Automated Reflection Picking and Inversion Applied to Glaciological GPR Surveys
Testo completo
(2)
(3) .
(4) ! " $ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . % & () " )
(5) " " ' ," " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(6) . # . # # ' ' '* '+ # #. . . . . . . ' #' " * ' ," " + #. ) +. .
(7) . . . / " ") " " 0 1 "" 2 " !) " 1 "" " 0 " 3 ) 0 "0 " 0 " 2) . " "" ) " 0 "4 0 " 5 " . "" 0 3 1 2 " " "0 " "4 " " " 6 ) 0 " " "" "0 ) " " ) 7 " 0 ) 1 77 1 0 2 " 8) 0 ) "" "0 " " 1 0 1 !) " " 2) . / " ) " ) "" ) " $6 ) " % "
(8) " 9%
(9) : " . ) ) " $6 ) " ) " 1)0 " " " ) %
(10) 50 2 ( )0 " " ) " " 1 " 15"0 1 " $6 ) 171 . ) ) "" 1 " " " ) 0 " " ) " " ) 0 " " "4 " . 4 " " " 2 " ) 1 ""0 " " " 0 1 4 2) " 2) "" " ;" 827 0 2 * 9 %
(11) : 9 : 20 < " ) 2 0 1 " " 0 1 . " ) " 1 6 ) 0 " " 0 "" 7 " "" 0 " " 0 1 ) " . " 2 20 0 " " 1 #= ;" )0 0 3)0 " ( 3 " ")" "0 " " 7/ %
(12) " 0 " " 0 " " 0 " 1 0 1 ") " " . 0 "0 " " " "" " ) 1 ) " " / 0 1 " 5" " 0 " " %
(13) ) "4 ) .
(14) .
(15) . " " ) " 0 1 "" " !) " 1 % "
(16) " 9%
(17) : " > ) 0 "0 " > " ) " 2 " $6 1 " 0 %
(18) 7)) 7 2 " $6 0 1 " " 2 6 7 % 9?0 -: . " " !" "4 0 0 0 " "4 0 1 " " $6 "" ) " 1 " 3 2) " 2) " " 1 "" . ) " %
(19) ) " ) " "4 " " 2 9, :0 "" !) )0 1 "4 $6 " 2 "4 2 0 " 0 " 9?0 -: ( @ A4 9@A: ) %
(20) " ) 0 1 " 9 4: " " )" ) " 0 1 " ) 9, : ( "7" %
(21) ) " ) 1 0 ! )0 " " )" ) " ) ( 7" %
(22) ) " " ) " " " ) 0 1 7" ) ) 2 . 27 0 $6 0 1 ) " " 0 1 "" 20 2 0 " $6 0 1 " 3 " ) @ 4 9 7 ": %
(23) ) 2 0 " " 2) " 2) , 30 $6 ) " 1 5 " " "4 5 ) 9?0 -: ( 0 @A %
(24) 5 " " 7 " ) " '.
(25)
(26) . #. " 0 $6 ) " 0 " " 0 " 1 " " ) 0 2 ( @ 6"7 9@6: ) %
(27) " ) 1 " ) 4 " )" " 1 "7 9, ;: 74 9 7 ": " <"7
(28) )0 1 @ 9, @: " @
(29) ) 9, /: )0 1 . 1 1 )" ) " ( " " 2 0 " ) 0 1 53" " )" ) " ) 2 ) @A 5 0 1 "4 40 " " @6 ) ) 9, " 0 +: @ "7 %
(30) ) " ) ) $6 ) " 5 " 1 4 " " ) "" "4 " 6 ) 0 " ) 77 @6 " 0 "" "4 4 " 1 0 7 9, ;: 8) 0 " %
(31) ) " " 2 3 " 0 " " ) 0 " " 2 " " "B 0 1 ) 53" " 1 ) " 9?0 -> , " 0 +: . ) @A " @6 ) " " $6 ) 1 " ) 9 71 ) ):0 " " 9 171 ) ): , 30 " ) " 1 1 "4 " " 1 0 " " 1 " " . " "4 "" !) ) ( C 7A4 5 ) 9, $: 53"0 " 0 " " )" " 10 1 67A4 % ) 9, ,: 1 1 )" "4 0 " "4 @ " " ) "" "4 " $6 ) 0 "0 " 0 1 2 0 1 1 9?0 -: ( "4 ) 0 " " 1 @" 7 20 "0 $6 1) " ) ) r0 " E (r, t) " B (r, t) 5" " )" 631D 2 " "" $6 1 ) 9?0 -:E. 1. E (r, t) = E0 e−αr ei(βr−ωt). 9 :. B (r, t) = B0 e−αr ei(βr−ωt). 9 :.
