• Non ci sono risultati.

Drug Discovery 2002, 1, 895–910 [2] Fischbach, M

N/A
N/A
Protected

Academic year: 2021

Condividi "Drug Discovery 2002, 1, 895–910 [2] Fischbach, M"

Copied!
6
0
0

Testo completo

(1)

BIBLIOGRAFIA

[1] Coates, A.; Hu, Y.; Bax, R.; Page, C., Nat. Rev. Drug Discovery 2002, 1, 895–910

[2] Fischbach, M. A.; Walsh, C. T. Antibiotics for Emerging Pathogens.

Science 2009, 325, 1089–1093.

[3] Dixon, S.; Ziebart, K. T.; He, Z.; Jeddeloh, M.; Yoo, C. L.; Wang, X.;

Lehman, A.; Lam, K. S.; Toney, M. D.; Kurth, M. J.

Aminodeoxychorismate synthase inhibitors from one-bead one-compound combinatorial libraries: “staged” inhibitor design. J. Med. Chem. 2006, 49, 7413–7426.

[4] Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discovery Today 2004, 9, 641–651.

[5] Barkan, D.; Liu, Z.; Sacchettini, J. C.; Glickman, M. S. Mycolic Acid Cyclopropanation is Essential for Viability, Drug Resistance, and Cell Wall Integrity of Mycobacterium tuberculosis. Chem. Biol. 2009, 16, 499–

509.

[6] Kristin T. Ziebart, Seth M. Dixon, Belem Avila, Mahomed H. El-Badri, Kathtryn G. Guggenheim, Mark J. Kurth, and Michael D.Toney, J. Med.

Chem. 2010, 53, 3718–3729

[7] Sternson, S. M.; Wong, J. C.; Grozinger, C. M.; Schreiber, S. L. Synthesis of 7200 small molecules based on a substructural analysis of the histone deacetylase inhibitors trichostatin and trapoxin. Org. Lett. 2001, 3, 4239–

4242.

[8] Parsons, J. F.; Jensen, P. Y.; Pachicara, A. S.; Howard, A. J.; Einsenstein, E.; Ladner, J. E. Structure of Escherichia coli aminodeoxychorismate synthase: architectural conservation and diversity in chorismate-utilizing enzymes. Biochemistry 2002, 41, 2198-2208.

[9] Spraggon, G.; Kim, C.; Nguyen-Huu, X.; Yee, M. C.; Yanofsky, C.; Mills, S. E. The structures of anthranilate synthase of Serratia marcescens crystallized in the presence of (i) its substrates, chorismate and glutamine, and a product, glutamate, and (ii) its endproduct inhibitor, L-tryptophan.

Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 6021-6026.

[10] Morollo, A. A.; Eck, M. J. Structure of the cooperative allosteric anthranilate synthase from Salmonella typhimurium. Nat. Struct. Biol.

2001, 8, 243-247.

[11] Ze He, Kimberly D. Stigers Lavoie, Paul A. Bartlett, and Michael D.

Toney, J. Am. Chem. Soc. 2004, 126, 2378-2385.

(2)

[12] Roberts, C. W.; Roberts, F.; Lyons, R. E.; Kirisits, M. J.; Mui, E. J.;

Finnerty, J.; Johnson, J. J.; Ferguson, D. J.; Coggins, J. R.; Krell, T.;

Coombs, G. H.; Milhous, W. K.; Kyle, D. E.; Tzipori, S.; Barnwell, J.;

Dame, J. B.; Carlton, J.; McLeod, R. J. Infect. Dis. 2002, 185 (Suppl. 1), S25-36.

[13] Shah, J. Curr. Opin. Plant Biol. 2003, 6, 365-371.

[14] Calfee, M. W.; Coleman, J. P.; Pesci, E. C. Proc. Natl. Acad. Sci. U. S. A.

2001, 98, 11633-7.

