• Non ci sono risultati.

Automated Reflection Picking and Inversion Applied to Glaciological GPR Surveys

N/A
N/A
Protected

Academic year: 2021

Condividi "Automated Reflection Picking and Inversion Applied to Glaciological GPR Surveys"

Copied!
89
0
0

Testo completo

(1)

(2)    

(3)     .              

(4)                            !    "             $    .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .                %      &     ()           " )  

(5) "       "     ' ," "      .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .        .      .

(6)    .    # .  # # ' ' '* '+ # #.    . .      . .    . . '                                                #'   "                                       * ' ," "                                         + #.  )                                           +. .

(7) . .  .         /   "    ") "    "    0 1   ""  2 " !) "       1    "" " 0 "  3        ) 0  "0 "  0   "  2)  .            "         "" )    "      0          "4         0 "   5          "    .       ""       0 3   1 2 "     "   "0 "  "4       "   "      "    6 ) 0    "  "  ""     "0             )  "        " )       7  " 0        )  1 77   1     0             2 "     8)  0 )  ""     "0    "    " 1    0 1   !)    " "  2)  .   /    "   )  " )     ""  )         " $6 ) "   % "  

(8) " 9%

(9) : "  .      ) )      " $6 )     "        )     " 1)0      " " "  )       %

(10)  50    2 (   )0    "     "  )     " " 1     " 15"0 1    "    $6 )   171    .   )    )     "" 1       "   "    "   )   0  "       " )  "  "    )   0 "         "        "4  " .  4       " "  " 2      " )   1   ""0   "  "    "   0 1  4     2) " 2)      "" "  ;"    827    0         2  * 9  %

(11) :   9  :       20       <         "    )   2     0    1    "       " 0 1 . "  )          " 1      6 ) 0    "     "   0 ""      7 "       "" 0 "   "  0 1   )    "   .    "          2           20      0   "      "   1  #= ;"       )0            0   3)0    "     (   3      "      ")"       "0 "     "   7/  %

(12) " 0   "  "        0 " " 0 " 1      0 1         ") "      "  .    0    "0 "          " "        ""    "  )    1 )      " "     /   0 1      " 5" " 0 "    " %

(13)  )  "4  ) .

(14)  .  

(15)  .              "  " )   " 0 1   ""    " !) "       1  % "  

(16) " 9%

(17) : " >               ) 0  "0 "  > "  )    "   2         " $6          1   " 0 %

(18)   7))  7     2 "       $6 0 1     "     "    2     6 7  %  9?0  -: .   "         "   !"  "4   0    0  0 " "4 0 1    "  "    $6                     ""  )     "  1    "  3   2) " 2)     "     "      1     "" . )  "  %

(19)    )    " )   "  "4    "  " 2 9,  :0 ""      !)     )0 1    "4  $6       "   2  "4   2    0 " 0 "       9?0  -: ( @ A4 9@A:  )   %

(20)        "   ) 0 1        " 9 4:     "   " )"     ) " 0 1      "     ) 9,  : (  "7" %

(21)  )      "   )     1 0  ! )0    "   "   )"      )        "  )  (  7" %

(22)  )      " "       )    " "    "  )      0   1   7"  ) )        2  .     27      0        $6 0 1 )  "    "  0 1  ""        20   2   0         " $6        0  1    " 3           "      ) @ 4 9 7 ": %

(23)  )           2  0 "     "   2) " 2)  , 30   $6 ) "  1     5   "  " "4        5    )  9?0  -: (    0  @A %

(24)  5   "       " 7 " )       "  '.

