Amatterofscale:apparentnichedifferentiationofdiploidand tetraploidplantsmaydependonextentandgrainofanalysis.Journalof Biogeography,http://dx.doi.org/10.1111/jbi.12663

Kontula,T.,&Raunio,A.(2009).Newmethodandcriteriafornationalassessments ofthreatenedhabitattypes.BiodiversityandConservation,18,3861–3876. Levin,S.A.(1992).Theproblemofpatternandscaleinecology.Ecology,73,

1943–1967.

Li,H.,&Wu,J.(2004).Useandmisuseoflandscapeindices.LandscapeEcology,19, 389–399.

Lindenmayer,D.,Hobbs,R.J.,Montague-Drake,R.,Alexandra,J.,Bennett,A., Burgman,M.,etal.(2008).Achecklistforecologicalmanagementof landscapesforconservation.EcologyLetters,11,78–91.

Lindgaard,A.,&Henriksen,S.(Eds.).(2011).The2011norvegianredlistfor ecosystemsandhabitattypes.Trondheim:NorwegianBiodiversityInformation Centre.

Lortie,C.J.,Brooker,R.W.,Choler,R.,Kikvidze,Z.,Michalet,R.,Pugnaire,F.I.,etal. (2004).Rethinkingplantcommunitytheory.Oikos,107(2),433–438. MacNally,R.,Bennett,A.F.,Brown,G.W.,Lumsden,L.F.,Yen,A.,Hinkley,S.,etal.

(2002).Howwelldoecosystem-basedplanningunitsrepresentdifferent componentsofbiodiversity?EcologicalApplication,12,900–912. Mace,G.M.,Collar,N.J.,Gaston,K.J.,Hilton-Taylor,C.,Akc¸akaya,H.R.,

Leader-Williams,N.,etal.(2008).Quantificationofextinctionrisk:iUCN’s systemforclassifyingthreatenedspecies.ConservationBiology,22,1424–1442. Malanson,G.P.(1993).Riparianlandscapes.cambridgestudiesinecology.

Cambridge,UK:CambridgeUniversityPress.

Margules,C.R.,&Pressey,R.L.(2000).Systematicconservationplanning.Nature, 405,243–252.

MATTM.(2013).Bancadatinatura2000.Roma..Accessed21.10.14.http://ftp.dpn. minambiente.it/Natura2000/TrasmissioneCE2013

McCarthy,M.A.,Thompson,C.J.,&Garnett,S.T.(2008).Optimalinvestmentin conservationofspecies.JournalofAppliedEcology,45,1428–1435. MillenniumEcosystemAssessment.(2005).Ecosystemsandhumanwellbeing:

biodiversitysynthesis.Washington,DC:WorldResourcesInstitute. Moravec,J.,Balátová-Tuláˇcková,E.,Hadaˇc,E.,Hejn ´y,S.,Jeník,J.,Kolbek,J.,etal.

(1983).Rostlinnáspoleˇcenstva ˇCeskésocialistickérepublikyajejichohroˇzení.(Red listofplantcommunitiesoftheCzechRepublicandtheirendangerment.)1.ed. SeveroˇceskouPˇrír.,Suppl.1983(1),1–110.

Nicholson,E.,Keith,D.A.,&Wilcove,D.S.(2009).Assessingtheconservation statusofecologicalcommunities.ConservationBiology,23,259–274. Noss,R.F.(1990).Indicatorsformonitoringbiodiversity:ahierarchicalapproach.

BiologicalConservation,4,355–364.

Noss,R.F.(1996).Ecosystemsasconservationtargets.TrendsinEcologyand Evolution,11,351.

Noss,R.F.,LaRoe,E.T.,&Scott,J.M.(1995).EndangeredecosystemsoftheUnited States:apreliminaryassessmentoflossanddegradation.Washington,DC.U.S: GeologicalSurvey.

O’Neill,R.V.,Gardner,R.H.,Milne,B.T.,Turner,M.,&Jackson,B.(1991). Heterogeneityandspatialhierarchies.InJ.Kolasa,&S.T.A.Pickett(Eds.), Ecologicalheterogeneity(pp.85–96).NewYork:Springer-Verlag.

