• Non ci sono risultati.

wells Water

N/A
N/A
Protected

Academic year: 2021

Condividi "wells Water"

Copied!
25
0
0

Testo completo

(1)

Aquifers

CLAUDIO GALLO 1;2

AND GIANMARCOMANZINI

3;

1

CRS4,ZonaIndustrialeMa hiareddu,Uta,Cagliari{Italy

2

Dept.ofCivilEngineeringandGeos ien es,TUDelft,Delft,{ TheNetherlands

3

IAN-CNR,via Ferrata1,27100Pavia, {Italy

SUMMARY

Theadoptionofasuitablepumping-inje tingwellnetworkandthehumanenhan ementofthea tivity

ofsoilba teria,whosemetabolism ontributestodegradeandtransformmanypollutantsinnon-toxi

substan es,maybe ru ialinthepro essofremediationof ontaminatedsoils.Organi ontaminant

transport in a subsurfa e aquifer and its biologi al degradation kineti s is numeri ally addressed

by usinga four ontaminant spe ies model. A numeri al approa his proposed,that is based ona

ell- enter nite volume method for the system of adve tion-dispersion equations of ontaminants

with amixed-hybrid niteelementmethodfor thesolutionof asingle-phaseDar y'sequation.The

e e tivenessofthemethodanditsa ura yinretainingthemainphysi alpropertiesofthe ontinuous

mathemati almodelisillustrated bysimulatingthetimeevolutionof ontaminant on entrationsin

asetofrealisti s enarios. Copyright 2000JohnWiley&Sons,Ltd.

key words: bioremediation, ontaminanttransport,mixed niteelements, nitevolumes

1. INTRODUCTION

Soil ontamination has re ently be ome a problem of major so ial on ern, be ausea wide

rangeofpollutantagentsofdi erent hemi alnatureandtoxi itymaybepresentinsubsurfa e

aquifers.Pollutionsour esareeithera identalevents,likespillsandleaks,or ommonhuman

a tivities, like disposal of urban sewage, industrial wastes, and the use of pesti ides and

fertilizersinagri ulture,seeReferen es[24,25,22,20,9,8℄.The ontaminantsinasubsurfa e

aquiferaresubje tto omplexphysi aland hemi alpro esses,su hasdispersion,adve tion

bygroundwater ow, hemi alrea tionsandbiologi aldegradationduetosoilmi roorganisms.

Thegroundwater owisdes ribedbyasinglephaseDar y'sequation,whilethesubsurfa e

transport of di erent hemi al spe ies aremodeledby aset of oupled adve tion-dispersion-

rea tionequations[3℄.



(2)

The biologi al degradation depends on the mi roorganism population whose metabolism

is a e ted by the availability in soilsof substrates like organi arbon, ele tron a eptors {

oxygenandnitrogen{andnutrients[17, 19℄.

Theorgani arbonneededtosustainba teriallifeisnaturallypresentinsoil,whilenutrients

{su hasphosphates,nitrates,ammonia{maybeprovidedalsobyhumaninput,forinstan e

fertilizers. The ba terial population is normally stable be ause it dynami ally tends to an

equilibriumstateinwhi hitsgrowthrateisbalan edbyitsde ayrate.Whenthe on entration

ofnutrientsaugmentsduetoanexternalsupply, theba terialpopulationin reasesofseveral

orders of magnitude and tends to anew equilibrium state. The remarkable fa t is that the

ba terialmetaboli pro essesmaye e tivelyredu ehazardousorgani pollutantstoharmless

byprodu ts,su hasCO

2 andH

2

O[1℄.Inthis ontext,aremediation strategy anbedevised

whi h relies on the enhan ement of the biodegradation a tivity, see Referen e [23℄ for a

literaturereviewonthistopi .Thebiodegradationkineti s modelsproposedinliteratureare

usually lassi edinthreedistin t lasses,respe tivelytermedfree-ba teria,mi ro olony-based

andbio lm models[16,11℄.