(25)  

(26)    . #. "        0 $6 ) " 0 " " 0 " 1          " "  ) 0    2 ( @ 6"7 9@6:  )   %

(27)       "  ) 1     "   )  4 " )"   "  1     "7 9,  ;:  74 9 7 ":     "  <"7

(28)    )0  1  @   9,  @: " @

(29) ) 9,  /:  )0  1 .     1     1       )"     ) "  (  "  "   2 0             " ) 0 1      53" " )"     ) "     )   2  )  @A  5      0  1  "4  40 "      "    @6  )  )       9,  " 0  +: @ "7 %

(30)  )      "  )   )  $6 ) "   5   "     1 4    " "  )          ""  "4  "  6 ) 0       "   )   77   @6 " 0      ""  "4  4       "      1     0  7      9,  ;: 8)  0  " %

(31)  )   "   "    2    3 " 0 "              "        )  0 "   " 2  "       "   "B      0  1          )    53"  "   1 )     "  9?0  -> ,  " 0  +: .   )       @A " @6  ) "     "   $6   )       1     "   ) 9 71  )   ):0       "    " 9 171  )   ): , 30     " )   " 1  1 "4       "  "       1  0      "     "      1   "  "        .      "  "4    ""      !)     ) ( C 7A4  5  ) 9,  $:        53"0  "      0 "   " )"    "     10 1   67A4 %   ) 9,  ,:     1     1       )"  "4  0    "   "4   @     " "  )   ""  "4     "        $6 ) 0   "0 "  0 1        2  0 1      1 9?0  -: (    "4   )  0   " "       1                    @"  7 20    "0 $6  1)      "  )   ) r0   "      E (r, t) "  B (r, t) 5"   " )"  631D 2 " ""    $6           1       ) 9?0  -:E. 1. E (r, t) = E0 e−αr ei(βr−ωt). 9  :. B (r, t) = B0 e−αr ei(βr−ωt). 9 :.

(32)  

(33)    . *. ,   E $3   " 2     %

(34)  .  5   1    9.: " )  9

(35) :  "   4 9:0  "7 9;:0    9@:0  ) 9/:0  74  5 9$:0 " 74   9,:   .   ""    ""    "4     171  )  97/: " 71  )  9$0 ,: " .

(36)  

(37)    . +  α=ω.  με  1 + P2 − 1 2. 9 :. .  με  1 + P2 + 1 9 ': 2 σ P= 9 #: ωε 1   ω     2    0 " σ 0 μ0 " ε   )     ")0     0 "      )        1 .   %

(38)    ) .     α0 β 0 " P     "      0       0 "     0 )0 "   ""    $6       "  0 1             0  1    2     "" %

(39) "            )  $6 0 1    .  )      0 " 0 "   2) " 2)   %

(40) "  .  $6 ) v    %

(41)   "    $6             1  9?0  -: β=ω. v= . μr εr 2. c √  1 + P2 + 1. 1. v=. 9 *:. ω β. 1   c    $6 )  ) 9   F:0 " μr " εr   )   )    "   )    ) 9   "  :        1    %

(42)    )  1 3    $6   "4       "  .   .    1   )    )  ) εr 0     ") σ 0   $6 ) v0 "     α0     3"  )      1    2  " 6 (  0          "  5        %

(43) 0 3          9?0  -: .    0   )    μr     3" 2  0 "     2    "  .   8)  0   "   )      ) 1.  "    )  ) "   ")0 1    5 )     $6 ) "     6 ) 0   $6      )   )       "4  2       %

(44) 0 1  .   2              " " 17 1      %

(45)  1      P 9$2 #:   ) 1    0 1     " "  7 1           9"0  #:      "  .  0     1   1    %

(46)  )    1 " 0 1        )    " 1"     "    1  0          1   @) 0 "  " "" 1 0      )  1 " %

(47)  )   "  " " 0  1        B 1   1 0     "      )  " "   .

(48)  

(49)     $

(50) . 6.$

(51) (G  /" < ,  <  < /  "  " " G    @ %  /   (. . εr.    7#  7 '7 #7 # #7 #7' '7* #7* 7'. $6 

(52) A$

(53) .($      v cm α dB σ mS m ns m      #     #   7 *  7  #7  '7 7 7 7 + 7 7 * 7  7   7  7   7  * . .  E $3    $6  3"  "4      2  " 6 .    1  )    )  ) εr 0     ") σ 0   $6 ) v0 "     α  "4  )  .            "          %

(54)    5 10 3         0        )    μr    10       3" 2   .  /) "  9 --:  !  4   %