O’Neill,R.V.,Hunsaker,C.T.,Timmins,S.P.,Jackson,B.L.,Jones,K.B.,Ritters,K.H., etal.(1996).Scaleproblemsinreportinglandscapepatternattheregional scale.LandscapeEcology,11,169–180.

Paal,J.(1998).RareandthreatenedplantcommunitiesofEstonia.Biodiversityand Conservation,7,1027–1049.

Palmer,M.W.(1988).Fractalgeometry:atoolfordescribingspatialpatternsof plantcommunities.Vegetatio,75,91–102.

Palmer,M.W.,&White,P.S.(1994).Scaledependenceandthespecies-area relationship.AmericanNaturalist,144(5),717–740.

Pärtel,M.,Kalamees,R.,Reier,U.,Tuvi,E.-L.,Roosaluste,E.,Vellak,A.,etal.(2005). Groupingandprioritizationofvascularplantspeciesforconservation: combiningnaturalrarityandmanagementneed.BiologicalConservation,123, 271–278.

QGISProject.(2014).QGISuserguide.release2.0.january12,2014..Accessed 26.05.14.http://docs.qgis.org/2.0/pdf/QGIS-2.0-UserGuide-en.pdf Reed,R.A.,Peet,R.K.,Palmer,M.W.,&White,P.S.(1993).Scaledependenceof

vegetation-environmentcorrelations:acasestudyofaNorthCarolina piedmontwoodland.JournalofVegetationScience,4,329–340.

Rodríguez,J.P.,Keith,D.A.,Rodríguez-Clark,K.M.,Murray,N.J.,Nicholson,E., Regan,T.J.,etal.(2015).ApracticalguidetotheapplicationoftheIUCNRed ListofEcosystemscriteria.PhilosophicalTransactionsoftheRoyalSocietyB,370, 20140003.

Rodríguez,J.P.,Rodríguez-Clark,K.,Baillie,J.E.,Ash,N.,Benson,J.,Boucher,T.,etal. (2011).EstablishingIUCNredlistcriteriaforthreatenedecosystems. ConservationBiology,25,21–29.

Rodríguez,J.P.,Rodríguez-Clark,K.M.,Keith,D.A.,Barrow,E.G.,Benson,J., Nicholson,E.,etal.(2012).IUCNredlistofecosystems.S.A.P.I.EN.S5.2.Accessed 20.05.14.http://sapiens.revues.org.1286

Rodwell,J.,Janssen,J.,Gubbay,S.,&Schaminée,J.(2013).RedListAssessmentof EuropeanHabitatTypes—Afeasibilitystudy.ServiceContractNo.

070307/2012/624047/SER/B3,ReportfortheEuropeanCommission,DG Environment.

Rodwell,J.,Schaminée,J.H.J.,Mucina,L.,Pignatti,S.,Dring,J.,Moss,D.(2002).The DiversityofEuropeanVegetation.Anoverviewofphytosociologicalalliancesand theirrelationshipstoEUNISHabitats.Wageningen.EC—LNVReportnr. 2002/054.MinistryofAgricultureNatureManagementandFisheries,The NetherlandsandEuropeanEnvironmentalAgency.

Schaminée,J.H.J.,Chytry´ı,M.,Hennekens,S.M.,Mucina,L.,Rodwell,J.S.,&Tichy´ı,L. (2013b).DevelopmentofvegetationsyntaxacrosswalkstoEUNIShabitat classificationandrelateddatasets.Copenhagen:ReportfortheEuropean EnvironmentAgency.

Schaminée,J.H.J.,Chytry´ı,M.,Hennekens,S.M.,Jiménez-Alfaro,B.,Mucina,L., Rodwell,J.S.,etal.(2013a).ReviewofEUNISforesthabitatclassification.(pp. 111).DraftReportEEA/NSV/13/005.