Thesimplestmodelsbelongtothe rst lass[18℄.Theybasi allyassumethatba teriaexist

as individual parti les within the aqueous phaseor adsorbed by soil grains.No assumption

is made on the mi ros opi on guration and distribution of ba teria in soil pores, and on

the waythe organismsaregrouped togetheronthe solidporesurfa e.These latterfa ts are

onsideredirrelevantforthema ros opi des riptionofba terialpopulationgrowthandde ay.

In the se ond lass of models, ba teria do not exist as individual parti les but in small

dis rete olonies, or mi ro olonies, atta hed to the soilgrain surfa es.Growthand de ay of

the biomass ontained in mi ro olonies are formulated either by taking that the ba terial

olonydimension angrowby onsumptionoforgani substrateandele trona eptorsorby

assuming the olonydimension onstantand varying their on entration, i.e., thenumberof

oloniesperunit volume[21℄.

The main feature of the models in the third lass is that the solid parti les onstituting

theaquifermaterialare overedbyabio lm withinwhi h onsumptionofthesubstratesand

ele tron-a eptorstakespla e [26, 16,11℄. Thekeypro essesarethemassex hangebetween

bulk owandthebio lmandtheinternaldegradationoforgani substrates.

Amoredetaileddis ussionofthesimilaritiesanddi eren esbetweenthesemodelsisbeyond

thes opeofthepresentwork.Werefertheinterestedreadertothedis ussioninReferen e[2℄{

seealsothebibliographytherein{whereitisshownthatunderasetofsimplifyingassumptions

the three approa hes redu e to an essentially equivalent des ription of the biodegradation

pro ess.This,however,istrueonlyforverysimple ases.

Our approa h relies on the four-spe ies model do umented in Referen es [21, 27℄ in the

ontextof the moregeneralmi ro olony-based on ept. The main feature of this model lies

in its apability of des ribing how the metabolism of subsurfa e mi robes an be enhan ed

by on urrent metabolization of oxygen, nitrogen and nutrients. From the omputational

viewpoint, it is a ompromise between the simpler free-ba teria model whi h tends to

overestimate the degradation extent, and the more a urate but also more omplex and

expensivebio- lmmodel.

Thenumeri alapproximationofthe ompletemathemati almodelisaresear hissue,and

manydi erentaspe tsmakethenumeri alsimulationofabioremediationpro ess hallenging.

Wemention in thefollowinglist thetopi swefeelthe mostsigni antandthat we onsider

(3)

 Treatment ofhighly heterogeneoussoil:the valueof thepermeability andi erforfour

ordersofmagnitudeormorein twoadja entmesh ells.

 Adve tion-dominated transport: the model spe ies on entrations in the groundwater

bulk- ow an feature strong gradient regions when sharp on entrations fronts move

throughoutthe omputationaldomain.

 Non-linear ouplinge e ts,evenifthesoilisasaturatedone.Thekineti softheba terial

population depends on the ontaminants whi h di use within the mi ro olonies from

the groundwater bulk ow. It also exerts its in uen e on the bulk- ow ontaminant

on entrationsviaasetofrea tivesour etermsinthetransportequations.

These issueshavealreadybeeninvestigatedbytheauthorsin thesepreviousworks.

In[4℄wepresentedsomepreliminaryresultsonthedis retizationofthe owandtransport

equationsbyusingmixed niteelements and nite volumes.

The ouplingof the ontaminanttransport equationswithaba terialpopulationequation

and its numeri al dis retization was investigated in [12℄.In this work the model spe ies are

passivelyadve ted by a onstant velo ity and pressure elds. In order to solve the Dar y's

equation we adopted a high-order a urate mixed nite element s heme (BDM

1

). Despite

is a ura y, this approa h is not appropriate to simulate non-linear phenomena requiring a

frequentupdateofthevelo ityandpressure elds be auseofthehigh omputational ost.

Abetterapproa hfromthisviewpointisbasedonthemixed-hybrid s hemeproposedin[13℄.

Inthisworkwevalidatedthemethodonthestandardquarter-of- ve-spotsproblem,fo using

theattentiononthetreatmentofthesoilheterogeneity.

Finally,theworkpresentedinthispaper opeswiththebioremediationofa eld-sizeaquifer

thathasbeen ontaminatedbyana identalleakout.Di erentbioremediationte hniquesand

humaninterventionstrategiesarenumeri allyinvestigatedtopredi tthe lean-uptimeforan

almost ompleteremovalofpollutants.