(55)                " 1 1     0 1  "   $6     6 7 % 2  9?0  -: (  0           "      0  "0 0 " 2"0             ) "     )  $6    @"     )    )  )   1 9  : 1    9 : "   "     9 7:0   1  .  0  )       1   5     )  $6      ;" )     $6 ) "           )   )0      1  5       1    0    . "  30 )       1 0      ")0  "        1    1    3  )      $6   "  "  " "  .  0  1    $6 ) "   #  * F0 1            7  ";F   3  )  0 1    "        )    1  " 1      0 "  1 "  1 $6 ) "    1     "        "  9.  :      0 "  1 "   )"    )  "  %

(56)  ) 1   2 ) 60 "    1 ") "      "  "  3   )   2 9?0  -:0   1  1  1   %

(57)     B     "  7 3  ( 0    17   1  3 2      "  "  1           0 1    "   "    "      " 9 " H0 - : 8)  0      2" 1.

(58)  

(59)    . -. 1    " 15"  "  4     $6    "     2)     %

(60) "  (   6 7 % 2       )   7 3    3 ""    20     1   2" 1 0 )     "4    ) 1 1 "  9.  :0 1      "    1    2 "   2" 1  9; "  "  0  -:      " @0 ""      0 2" 1  3 1         " 0    " " 9?0  -: (   5  0   1   2   1       ) "   "     1 ") 9 1  F:0 1    "  3    1   "   2  . 9 - %  @:  5 4   %

(61)   (    "    " "     2" 1 0        "    0 "          ")0 1   "     1   " )     "  6 ) 0       "    2)     %

(62) " 0    $6        7 3    "0  "  "5"       2" 1   "  "" (    0      2" 1  " "  1    "   0    %

(63)  ) 1   "      60     1   " "         " .     ")""    1   E  (      "       " .            "         "" )    "      0          "4         0 "   5       "      "    (     0       "    %

(64)  50 1   "   3             "  .    0 ")0 "           "" "    " 1    "  "0 1  "  0  0 70   0 " )3    (      " )      " " .      ) )      " $6 )            )     " 1)0        " "  )  " 1     " 7  "  (   )0        )   "   7 3 0 1   "    $6 )   171    .   "   "     "    "            )   1    " .  )       "      "  %

(65)  5   "  )     0 " " 0 " 1  .    0 ")0 "     )       "" "    " 1    " )   "0     "4   "   )   @A  )0 " )7)7"   @6  )  (   '   4        7 " )     "0   7 "  " 0 1  4     2)      "" "  (   0   ""    3  "         "  "4   " " 0    "" )      2           20 1          "" " "0   "      "   1  #=.

(66)  

(67)     ' (   #   "  " )   "   "   7/  %

(68)  ) 2 "     0   "  )       0 " " 0  )0 " 1 0 1        )        "     )1 (   3      "      ")"       "0 1  .       ") "      " 7 " )   "  .    0    "0 "          " "        ""  "     " 10 1      " 5" " 0 "    " %

(69)  )  "4  )  .    1 )      " "     /   0   1    "    "  "     . 

(70)    / 60 ,  $0 "  60 I" )     %

(71) E      " 1)0 " "0 " 7 " " J0 %  ?  ( 0  +0 "  ,  $0 / 60  60 " / ; 0 I"    7"  "    J0 % 0 )  0  0  *0  & ' 7& #  / 60 ,  $0 "  60 I"    "     .   E .   "     "   "7  " "J0 % 0 )  0  #0  #0  7# ' @

(72) 

(73) 0 ,  $0 ; @0 / 60 G G0  60 " % 60 I$)      0 ) "    "   " G/

(74) " % "  

(75) "  )E    "  @ $  %  9? 0 (:J0  )  % 0 ) *0  0  #0   7# # ,  $0 / 60  60 " @

(76) 

(77) 0 I&    4 %

(78) " ) E    "     "  "J0 %  ?  ( 0 ) -+0  0  '0  '+ 7 '.      

(79)          !  / 60 ,  $0  60 @

(80) 

(81) 0 " ;  0 I"    " ) E    " "    %

(82)  )J0    ($$$ * (  @    % "  

(83) " 0  K0 ? 7 *0  *0  7*0 (;8 -+7 7 # - 7#  7*  C  <0 ,  $0 / 60 "  60 I( "      )" %

(84) "   J0    ($$$ * (  @    % "  

(85) " 0  K0 ? 7 *0  *0  7#0 (;8 -+7 7# - 7#  7*.