(32)
(33) . *. , E $3 " 2 %
(34) . 5 1 9.: " ) 9
(35) : " 4 9:0 "7 9;:0 9@:0 ) 9/:0 74 5 9$:0 " 74 9,: . "" "" "4 171 ) 97/: " 71 ) 9$0 ,: " .
(36)
(37) . + α=ω. με 1 + P2 − 1 2. 9 :. . με 1 + P2 + 1 9 ': 2 σ P= 9 #: ωε 1 ω 2 0 " σ 0 μ0 " ε ) ")0 0 " ) 1 . %
(38) ) . α0 β 0 " P " 0 0 " 0 )0 " "" $6 " 0 1 0 1 2 "" %
(39) " ) $6 0 1 . ) 0 " 0 " 2) " 2) %
(40) " . $6 ) v %
(41) " $6 1 9?0 -: β=ω. v= . μr εr 2. c √ 1 + P2 + 1. 1. v=. 9 *:. ω β. 1 c $6 ) ) 9 F:0 " μr " εr ) ) " ) ) 9 " : 1 %
(42) ) 1 3 $6 "4 " . . 1 ) ) ) εr 0 ") σ 0 $6 ) v0 " α0 3" ) 1 2 " 6 ( 0 " 5 %
(43) 0 3 9?0 -: . 0 ) μr 3" 2 0 " 2 " . 8) 0 " ) ) 1. " ) ) " ")0 1 5 ) $6 ) " 6 ) 0 $6 ) ) "4 2 %
(44) 0 1 . 2 " " 17 1 %
(45) 1 P 9$2 #: ) 1 0 1 " " 7 1 9"0 #: " . 0 1 1 %
(46) ) 1 " 0 1 ) " 1" " 1 0 1 @) 0 " " "" 1 0 ) 1 " %
(47) ) " " " 0 1 B 1 1 0 " ) " " .
(48)
(49) $
(50) . 6.$
(51) (G /" < , < < / " " " G @ % / (. . εr. 7# 7 '7 #7 # #7 #7' '7* #7* 7'. $6
(52) A$
(53) .($ v cm α dB σ mS m ns m # # 7 * 7 #7 '7 7 7 7 + 7 7 * 7 7 7 7 7 * . . E $3 $6 3" "4 2 " 6 . 1 ) ) ) εr 0 ") σ 0 $6 ) v0 " α "4 ) . " %
(54) 5 10 3 0 ) μr 10 3" 2 . /) " 9 --: ! 4 %
(55) " 1 1 0 1 " $6 6 7 % 2 9?0 -: ( 0 " 0 "0 0 " 2"0 ) " ) $6 @" ) ) ) 1 9 : 1 9 : " " 9 7:0 1 . 0 ) 1 5 ) $6 ;" ) $6 ) " ) )0 1 5 1 0 . " 30 ) 1 0 ")0 " 1 1 3 ) $6 " " " " . 0 1 $6 ) " # * F0 1 7 ";F 3 ) 0 1 " ) 1 " 1 0 " 1 " 1 $6 ) " 1 " " 9. : 0 " 1 " )" ) " %
(56) ) 1 2 ) 60 " 1 ") " " " 3 ) 2 9?0 -:0 1 1 1 %
(57) B " 7 3 ( 0 17 1 3 2 " " 1 0 1 " " " " 9 " H0 - : 8) 0 2" 1.
(58)
(59) . -. 1 " 15" " 4 $6 " 2) %
(60) " ( 6 7 % 2 ) 7 3 3 "" 20 1 2" 1 0 ) "4 ) 1 1 " 9. :0 1 " 1 2 " 2" 1 9; " " 0 -: " @0 "" 0 2" 1 3 1 " 0 " " 9?0 -: ( 5 0 1 2 1 ) " " 1 ") 9 1 F:0 1 " 3 1 " 2 . 9 - % @: 5 4 %
(61) ( " " " 2" 1 0 " 0 " ")0 1 " 1 " ) " 6 ) 0 " 2) %
(62) " 0 $6 7 3 "0 " "5" 2" 1 " "" ( 0 2" 1 " " 1 " 0 %
(63) ) 1 " 60 1 " " " . ")"" 1 E ( " " . " "" ) " 0 "4 0 " 5 " " ( 0 " %
(64) 50 1 " 3 " . 0 ")0 " "" " " 1 " "0 1 " 0 0 70 0 " )3 ( " ) " " . ) ) " $6 ) ) " 1)0 " " ) " 1 " 7 " ( )0 ) " 7 3 0 1 " $6 ) 171 . " " " " ) 1 " . ) " " %
(65) 5 " ) 0 " " 0 " 1 . 0 ")0 " ) "" " " 1 " ) "0 "4 " ) @A )0 " )7)7" @6 ) ( ' 4 7 " ) "0 7 " " 0 1 4 2) "" " ( 0 "" 3 " " "4 " " 0 "" ) 2 20 1 "" " "0 " " 1 #=.