[15] Anderson, K. S.; Kati, W. M.; Ye, Q. Z.; Liu, J.; Walsh, C. T.; Benesi, A.

J.; Johnson, K. A. J. Am. Chem. Soc. 1991, 113, 3198-3200.

[16] Walsh, C. T.; Liu, J.; Rusnak, F.; Sakaitani, M. Chem. Rev. 1990, 90, 1105-1129.

[17] Kozlowski, M. C.; Tom, N. J.; Seto, C.T.; Sefler, A. M.; Bartlett, P. A. J.

Am. Chem. Soc. 1995, 117, 2128-2140.

[18] Walsch, C. T.; Erion, M. D.; Walts, A. E.; Delany, J. J., III; Berchtold, G.

A. Biochemistry 1987, 26, 4734-45.

[19] Stigers, K. D.; Mar Tang, R.; Barlett, P. A. J. Org. Chem. 1999, 64, 8409- 8410.

[20] Bornemann, S.; Ramjee, M. K.; Balasubramanian, S.; Abell, C.; Coggins, J. R.; Lowe, D. J.; Thorneley, R. N. J. Biol. Chem. 1995, 270, 22811-5.

[21] Davies, G. M.; Barrett-Bee, K. J.; Jude, D. A.; Lehan, M.; Nichols, W.

W.;Pinder, P. E.; Thain, J. L.; Watkins, W. J.; Wilson, R. G. Antimicrob.

Agents Chemother. 1994, 38, 403-6.

[22] Easson, M. A. M.; Rees, D. C. Combinatorial chemistry: tools for the medicinal chemist. Med. Chem. (Wiley) 2002, 359-381.

[23] Lee, A.; Breitenbucher, J. G. The impact of combinatorial chemistry on drug discovery. Curr. Opin. Drug DiscoVery DeV. 2003, 6 (4), 494-508.

[24] Lam, K. S.; Lehman, A. L.; Song, A.; Doan, N.; Enstrom, A. M.;

Maxwell, J.; Liu, R. Synthesis and screening of “one-bead onecompound”

combinatorial peptide libraries. Methods Enzymol. 2003, 369, 298-322.

[25] Alluri, P. G.; Reddy, M. M.; Bachhawat-Sikder, K.; Olivos, H. J.;

Kodadek, T. Isolation of protein ligands from large peptoid libraries. J.

Am. Chem. Soc. 2003, 125 (46), 13995-14004.

[26] Hu, Y.; Helm, J. S.; Chen, L.; Ginsberg, C.; Gross, B.; Kraybill, B.;

Tiyanont, K.; Fang, X.; Wu, T.; Walker, S. Identification of selective inhibitors for the glycosyltransferase MurG via high-throughput screening.

Chem. Biol. 2004, 11 (5), 703-711.

(3)

[27] Wang, X.; Zhang, J.; Song, A.; Lebrilla, C. B.; Lam, K. S. Encoding method for OBOC small molecule libraries using a biphasic approach for ladder-synthesis of coding tags. J. Am. Chem. Soc. 2004, 126 (18), 5740- 5749.

[28] Liu, R.; Marik, J.; Lam, K. S. A novel peptide-based encoding system for

“one-bead one-compound” peptidomimetic and small molecule combinatorial libraries. J. Am. Chem. Soc. 2002, 124 (26), 7678-7680.

[29] Dixon, S. M.; Li, P.; Liu R.; Wolosker, H.; Lam, K. S.; Kurth, M. J.;

Toney, M. D. Slow-binding human serine racemase inhibitors from high- throughput screening of combinatorial libraries. J. Med. Chem 2006, 49, 2388-2397.

[30] Mehrotra, M. M.; Heath, J. A.; Rose, J. W.; Smyth, M. S.; Seroogy, J.;

Volkots, D. L.; Ruhter, G.; Schotten, T.; Alaimo, L.; Park, G.; Pandey, A.;

Scarborough, R. M. Spirocyclic nonpeptide glycoprotein IIb-IIIa antagonists. Part 3: synthesis and SAR of potent and specific 2,8- diazaspiro[4.5]decanes. Bioorg. Med. Chem. Lett. 2002, 12 (7), 1103- 1107.