A ordingwith ourpreviousexperien eweproposethefollowingnumeri alapproa h.The

steady groundwaterbulk owis approximatedby using thelowest-ordermixed-hybrid nite

element method. This approa h yields an approximation to the steady velo ity eld that is

more a urate than the one provided by straightforward di erentiation of the onforming

nite element approximation of the pressure eld. In parti ular, we emphasize that the

mixed-hybrid nite element method ensure lo al { i.e. ell-wise { mass onservation, while

the onforming nite elementapproximationla kslo almass onservation. The ontaminant

transportequationsareapproximatedinspa ebyanunstru turedtriangle-based nitevolume

method and advan ed in time by a semi-impli it two-stage Runge-Kutta s heme. A TVD

stability onditionisimposedbyamultidimensionallimitingpro edure.Theresultings heme

is formally se ond-order a urate, onservative, and apable of apturing strong solution

gradientfrontsmovingatthe orre tphysi alpropagationspeeds.

Thespe iesintera tionsaretakenintoa ountinthefull-spe iesmodelbysolvingiteratively

theirnon-linearintera tion oupling.

Theoutlineofthepaperfollows.InSe tion2,wereviewthemathemati almodeldes ribing

single-phasebulk ow, ontaminanttransportandba terialkineti s.Thedis retizationmethod

issummarizedinSe tion3.Weaddressherethe nitevolumedis retizationofthe ontaminant

transport equations aswell asthe mixed-hybrid nite element approximationofthe Dar y's

phase pressure and velo ity elds. In Se tion 4 we present the results of a set of numeri al

(4)

di erentnetworksofextra tion/inje tionwells,whoserunningmodehasbeensele tedonthe

basisoftheplumelo ationandthesoilremediationstatus.The on lusionsfollowinSe tion5.

2. THEMATHEMATICALMODEL

se :mathemati al_model

2.1. TransportEquations

Transport phenomenaare mathemati allydes ribedbyasystemof N

DS

oupled adve tion-

dispersion-rea tion equations, where N

DS

is the numberof dissolved spe ies. In divergen e

form they an bewrittenas follows

R

i

C

i

t

+div(uC

i D

i (u)rC

i )=B

i

; i=1;:::;N

DS

: (1) eq:transport

The variables C

i

in equations (1) representthe bulk ow on entrationof ea h transported

spe ies;thetermsR

i

aretheretardationfa tors,whi htakeintoa ount hemi aladsorption

pro esses, the terms D

i

(u) are the velo ity-dependent dispersion tensors. The r.h.s. sour e

terms B

i

des ribe the oupling between the spe ies on entrations transported in the bulk

owand theones within mi ro olonies.Also equations(1) aresupplementedbyappropriate

boundary onditions,su h as inlet, outlet and no- ow, and initial solution statesto spe ify

theappli ationproblems.

2.2. The Dar y's Equation

Groundwater bulk ow in an heterogeneoussaturated soil is mathemati ally formulatedby

theDar y'sequation[10℄

8

<

:

u = Krp; in

divu = f; in :

(2) eq:dar y

The pressure eld is indi ated by p and the groundwater velo ity eld by u, K(x) is the

transmissivitytensor, and f(x)asour e/sinkterm. Equations(2) are ompleted by aset of

suitableboundary onditionsofNeumann/Diri hlet-type,modelizinginlet/outletandno- ow

boundary on gurations.

2.3. The Bioremediation Model

Mi ro olony-basedmodelsassumethatba teriaresideanda twithinmi ro olonies,des ribed

as a set of pat hes atta hed to soil grains [21℄. From the bulk phase, hemi al spe ies

an rea h mi ro olonies via di usive mass ex hange. Depending on the mass-transfer

oeÆ ient, on entrations within mi ro oloniesgovernthedegradationratekineti s and an

besigni antlydi erentfromthosein thebulkphase.