(86)  

(87)      / 60 ,  $0 "  60 I7 "          "  %

(88) ) J0    ($$$  (  <    ")" % "  

(89) " 0 , 0 (0 ? +7 0  #0  7'0 (;8 -+7 7'+--7 *'-#7* ' ,  $0 / 60 @ , 60 " @

(90) 

(91) 0 I'7/ 2) %

(92)   "         E    J0    ($$$ # (  @    % "  

(93) " 0 ; 0 ;0 ?  7? '0  '0  #7#*0 (;8 -+7 7'+--7*+-7*. "     # ! $%   &    / 60 ,  $0 "  60 I   7" "   %

(94) "   )J0    ' %8%. @  0 ) 0 . 0 (0 8) +7 -0  #0  ' 7 '+0 (;8 -+77-' ''7'7 6 0 / 60 ,  $0 C 

(95) 0 C  0 "  60 I% "  

(96) "   " "    ) )J0    ' %8%. @  0 ) 0 . 0 (0 8) +7 -0  #0  *7 0 (;8 -+77-' ''7'7-.

(97)  .  

(98) 

(99)   

(100)  

(101) .     @ 4 %

(102)  )  "  7    1   $6           " "           " "  )          "   2)     %

(103)  50           " $6 "  0 1     " "  @A  )      " )  "4      " )  ")"   "   )          "" " 0 "   "0   B   B 9/ 0 --:0  0  0 " 0   0 " )3   .   2  "4   "    0 "     1 "4  )    " ""    !)       9/ 0 --:E  6           D 3    "       1     "      "   1    "  (     4)   "0        !)     "    " 4  2 "    0  1  " 1     "  (     B    0               9 ": 1      "       1      6 ) 0    "        " )     0  )  0 "                    " 1   0   3      )  "  9 7  7 :    "" )    "  50        "       5        0 1    " "       ) .      " "           0 1    ""    " '    ))   )    "       1  7/ " 0  1          1       5    9  : "     5    .   2    .

(104)   

(105)   . .  "    0 )0 "           " 1) 0    )  "0 77 0  1       ""      " 7/  ) # &3      1          1   7/ " 0      " )  9  )3:0 1    "       0 "       )3 1      5"      .   "       70      )    77     70 )3        " "    0 0 " "   0 1               " 7      ) 1    ""  5      " "       0 "     5        0    5  0   " 1    0    )  1       ) (      5"           1  5      0       " "       "    1  0   1        " /  9 --: "5 1    7   E  ,    0 1      5 5   0 "5  3  0    0    7 0 1   5" 71"1         .   "  " "            7     @ 7" 7  0 1     1 5                  1   5" 71"1 (      0  7" 7          ) "         .      7  "   2 "          1 " )       ""  5 9 0  :0 1  1         )    3   1       "  "  (  0 7         "    0  0 " 0 "          )   "    ( 0   "   1    "        "  1    "  "  9 0  :. .   ! .      2)            0 1    "  . 2) " 2)    9@   " 6  0  #>  : @"   "" "   "  8 "  An "5" 1      ) [0, (N − 1) Δt]0 1   Δt       ) ( 3    9,  :0    ""   "5"         3   an 0 1   7  )    1 2 . an = An + iAn. 1. i=. √ −1. n = 0, 1, ..., N − 1. 9 :.

(106)   

(107)   . '. ,   E $3   3  0 "5"   ) 1  7)  " "   .  3     ")""      ""   "      0     1    "    /.        0 1   "   7-      6"5"   .   9 -+-: . 1   An           3  0    "     2"    0 "     n "5    ""    nΔt .  3    "5"   ) 9$2  :    "   7)  " Sn "   φn 0 ) "       9     )     ": "      .  1     "     "" " 2"        1  An = Sn cos (φn ) . An = Sn sin (φn ). 9: 9:. (   1 0       "    3   "". "  . .      An    3   an   )   0 1)  " . )           "  $2  " 0   2"      2     ""       7-                  "  "    ""   ) [0, (N − 1) Δt]0       2"       2 " "    /    .    9/.:       ""  0 )  9.  0 -+-> ; 0 --*>  +:E.