(66)
(67) ' ( # " " ) " " 7/ %
(68) ) 2 " 0 " ) 0 " " 0 )0 " 1 0 1 ) " )1 ( 3 " ")" "0 1 . ") " " 7 " ) " . 0 "0 " " " "" " " 10 1 " 5" " 0 " " %
(69) ) "4 ) . 1 ) " " / 0 1 " " " .
(70) / 60 , $0 " 60 I" ) %
(71) E " 1)0 " "0 " 7 " " J0 % ? ( 0 +0 " , $0 / 60 60 " / ; 0 I" 7" " J0 % 0 ) 0 0 *0 & ' 7& # / 60 , $0 " 60 I" " . E . " " "7 " "J0 % 0 ) 0 #0 #0 7# ' @
(72)
(73) 0 , $0 ; @0 / 60 G G0 60 " % 60 I$) 0 ) " " " G/
(74) " % "
(75) " )E " @ $ % 9? 0 (:J0 ) % 0 ) *0 0 #0 7# # , $0 / 60 60 " @
(76)
(77) 0 I& 4 %
(78) " ) E " " "J0 % ? ( 0 ) -+0 0 '0 '+ 7 '.
(79) ! / 60 , $0 60 @
(80)
(81) 0 " ; 0 I" " ) E " " %
(82) )J0 ($$$ * ( @ % "
(83) " 0 K0 ? 7 *0 *0 7*0 (;8 -+7 7 # - 7# 7* C <0 , $0 / 60 " 60 I( " )" %
(84) " J0 ($$$ * ( @ % "
(85) " 0 K0 ? 7 *0 *0 7#0 (;8 -+7 7# - 7# 7*.
(86)
(87) / 60 , $0 " 60 I7 " " %
(88) ) J0 ($$$ ( < ")" % "
(89) " 0 , 0 (0 ? +7 0 #0 7'0 (;8 -+7 7'+--7 *'-#7* ' , $0 / 60 @ , 60 " @
(90)
(91) 0 I'7/ 2) %
(92) " E J0 ($$$ # ( @ % "
(93) " 0 ; 0 ;0 ? 7? '0 '0 #7#*0 (;8 -+7 7'+--7*+-7*. " # ! $% & / 60 , $0 " 60 I 7" " %
(94) " )J0 ' %8%. @ 0 ) 0 . 0 (0 8) +7 -0 #0 ' 7 '+0 (;8 -+77-' ''7'7 6 0 / 60 , $0 C
(95) 0 C 0 " 60 I% "
(96) " " " ) )J0 ' %8%. @ 0 ) 0 . 0 (0 8) +7 -0 #0 *7 0 (;8 -+77-' ''7'7-.
(97) .
(98)
(99)
(100)
(101) . @ 4 %
(102) ) " 7 1 $6 " " " " ) " 2) %
(103) 50 " $6 " 0 1 " " @A ) " ) "4 " ) ")" " ) "" " 0 " "0 B B 9/ 0 --:0 0 0 " 0 0 " )3 . 2 "4 " 0 " 1 "4 ) " "" !) 9/ 0 --:E 6 D 3 " 1 " " 1 " ( 4) "0 !) " " 4 2 " 0 1 " 1 " ( B 0 9 ": 1 " 1 6 ) 0 " " ) 0 ) 0 " " 1 0 3 ) " 9 7 7 : "" ) " 50 " 5 0 1 " " ) . " " 0 1 "" " ' )) ) " 1 7/ " 0 1 1 5 9 : " 5 . 2 .