Inthis lassofmodels,thetermB

i

ofequation(1)isexpressedintermsofadi usivemass

ex hangefrom thebulktothemi ro olonyphase,

B

i

=N



i A

(C

i

i )

; i=1;:::;N

DS

; (3) eq:B_term

(5)

where

i

isthemass-ex hange oeÆ ientbetweenbulk owandmi ro olonies,A

isthe onta t

area of one mi ro olony for the mass di usion pro ess, Æ is the thi kness of the boundary

layerbetweenbulk owandmi ro olonies,

i

isthe on entrationof the omponentiin the

mi ro oloniesandN

isthenumberofmi ro oloniesperunit volume.

Theassumptionthat thebiodegradationpro essworksessentiallyat asteady-stateregime

yieldsthefollowingform forther.h.s.termsB

i in(3):



i A

(C

i

i )

Æ

=

0;i m

N

EA

X

k =1 Y

i;k 2

4 N

i

D S

Y

j=1

j

K

j;k +

j 3

5

I k 1

b +Q

i I

i 1

b

; i=1;:::;N

DS

; (4) eq:mi ro ol

where 

0;i

are the maximumrate oeÆ ients, m

is themass of ami ro olony, Y

i;k

are the

yield oeÆ ientswhi h a ount forthe stoi hiometryand eÆ ien y of degradation,K

j;k are

the half saturation onstants,andI k 1

b

are theinhibition fun tions [21℄. Inequation (4)the

symbol N

EA

denotes the number of ele tron a eptors and N i

DS

the number of dissolved

spe iesinvolvedinthedegradationofthei-thspe ies.ThetermQ

i

isnonzeroonlywhenthe

omponentiisanele trona eptor{forinstan e oxygenornitrate.Inthis ase,ittakesthe

form

Q

i

=

i

i

K

i +

i

; i=1;:::;N

EA

; (5)

where

i

is theele trona eptor oeÆ ientfor themaintainan eenergyof ba teria,andK

i

istheele trona eptorsaturation onstant.

This degradation equation states that the total amount of a ompound entering a

mi ro olony in a given interval of time is equal to the amount of spe ies that is degraded

in the same interval. The rate of degradation and onsequently the on entration within

mi ro olonies,isroughlyproportionaltothe on entrationoutsidethe olonies.ThetermsQ

i

introdu e intothe model the onsumption ofoxygendue to ba terialde omposition [21, 27℄

asa rstorderde ayterm.

Ba terial kineti s is modeled by the following time-dependent di erential equation that

des ribesthemi ro olonypopulationdynami s,

1

N

(N

)

t

= ND H

X

i=1 2

4



0;i NEA

X

k =1 Y

i;k 0

 N

i

D S

Y

j=1

j

K

j;k +

j 1

A 3

5

k

d

; (6) equ:ba t_growth

where k

d

is thepopulationde ay onstant,N

DH

isthe numberof dissolved hydro arbons {

organi substrates{andistheporosityofthemedium [21,27℄.

3. THENUMERICALMODEL

se :numeri al_model

3.1. The FiniteVolumeDis retizationof theTransport Equations

The numeri aldis retization in the framework of the nite volume s heme is de ned onthe

samemeshT

h

()usedforthemixed-hybrids hemeofthepreviuousse tion.Theindexhisthe

maximumdiameter oftheN

T

trianglesformingthemesh, i.e.h=max

T2T

h ()

h

T

, whereh

T

isthelenghtofthelongestedgeofthetriangleT.Asusual,these triangulationsareassumed

(6)

Equations(1)arereformulatedina ell-wiseintegralformbyintegratingonea htriangular

ell T and then applying the Gauss divergen e theorem to transform the spatial divergen e

term into abalan e ofedge integral uxes. Letus introdu efor everyT 2T

h

() theve tor

U

T

,whoseelementsarethe ell-averaged on entrationsofthetransportedspe ies,

U

T j

i

= 1

jTj Z

T C

i

dT: (7)

Thesemi-dis rete nitevolumeapproximationis

jTjR dU

T

dt +

X

e2(T) G

e (u

e

; e

U

T

; e

U

Te

;n

e )+

X

e2(T) H

e (u

e

; e

U

T

; e

U

Te

;n

e )

+ X

e2

0

(T) F

(b )

e

= X

q

!