(108)   

(109)   . #. M 2 sin2 πk 2 An−k An = π k . 9':. k=−M. 1. k = 0.     "  $2 '0   "    2"           nΔt ""    "     ""   "5" )     2MΔt 1" 71"1  "    nΔt .    0   2"     ""         /.   0  1     ""    "0 20   "    ( 0   /.    $2 '     "    71"1 "  )        9.  0 -+-:0   "  )"  5 "         "     An−k 0 1       1/k "    /.   "   "            An  "  " 1    3  )     1)7 "1)   0 1     )         "" )   @A %

(110)  0    " )    "           0           " %

(111)    1  ,  <     )            "  0   /.       1 "         " 1    " /. 71"1 9$2 ': .  /. B "   " 1 "    " 0 1   "        /. 1"10   1  , ;0 1 .    /. B )        9 k  $2 ': <       )       0   "    )  7 )  1 0   1  , @0 1             "   )   "    3" 7-      1      ""   .  4   )" 1     " /.   0   1  , /0 1   2)             ""      "  "   /. 1"1  )"   1"    1"1 2MΔt 2        )     " 1) (   0   )  M  $2 '   2  #0    /.   "  # 0 1 .  "   /.  1"1    1" (   3    M  2  0    )  An 1"  )         1   " An 9$2 ':0 1. 4            "  ) 0 ""    2      "  "     .    0           ""     1"    /.   0 1 5       2 " )"  0 1    ""    1 .   # .       )       $6 " 1     "" %

(112)  50 "   "    "    3   ) "5"  $2  0 1   )    1 2  Sn = A2n + An 2 9#: .            ""    )      "    0 "        )     ) " "  "  ".

(113)   

(114)   . *. ,  E       "" %

(115)         /.    1 "4   1"  .   " %

(116)   9:  ""     1)7 "1)   0 1   )           "" 0  1   " )  " .      "           /.   9;: )       0       " (              )  9@0 $:0 1          )  9/0 ,:0   #  9 -- : 1" /.    .      9@0 /:  1    "     9 :  "       9:   5"   )  1   )   "         )  9@:0 "  "    " 0 "   )"       /.   1" 9/: .      9$0 ,:  1     ) 9: "          9 :0      "   #   0       )    1  .  "          9@:   9$:   "           1  1    0 1   4   )"  9,:      /.   .

(117)   

(118)   . +.    " /. 1"1 , 30     "         , @      )  )  2   , $ 1   , ,0 1   "      " " 1    "     .        "  2 "       1     ""  50      )   3 "      , 30     )  , ,    1 1   1    "   )0 ) "  *# "  0 "     " )0 1             0  1  )      .        ""    "    3 0  1     "          )  ")"   %

(119)       "  "    )    1) 0        "  ""      0      "   " 1      3 "       0  1       "   7     "   .    0          "    "5   7 0  "0 "      .     #      #  .             3   ) "5"  $2  0 "   )    1 2

(120)  An φn = arctan 9*: An .       )         ""  5  )    " " 2             "" )0 .   0 "4 0 " )    0 1  1             0 " " "    1 "4  ) .        ) " 0       "5"               "  9; 0 --*: 6 ) 0      1  " 7 "  "   1 5     "  0 1            "       98 " " 6" 0  *:0 1      "  "    7      7  .   "1"               1 " 1 ±180 9$2 *:0 "           "      0 "    " .      )"  "          0    "     1      0 1   "    $2 E cos (φn ) =. An Sn. 9+:. (         0         " 0   "  )" "  )  $2 + 8)  0   "         )    0  ) 0    )        Sn 1" 2      An "    An "        nΔt 9$2 #:0 "   )         An 1" 2       An    )     2MΔt 1" 71"1    /.    "    nΔt 9$2 ':0       An   71"1  1" )            An .