[31] DeVries, V. G.; Largis, E. E.; Miner, T. G.; Shepherd, R. G.; Upeslacis, J.

Potential antiatherosclerotic agents. 4. [(Functionalizedalkyl) amino]benzoic acid analogues of cetaben. J. Med. Chem. 1983, 26 (10), 1411-1421.

[32] Lu, Z.; Tweig, R. J. Copper-catalyzed aryl amination in aqueous media with 2-dimethylaminoethanol ligand. Tetrahedron Lett. 2005, 46 (17), 2997-3001.

[33] Zhang, X.; Dillen, L.; Vanhoutte, K.; Van Dongen, W.; Esmans, E.;

Claeys, M. Characterization of unstable intermediates and oxidized products formed during cyanogen bromide cleavage of peptides and proteins by electrospray mass spectrometry. Anal. Chem. 1996, 68, 3422- 3430.

[34] Yue, W.; Koen, Y. M.; Williams, T. D.; Hanzlik, R. P. Use of isotopic signatures for mass spectral detection of protein adduction by chemically reactive metabolites of bromobenzene: Studies with model proteins.

Chem. Res. Toxicol. 2005, 18, 1748-1754.

[35] Tornoe, C. W.; Sanderson, S. J.; Mottram, J. C.; Coombs, G. H.; Meldal, M. Combinatorial library of peptidotriazoles: identification of [1,2,3]- triazole inhibitors against a recombinant Leishmania mexicana cysteine protease. J. Comb. Chem. 2004, 6 (3), 312-324.

[36] Knaggs, A. R. The biosynthesis of shikimate metabolites. Nat. Prod. Rep.

2003, 20 (1), 119-136.

(4)

[37] Smith, D. A.; Parish, T.; Stoker, N. G.; Bancroft, G. J. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect. Immun. 2001, 69 (2), 1142-1150.

[38] McArthur, J. D.; West, N. P.; Cole, J. N.; Jungnitz, H.; Guzman, C. A.;

Chin, J.; Lehrbach, P. R.; Djordjevic, S. P.; Walker, M. J. An aromatic amino acid auxotrophic mutant of Bordetella bronchiseptica is attenuated and immunogenic in a mouse model of infection. FEMS Microbiol. Lett.

2003, 221 (1), 7-16.

[39] Carniel, E. The Yersinia high-pathogenicity island: an iron-uptake island.

Microbes. Infect. 2001, 3 (7), 561-569.

[40] Budzikiewicz, H. Siderophores of the human pathogenic fluorescent pseudomonads. Curr. Top. Med. Chem. 2001, 1 (1), 1-6.

[41] Payne, R. J.; Toscano, M. D.; Bulloch, E. M.; Abell, A. D.; Abell, C.

Design and synthesis of aromatic inhibitors of anthranilate synthase. Org.

Biomol. Chem. 2005, 3 (12), 2271-2281.

[42] Kozlowski, M. C.; Tom, N. J.; Seto, C. T.; Sefler, A. M.; Bartlett, P. A.

Chorismate-utilizing enzymes isochorismate synthase, anthranilate synthase, and p-aminobenzoate synthase: mechanistic insight through inhibitor design. J. Am. Chem. Soc. 1995, 117 (8), 2128-2140.

[43] He, Z.; Stigers Lavoie, K. D.; Bartlett, P. A.; Toney, M. D. Conservation of mechanism in three chorismate-utilizing enzymes. J. Am. Chem. Soc.

2004, 126 (8), 2378-2385.

[44] Sudharsan Sridharan, Nigel Howard, Olivier Kerbarh,Michal Blaszczyk, Chris Abell and Tom L. Blundell, J. Mol. Biol. (2010) 397, 290–300.