(104)
(105) . . " 0 )0 " " 1) 0 ) "0 77 0 1 "" " 7/ ) # &3 1 1 7/ " 0 " ) 9 )3:0 1 " 0 " )3 1 5" . " 70 ) 77 70 )3 " " 0 0 " " 0 1 " 7 ) 1 "" 5 " " 0 " 5 0 5 0 " 1 0 ) 1 ) ( 5" 1 5 0 " " " 1 0 1 " / 9 --: "5 1 7 E , 0 1 5 5 0 "5 3 0 0 7 0 1 5" 71"1 . " " " 7 @ 7" 7 0 1 1 5 1 5" 71"1 ( 0 7" 7 ) " . 7 " 2 " 1 " ) "" 5 9 0 :0 1 1 ) 3 1 " " ( 0 7 " 0 0 " 0 " ) " ( 0 " 1 " " 1 " " 9 0 :. . ! . 2) 0 1 " . 2) " 2) 9@ " 6 0 #> : @" "" " " 8 " An "5" 1 ) [0, (N − 1) Δt]0 1 Δt ) ( 3 9, :0 "" "5" 3 an 0 1 7 ) 1 2 . an = An + iAn. 1. i=. √ −1. n = 0, 1, ..., N − 1. 9 :.
(106)
(107) . '. , E $3 3 0 "5" ) 1 7) " " . 3 ")"" "" " 0 1 " /. 0 1 " 7- 6"5" . 9 -+-: . 1 An 3 0 " 2" 0 " n "5 "" nΔt . 3 "5" ) 9$2 : " 7) " Sn " φn 0 ) " 9 ) ": " . 1 " "" " 2" 1 An = Sn cos (φn ) . An = Sn sin (φn ). 9: 9:. ( 1 0 " 3 "". " . . An 3 an ) 0 1) " . ) " $2 " 0 2" 2 "" 7- " " "" ) [0, (N − 1) Δt]0 2" 2 " " / . 9/.: "" 0 ) 9. 0 -+-> ; 0 --*> +:E.
(108)
(109) . #. M 2 sin2 πk 2 An−k An = π k . 9':. k=−M. 1. k = 0. " $2 '0 " 2" nΔt "" " "" "5" ) 2MΔt 1" 71"1 " nΔt . 0 2" "" /. 0 1 "" "0 20 " ( 0 /. $2 ' " 71"1 " ) 9. 0 -+-:0 " )" 5 " " An−k 0 1 1/k " /. " " An " " 1 3 ) 1)7 "1) 0 1 ) "" ) @A %
(110) 0 " ) " 0 " %
(111) 1 , < ) " 0 /. 1 " " 1 " /. 71"1 9$2 ': . /. B " " 1 " " 0 1 " /. 1"10 1 , ;0 1 . /. B ) 9 k $2 ': < ) 0 " ) 7 ) 1 0 1 , @0 1 " ) " 3" 7- 1 "" . 4 )" 1 " /. 0 1 , /0 1 2) "" " " /. 1"1 )" 1" 1"1 2MΔt 2 ) " 1) ( 0 ) M $2 ' 2 #0 /. " # 0 1 . " /. 1"1 1" ( 3 M 2 0 ) An 1" ) 1 " An 9$2 ':0 1. 4 " ) 0 "" 2 " " . 0 "" 1" /. 0 1 5 2 " )" 0 1 "" 1 . # . ) $6 " 1 "" %
(112) 50 " " " 3 ) "5" $2 0 1 ) 1 2 Sn = A2n + An 2 9#: . "" ) " 0 " ) ) " " " ".
(113)
(114) . *. , E "" %
(115) /. 1 "4 1" . " %
(116) 9: "" 1)7 "1) 0 1 ) "" 0 1 " ) " . " /. 9;: ) 0 " ( ) 9@0 $:0 1 ) 9/0 ,:0 # 9 -- : 1" /. . 9@0 /: 1 " 9 : " 9: 5" ) 1 ) " ) 9@:0 " " " 0 " )" /. 1" 9/: . 9$0 ,: 1 ) 9: " 9 :0 " # 0 ) 1 . " 9@: 9$: " 1 1 0 1 4 )" 9,: /. .