(121)   

(122)   . . .      5       "  50  )     " 1   "   "0 "             "      "" "  ( 0     )   ±180 "       φn 0         9$2 +: 6 ) 0    7        " 1       "" 0  1    "  0        9$2 +: 1) 0       "  " 1    "          "       ""  ( 0     "    )  ) 2   "  1        "   "   2  " 9$2 +:0 1           1  ) 6 ) 0    "          " 1      "         30   1         "    "  "          .   )    )"  , $7,0 1    1   4     ) "" "         .       " "       , $           0 1     ) )     1    ""   .   5 "       0 1 )        ) "  1    "0  "    " "   1  , , (   1 0       "       "" )   %

(123)  5    "      0  "          " )  .    "     %

(124)  5  1  , 0 1      "             "    0 "         0 ")0 "  .     "        , /0 1 3"" 1             5  ,  .       5 9, ;:   "  2 "       1     50     "  "    5    0     "5    )  "        .      5 9, @:            )   "" )  "     0         "         )0 1  "  "    7 " .        )    "0       5             "           " ) 0 1        (   30   1     "E    7  "      1     "  0     " 1     7 0 1      " 1 1 "!  1         9   : "    ) 1 1 )  7 0 "         )     0  2    "0           " "       "  "!   "       0 1 . )     1     " 1)0          5        0    "  0 "    .   )       "             1  7     0 1   2)    5   1    "    ).

(125)   

(126)   . -. ,  E $3     "    %

(127)  5 .  5   1   " 9:0       9;:0 "      9@:  5 .     .  5   "  2 "      ""  0  1 1            %

(128)  5 9 7 :0  1   1 )       1  9 7 :0 1   )     ) "          "" 1 .      5 )    " "          )   "" )0  "          " ) .

(129)   

(130)   . . '      "   " ) "   1  1       1       "    "      30  "   ) ""0   1  "  1     " 1  3        0   1      "   1 .   $ %   .  7     "                         ) 1     ""  5           50 1  )    "0             "             )   ""       5 $          "       )  twtij 0      Cij 0   " Aij 0  1     .       "    3  0 1     "3 i " j ) "   7   1    !7       50 1        )      ,     0     " "    " "                      "  ""     "  5 2 "5     , 0      "  ""     Cij   ) "  1    "0      ) [twtij , twti+1j ]           1.       1)0 1       "   5     " "  0             0 "              0 "       "!         "5"          (   0 1    "!   Cij " Ckj+1    "    1 "   E  .  1    )      Cij Ckj+1 = |Cij | |Ckj+1 |. 9:. .                "       0   "   3       @6 %

(131)  5     )   5 0 1"   " 1 1 ""   1     .  1              )        1   1   (   0   )       5" 71"1 TP |twtij − twtkj+1 | ≤ TP. 9-:. .  71"1       )"  " "  "  0 1                    .  2      1    5 1      )0 1       "     .  1          "    "  "  0   "  )"           Cij 0       5"    Ckj+1    3   1  5    "0      """      "   "     "    1   .   "    "  )"     """     0 " .

(132)   

(133)   . .        )       "        0   "     ""       "   Cij 0 "        "     ""  5      "    (  "  )" ) " "    !  1     0 1      "  "       1 1 77 0     . LH   5"      " EH       )       .  0   "     1 5   ) .     )    1        0 "E  (  0 "  3  3              "4   0 1     "  "         "4   " )  @   0 "  3       3   0 1      5    "     "   

(134) " 0 1        "    "     0 "             "  )  )   (   1 1 77 0         "    1   1"0 1    )"       "      %)     0        2 "    0 "  " )0 "7 5 0 "   1) 0 1           .   "4     3 "  "        0    "  2       $6 ) "     " %

(135)  50 1     1  ") "    )      )   "  " "    1    6 ) 0   $6 ) "  1    %

(136)  5   1 5 )  "   ) 0      "         1  ,  9@  0  #: .    0              ) " 0 1       3"      1 ) 0    5  " 0     ) 7   "4           5        1 1 77  8)  0        "  ""     "0    " 1    "  " ) 0 1  1     "   " 1   !) "  "     "       1  "    $6        0   "      " " ,    0      "      "   0 1         !)  3  "  "     %

(137)  5  1  ,    0           )  , ' .      LH 1  2  1   " )  )0       0    "      .   $ % &   

(138) "  "             )   ")""         )    "  " "         1   1" .       "   4    )  0         )    )     1   .      .    0        "         .