Schaminée,J.H.J.,Chytr ´y,M.,Hennekens,S.M.,Mucina,L.,Rodwell,J.S.,&Tich ´y,L. (2012).DevelopmentofvegetationsyntaxacrosswalkstoEUNIShabitat classificationandrelateddatasets.UnpublishedReportEEA/NSV/12/001. Wageningen,TheNetherlands:AlterraGreenWorld.

Schulte,G.,&Wolf-Straub,R.(1986).Vorläufigerotelistedernordrhein-westfalen gefährdetebiotope:rotelistederinnordrhein-westfalengefährdetenpflanzen undtiere.SchriftenreiheDerLÖLF,4,19–27.

SecretariatoftheConventiononBiologicalDiversity(2010).GlobalBiodiversity Outlook3.Montréal.

Turner,M.G.,Gardner,R.H.,&O’Neill,R.V.(2001).LandscapeEcologyinTheoryand Practice:patternandprocess.NewYork,NY,USA:Springer-Verlag.

Turner,M.G.,O’Neill,R.V.,Gardner,R.H.,&Milne,B.T.(1989).Effectsofchanging spatialscaleontheanalysisoflandscapepattern.LandscapeEcology,3, 153–162.

UnitedNations(1976).ConventiononWetlandsofInternationalImportance especiallyasWaterfowlHabitat.ConcludedatRamsar,Iran,2/2/1971.UNTreaty SeriesN.14583,Vol.996,246–268.

UnitedNations(1992).ConventiononBiologicalDiversity.UnitedNations ConferenceonEnvironmentandDevelopment.UNTreatySeries.Vol.1760. Upton,G.J.G.,&Fingleton,B.(1985).Spatialdataanalysisbyexample.vol.I.point

patternandquantitativedata.NewYork:Wiley.

Upton,G.J.G.,&Fingleton,B.(1989).Spatialdataanalysisbyexample.vol.II. categoricalanddirectionaldata.NewYork:Wiley.

vanderMaarel,E.,&Franklin,J.(Eds.).(2013).Vegetationecology.JohnWiley& Sons.

Walker,S.,Price,R.,Rutledge,D.,Stephens,R.T.T.,&Lee,W.G.(2006).Recentloss ofindigenouscoverinNewZealandNewZealand.JournalofEcology,30(2), 169–177.

Westhoff,V.,&vanderMaarel,E.(1978).TheBraun–Blanquetapproach.InR.H. Whittaker(Ed.),Classificationofplantcommunities(2nded.,Vol.4,pp. 287–297).Junk,TheHague.

Wiens,J.A.(1989).Spatialscalinginecology.FunctionalEcology,3,385–397. Wiens,J.A.(1990).Ontheuseof‘grain’and‘grainsize’inecology.Functional

Ecology,4,720.

Wu,J.(2004).Effectsofchangingscaleonlandscapepatternanalysis:scaling relations.LandscapeEcology,19,125–138.

Riferimenti

Documenti correlati

We started with the conviction that the science of linguistic education (LTR, or educational linguistics, or didactics of languages, whichever name is preferred) is

4) The valuation of ES is also problematic. When ES are valued in monetary terms, what this represents in terms of human benefits and livelihoods is very variable. It may depend

The presentation of a case study related to the Ziggurat Chogha Zanbil (Iran) has demonstrated that the proposed guidelines are useful to drive people who have to plan and

Il primo passo è stato analizzare quelle che sono le specifiche dell’intero prodotto, andando a selezionare quelle la cui definizione guida lo sviluppo del sistema di

tributi e del sistema tributario nel suo complesso; semplificazione del sistema tributario, riduzione degli adempimenti a carico dei contribuenti, trasparenza del prelievo,

Subdue [HCD + 94] is the first pattern mining algorithm in single graphs, but instead of mining the frequent patterns, it adopts an approximate greedy strategy based on the Minimum

More precisely, I will be focusing on the issue of diversity and inclusiveness within philosophy with respect to those strategies and best practices (i) to improve the climate in

La teoria d'impresa distingue quindi aree aziendali core e non core e nell'ottica della lean organization (dall'inglese letteralmente &#34;organizzazione