[45] Gehring, A. M., Bradley, K. A. & Walsh, C. T., Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochemistry (1997). 36, 8495–84503.

[46] Sakaitani, M., Rusnak, F., Quinn, N. R., Tu, C., Frigo, T. B., Berchtold, G. A. & Walsh, C. T. Mechanistic studies on trans-2,3-dihydro-2,3- dihydroxybenzoate dehydrogenase (Ent A) in the biosynthesis of the iron chelator enterobactin. Biochemistry (1990), 29, 6789–6798.

[47] Reichert, J., Sakaitani, M. & Walsh, C. T. Characterization of EntF as a serine-activating enzyme. Protein Sci (1992), 1, 549–556.

[48] Kolappan, S., Zwahlen, J., Zhou, R., Truglio, J. J., Tonge, P. J. & Kisker, C. Lysine 190 is the catalytic base in MenF, the menaquinone-specific Crystal Structure of Escherichia coli EntC 299 isochorismate synthase from Escherichia coli: implications for an enzyme family. Biochemistry (2007), 46, 946–953.

(5)

[49] Dahm, C., Muller, R., Schulte, G., Schmidt, K. & Leistner, E. The role of isochorismate hydroxymutase genes entC and menF in enterobactin and menaquinone biosynthesis in Escherichia coli. Biochim. Biophys. Acta (1998), 1425, 377–386.

[50] Buss, K., Muller, R., Dahm, C., Gaitatzis, N., Skrzypczak-Pietraszek, E., Lohmann, S. et al,. Clustering of isochorismate synthase genes menF and entC and channeling of isochorismate in Escherichia coli. Biochim.

Biophys. Acta (2001), 1522, 151–157.

[51] Knochel, T., Ivens, A., Hester, G., Gonzalez, A., Bauerle, R., Wilmanns, M. et al., The crystal structure of anthranilate synthase from Sulfolobus solfataricus: functional implications. Proc. Natl Acad. Sci. USA (1999), 96, 9479–9484.

[52] Kerbarh, O., Chirgadze, D. Y., Blundell, T. L. & Abell, C. Crystal structures of Yersinia enterocolitica salicylate synthase and its complex with the reaction products salicylate and pyruvate. J. Mol. Biol. (2006), 357, 524–534.

[53] Harrison, A. J., Yu, M., Gardenborg, T., Middleditch, M., Ramsay, R. J., Baker, E. N. & Lott, J. S. The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophoremycobactin, reveals it to be a salicylate synthase. J. Bacteriol.

(2006) 188, 6081–6091.

[54] Parsons, J. F., Shi, K. M. & Ladner, J. E. Structure of isochorismate synthase in complex with magnesium. Acta Crystallogr. D(2008) 64, 607- 610.

[55] Parsons, J. F., Jensen, P. Y., Pachikara, A. S., Howard, A. J., Eisenstein, E. & Ladner, J. E. Structure of Escherichia coli aminodeoxychorismate synthase: architectural conservation and diversity in chorismate-utilizing enzymes. Biochemistry (2002) 41, 2198–2208.

[56] Kerbarh, O., Ciulli, A., Howard, N. I. & Abell, C. Salicylate biosynthesis:

overexpression, purification, and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica. J. Bacteriol. (2005), 187, 5061–5066.

[57] Kerbarh, O., Bulloch, E. M., Payne, R. J., Sahr, T., Rebeille, F. & Abell, C. Mechanistic and inhibition studies of chorismate-utilizing enzymes.

Biochem. (2005), Soc. Trans. 33, 763–766.

[58] DeClue, M. S., Baldridge, K. K., Kast, P. & Hilvert, D. Experimental and computational investigation of the uncatalyzed rearrangement and elimination reactions of isochorismate. J. Am. Chem. Soc. (2006), 128, 2043–2051.