(139)   

(140)   . . ,  'E $3  "  "     %

(141)  5  1  ,  .      1  2   0 1   "     ) "    "   0 ) "  " ) .         "                 )  1           @" 0  30 1   Cij " Ckj+Δj+1 1        "    Δj   1"0 "       1   " )   Ci−1j " Ck−1j+Δj+1 ) "5"    " "     1     .  1 )      "    1 "   E  .  1    )      Ci−1j Ck−1j+Δj+1 = |Ci−1j | |Ck−1j+Δj+1 |. 9 :. .     1              1       1"     .  1           )        0       " (   0   )       5" 71"1 TJ 0 1 .           "        |twtij − twti−1j | ≤ TJ |twtkj+Δj+1 − twtk−1j+Δj+1 | ≤ TJ. 9 :.  .   1" Δj         5"   " LG 0   "  )"   " )     "        Δj ≤ LG. 9 :. ' .               1   1   .         Ci−1j     [j + 1, j + Δj] "  )      0 1 .

(142)   

(143)   . .       0 "      "         )               " Ci−1j " Ck−1j+Δj+1    1 "  0         "5"      0 "   1 "           " .    "    " 1         "       0  1     "   Ci+1j " Ck+1j+Δj+1 1"  1     .          B 1.     "4         0 1     "      7     8)  0         3    0  30 1 " 0 1    ".       "    "    " .      "       )  5"       "          "      <    0       "   1 "          0      1 )                     0          " ) 1         1 3         )  , #0 1   1      )   1      5) "4   5  (   5  0          "           " 0 1       '    " !        0      71"1 TJ    !       )0       " ' 1"          (   " 0                   " 0 1       ' 1"          " 71"1 (     " 0        "  1"   "0 )             " ' (    . 0  "        0   1     " "            )    (   5  0      1 "  "       1"   "       "5  3    "  .    0   ) ""0   "    )   " .       )     "       "  0 1       )   0 "    )         "  5  3  )  , *0 1   1      "     "    .         "    "    1  , ' (   " %

(144)  5       " * ""  0   ""  - 9  = ":    "    0             . "  1 "   ) 9, *: .  3   LG 1  2  #   9  :0 1    1      "       1  3""     0   ) "".  .  

(145)   . .      ""     "          "     "5        0      )       ) 1     ""  5 .  "               "      .     "4         0 1  "  " "   1 .             .     1     "0 1   "4      "    "   5      .

(146)   

(147)   . '. ,  #E $3       5  .  5   1      )   1      5) "4     0 1 .    )           6"5"   ,    9 *:. ,  *E        "     9 ": "   9:             1  , ' $    +   1" "   )   )    7          0 1        " )  1   1 " "  .     1  3"      )     "    !  )  0 1    "4             ).

(148)   

Riferimenti

Documenti correlati

The JSD wave function is composed of a Slater determinant, whose molecular orbitals are expanded in the chosen basis and that can be obtained by a DFT calculation or by a

We advocate that the generalized Kronheimer construction of the K¨ahler quotient crepant resolution M ζ −→ C 3 /Γ of an orbifold singularity where Γ ⊂ SU(3) is a finite

Inoltre dalla sopracitata formula di Mariotte (valida per s/r &lt; 1/20) si deduce che, all’aumentare della profondità, e quindi della pressione p = h ⋅ γ a sull’arco, se

One, S estimation, reveals that robust and non-robust fits to the data are very different; the other method, MM estimation, fails to do so, a finding in line with the conclusions

In such system, pickers walk or drive along the aisles to pick items, completing a single order or a batch of multiple orders, depending on the order picking policy.. In the batch

A shifting of the anomalies along the profile direction is observed; this may be caused by inaccuracy of the distance measurement while using the wheel odometer in the

desideriamo invitarLa alla presentazione della nuova generazione di sedie da giardino, Alfa, che si terrà il giorno 20 dicembre 2017 presso l’Hotel Città di Treviso in via Paradiso 5

Osservando la Tabella 6.1, si può notare una scarsa predisposizione della Correlazione incrociata nel classificare un’attività all’aumentare del numero di sensori