(117)
(118) . +. " /. 1"1 , 30 " , @ ) ) 2 , $ 1 , ,0 1 " " " 1 " . " 2 " 1 "" 50 ) 3 " , 30 ) , , 1 1 1 " )0 ) " *# " 0 " " )0 1 0 1 ) . "" " 3 0 1 " ) ")" %
(119) " " ) 1) 0 " "" 0 " " 1 3 " 0 1 " 7 " . 0 " "5 7 0 "0 " . # # . 3 ) "5" $2 0 " ) 1 2
(120) An φn = arctan 9*: An . ) "" 5 ) " " 2 "" )0 . 0 "4 0 " ) 0 1 1 0 " " " 1 "4 ) . ) " 0 "5" " 9; 0 --*: 6 ) 0 1 " 7 " " 1 5 " 0 1 " 98 " " 6" 0 *:0 1 " " 7 7 . "1" 1 " 1 ±180 9$2 *:0 " " 0 " " . )" " 0 " 1 0 1 " $2 E cos (φn ) =. An Sn. 9+:. ( 0 " 0 " )" " ) $2 + 8) 0 " ) 0 ) 0 ) Sn 1" 2 An " An " nΔt 9$2 #:0 " ) An 1" 2 An ) 2MΔt 1" 71"1 /. " nΔt 9$2 ':0 An 71"1 1" ) An .
(121)
(122) . . . 5 " 50 ) " 1 " "0 " " "" " ( 0 ) ±180 " φn 0 9$2 +: 6 ) 0 7 " 1 "" 0 1 " 0 9$2 +: 1) 0 " " 1 " " "" ( 0 " ) ) 2 " 1 " " 2 " 9$2 +:0 1 1 ) 6 ) 0 " " 1 " 30 1 " " " . ) )" , $7,0 1 1 4 ) "" " . " " , $ 0 1 ) ) 1 "" . 5 " 0 1 ) ) " 1 "0 " " " 1 , , ( 1 0 " "" ) %
(123) 5 " 0 " " ) . " %
(124) 5 1 , 0 1 " " 0 " 0 ")0 " . " , /0 1 3"" 1 5 , . 5 9, ;: " 2 " 1 50 " " 5 0 "5 ) " . 5 9, @: ) "" ) " 0 " )0 1 " " 7 " . ) "0 5 " " ) 0 1 ( 30 1 "E 7 " 1 " 0 " 1 7 0 1 " 1 1 "! 1 9 : " ) 1 1 ) 7 0 " ) 0 2 "0 " " " "! " 0 1 . ) 1 " 1)0 5 0 " 0 " . ) " 1 7 0 1 2) 5 1 " ).
(125)
(126) . -. , E $3 " %
(127) 5 . 5 1 " 9:0 9;:0 " 9@: 5 . . 5 " 2 " "" 0 1 1 %
(128) 5 9 7 :0 1 1 ) 1 9 7 :0 1 ) ) " "" 1 . 5 ) " " ) "" )0 " " ) .
(129)
(130) . . ' " " ) " 1 1 1 " " 30 " ) ""0 1 " 1 " 1 3 0 1 " 1 . $ % . 7 " ) 1 "" 5 50 1 ) "0 " ) "" 5 $ " ) twtij 0 Cij 0 " Aij 0 1 . " 3 0 1 "3 i " j ) " 7 1 !7 50 1 ) , 0 " " " " " "" " 5 2 "5 , 0 " "" Cij ) " 1 "0 ) [twtij , twti+1j ] 1. 1)0 1 " 5 " " 0 0 " 0 " "! "5" ( 0 1 "! Cij " Ckj+1 " 1 " E . 1 ) Cij Ckj+1 = |Cij | |Ckj+1 |. 9:. . " 0 " 3 @6 %
(131) 5 ) 5 0 1" " 1 1 "" 1 . 1 ) 1 1 ( 0 ) 5" 71"1 TP |twtij − twtkj+1 | ≤ TP. 9-:. . 71"1 )" " " " 0 1 . 2 1 5 1 )0 1 " . 1 " " " 0 " )" Cij 0 5" Ckj+1 3 1 5 "0 """ " " " 1 . " " )" """ 0 " .
(132)
(133) . . ) " 0 " "" " Cij 0 " " "" 5 " ( " )" ) " " ! 1 0 1 " " 1 1 77 0 . LH 5" " EH ) . 0 " 1 5 ) . ) 1 0 "E ( 0 " 3 3 "4 0 1 " " "4 " ) @ 0 " 3 3 0 1 5 " "
(134) " 0 1 " " 0 " " ) ) ( 1 1 77 0 " 1 1"0 1 )" " %) 0 2 " 0 " " )0 "7 5 0 " 1) 0 1 . "4 3 " " 0 " 2 $6 ) " " %
(135) 50 1 1 ") " ) ) " " " 1 6 ) 0 $6 ) " 1 %
(136) 5 1 5 ) " ) 0 " 1 , 9@ 0 #: . 0 ) " 0 1 3" 1 ) 0 5 " 0 ) 7 "4 5 1 1 77 8) 0 " "" "0 " 1 " " ) 0 1 1 " " 1 !) " " " 1 " $6 0 " " " , 0 " " 0 1 !) 3 " " %
(137) 5 1 , 0 ) , ' . LH 1 2 1 " ) )0 0 " . $ % &
(138) " " ) ")"" ) " " " 1 1" . " 4 ) 0 ) ) 1 . . 0 " .