(6)

[59] Zamir, L. O., Nikolakakis, A., Bonner, C. A. & Jensen, R. A. Evidence for enzymatic formation of isoprephenate from isochorismate. Bioorg. Med.

Chem. Lett. (1993), 3, 1441–1446.

[60] Kristin T. Ziebart and Michael D. Toney, Biochemistry 2010, 49, 2851–

2859 2851.

[61] Mavrodi, D. V., Ksenzenko, V. N., Bonsall, R. F., Cook, R. J., Boronin, A. M., and Thomashow, L. S. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J.

Bacteriol. (1998) 180, 2541–2548.

[62] He, Z., and Toney, M. D. Direct detection and kinetic analysis of covalent intermediate formation in the 4-amino-4-deoxychorismate synthase catalyzed reaction. Biochemistry (2006) 45, 5019–5028.

[63] Raushel, F. M., Thoden, J. B., and Holden, H. M. (2003) Enzymes with molecular tunnels. Acc. Chem. Res. 36, 539–548.

[64] Huang, X. Y., Holden, H. M., and Raushel, F. M. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem.

(2001) 70, 149–180.

[65] Kerbarh, O., Ciulli, A., Chirgadze, D. Y., Blundell, T. L., and Abell, C.

Nucleophile selectivity of chorismate-utilizing enzymes. ChemBioChem (2007) 8, 622–624.

[66] Liu, J., Quinn, N., Berchtold, G. A., and Walsh, C. T. Overexpression, purification, and characterization of isochorismate synthase (EntC), the first enzyme involved in the biosynthesis of enterobactin from chorismate.

Biochemistry (1990) 29, 1417–1425.

[67] Zwahlen, J., Kolappan, S., Zhou, R., Kisker, C., and Tonge, P. J. Structure and mechanism of MbtI, the salicylate synthase from Mycobacterium tuberculosis. Biochemistry (2007) 46, 954–964.

[68] Afonnikov, D.A., Oshchepkov, D. Yu., and Kolchanov, N. A.

Detection of conserved physico-chemical characteristics of proteins by analyzing clusters of position with co-ordinated substitutions.

Bioinformatics (2001) 17 (11), 1035-1046.

[69] Morollo, A. A., and Bauerle, R. Characterization of composite aminodeoxyisochorismate synthase and aminodeoxyisochorismate lyase activities of anthranilate synthase. Proc. Natl. Acad. Sci. (1993) U.S.A.

90, 9983–9987.

[70] Gouet, P., Courcelle, E., Stuart, D. I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics (1999), 15, 305–308.

Riferimenti

Documenti correlati

is the distance of the photon impact point on the detector from the beam axis, for the events undergoing a single Compton scattering (see Section 5.1) the average value in the

We fully agree with the conclusion by the discussers that the vortical system inside the scour hole consists of at least three vortices of different intensities 共two main

Pertanto, nel caso di UTI ricorrenti del paziente anzia- no, è opportuno impostare la terapia più adeguata sulla base di una corretta diagnosi eziologia e dei test di sensibilità

The most prevalent virulence gene in all analyzed wastewater samples, regardless of the evaluated groups of wastewater treatment plants or treatment stage (Fig.. The least

L’urinocoltura rappresenta l’esame più richiesto al Laboratorio di Batteriologia Clinica. E’ noto che l’80% delle infezioni nocosomiali del tratto urinario sono sostenute da

sono risultati quasi coincidenti, mentre, nel caso di campioni con conte più basse, l’intervallo di tempo tra la fase di “preavviso” e quella della chiusura della maggior parte

DARBO MOKSLINIS NAUJUMAS IR AKTUALUMAS ... LITERATŪROS APŽVALGA ... Escherichia coli klinikinė svarba ir atsparumo antibiotikams problema ... Antibiotikai ir bakterijų

Nustatyti iš virškinamojo trakto ligomis sergančių šunų išskirtų Escherichia coli daugybinį atsparumą antimikrobinėms medžiagoms.. Palyginti iš sveikų ir