(139)
(140) . . , 'E $3 " " %
(141) 5 1 , . 1 2 0 1 " ) " " 0 ) " " ) . " ) 1 @" 0 30 1 Cij " Ckj+Δj+1 1 " Δj 1"0 " 1 " ) Ci−1j " Ck−1j+Δj+1 ) "5" " " 1 . 1 ) " 1 " E . 1 ) Ci−1j Ck−1j+Δj+1 = |Ci−1j | |Ck−1j+Δj+1 |. 9 :. . 1 1 1" . 1 ) 0 " ( 0 ) 5" 71"1 TJ 0 1 . " |twtij − twti−1j | ≤ TJ |twtkj+Δj+1 − twtk−1j+Δj+1 | ≤ TJ. 9 :. . 1" Δj 5" " LG 0 " )" " ) " Δj ≤ LG. 9 :. ' . 1 1 . Ci−1j [j + 1, j + Δj] " ) 0 1 .
(142)
(143) . . 0 " " ) " Ci−1j " Ck−1j+Δj+1 1 " 0 "5" 0 " 1 " " . " " 1 " 0 1 " Ci+1j " Ck+1j+Δj+1 1" 1 . B 1. "4 0 1 " 7 8) 0 3 0 30 1 " 0 1 ". " " " . " ) 5" " " < 0 " 1 " 0 1 ) 0 " ) 1 1 3 ) , #0 1 1 ) 1 5) "4 5 ( 5 0 " " 0 1 ' " ! 0 71"1 TJ ! )0 " ' 1" ( " 0 " 0 1 ' 1" " 71"1 ( " 0 " 1" "0 ) " ' ( . 0 " 0 1 " " ) ( 5 0 1 " " 1" " "5 3 " . 0 ) ""0 " ) " . ) " " 0 1 ) 0 " ) " 5 3 ) , *0 1 1 " " . " " 1 , ' ( " %
(144) 5 " * "" 0 "" - 9 = ": " 0 . " 1 " ) 9, *: . 3 LG 1 2 # 9 :0 1 1 " 1 3"" 0 ) "". .
(145) . . "" " " "5 0 ) ) 1 "" 5 . " " . "4 0 1 " " " 1 . . 1 "0 1 "4 " " 5 .
(146)
(147) . '. , #E $3 5 . 5 1 ) 1 5) "4 0 1 . ) 6"5" , 9 *:. , *E " 9 ": " 9: 1 , ' $ + 1" " ) ) 7 0 1 " ) 1 1 " " . 1 3" ) " ! ) 0 1 "4 ).
(148)
Documenti correlati
The JSD wave function is composed of a Slater determinant, whose molecular orbitals are expanded in the chosen basis and that can be obtained by a DFT calculation or by a
We advocate that the generalized Kronheimer construction of the K¨ahler quotient crepant resolution M ζ −→ C 3 /Γ of an orbifold singularity where Γ ⊂ SU(3) is a finite
Inoltre dalla sopracitata formula di Mariotte (valida per s/r < 1/20) si deduce che, all’aumentare della profondità, e quindi della pressione p = h ⋅ γ a sull’arco, se
One, S estimation, reveals that robust and non-robust fits to the data are very different; the other method, MM estimation, fails to do so, a finding in line with the conclusions
In such system, pickers walk or drive along the aisles to pick items, completing a single order or a batch of multiple orders, depending on the order picking policy.. In the batch
A shifting of the anomalies along the profile direction is observed; this may be caused by inaccuracy of the distance measurement while using the wheel odometer in the
desideriamo invitarLa alla presentazione della nuova generazione di sedie da giardino, Alfa, che si terrà il giorno 20 dicembre 2017 presso l’Hotel Città di Treviso in via Paradiso 5
Osservando la Tabella 6.1, si può notare una scarsa predisposizione della Correlazione incrociata nel classificare un’attività all’aumentare del numero di sensori