T;q S

T (

e

U

T (x

T;q

)); foreveryT2T

h ();

(8) eq:FV

where the diagonalmatrixR=diag(R

1

;:::;R

N

D S

) olle tstheretardation fa tors, andfor

every ellT,

- jTjisthemeasureofitsarea,andT itsboundary;

- (T)is thesubset of itsinternal edges; these latters arethe edgesthat T shares with

an adja ent mesh ell indi ated by T

e

, so that for every e 2 (T) there exists a ell

T

e 2T

h

()su hthate=T\T

e

;

-  0

(T) is the subset of the edges of T lo ated at the boundary of the omputational

domain;thatis, foreverye2 0

(T)wehavee=T\.

The ellinterfa e uxintegralisevaluatedbyusingsuitableadve tiveanddispersivenumeri al

uxesa rosstheedgee,that are

G

e (u

e

; e

U

T

; e

U

Te

;n

e )j

i

 Z

e

nuUj

i

dl; (9) equ:numeri al_fluxes

H

e (u

e

; e

U

T

; e

U

Te

;n

e ) 

Z

e nDj

i

(u)rU j

i

dl; (10)

andthenumeri al uxfun tion F (b )

e

atboundaryedges.

The numeri al ux ve torfun tions G

e andH

e

introdu ed in (9)depend on u

e

, whi h is

thevalueofthevelo ity elduatthemidpointoftheedgeesharedbythetrianglesT andT

e ,

and onn

e

, whi h isthenormalto eorientedoutwardfrom T andinwardintoT

e

.Theyalso

dependon e

U

T and

e

U

T

e

,whi harethepie ewisepolynomialrepresentationsofthesolutionin

T andT

e

.Thisfun tionaldependen eimpliestheusageofpointwisevaluesoftheapproximate

solution at quadraturenodes on e.These values arere onstru ted from the ellaveragesby

an interpolation pro edure at ea h time step and a multidimensional slope limiter must be

onsideredtotakeunder ontrolthenumeri alos illations,seetheappendixofReferen e[12℄.

Theintegraladve tivetermG

e

isdis retizedbyastandardupwind uxsplittingapproa h,

whiletheintegraldispersiontermH

e

,whi hinvolvesse ondderivativesinspa e,bya entral

di erentiationalgorithm.Furtherdetailsaboutthederivationandthea ura yofthismethod

(7)

Thenumeri al uxfun tion F (b )

e

at theboundaryedgee=T\dependsonthetra e

e

U

T j

e

of there onstru ted solution e

U

T

within theunique boundary triangleT, andin some

suitableformonasetofexternal dataU (b )

e .

Theintegralsour etermS

T (

e

U

T (x

T;q

))isapproximatedbyasurfa equadraturerulewith

nodesfx

T;q

gwithin thetriangleT andweightsf!

T;q g.

Thetime-mar hings hemeisobtainedbyapproximatingthetimederivativeofU

T

{whi h

appearsinthe rstterminthesemi-dis reteformulation(8){by rst-order nitedi eren es

dU

T (t)

dt

t=t n

 U

n+1

T U

n

T

t

; (11)

where U n+1

T

and U n

T

are the ell-averaged solutions in T at times t n+1

and t n

, and t =

t n+1

t n

. This yields a full dis rete semi-impli it s heme where resultingsymmetri linear

algebrai problem is solvedby astandardKrylovsolver,su hasa pre onditioned onjugate

gradient method. Higher (se ond) order a ura y in time is attainable by a semi-impli it

Runge-Kuttamethod, builtbytwodistin tstagesof thesameform[12℄.

3.2. The Mixed-HybridDis retization ofthe Dar y's Equation

The oupledsystemofequations(2)intheunknownspanduisdis retizedbyamixed-hybrid

nite elementapproa h. Fora detailed exposition of mixed and mixed-hybrid nite element

methods we refer the readerto Referen es [5, 6℄, while for the des riptionof thenumeri al

formulationadoptedin thisworkwerefertoReferen e[12℄.

In the mixed-hybrid nite element method adopted in the present work we approximate

thevelo ity eldbyusingthelowest-orderRT

0

dis ontinuouselements,whi his omposedby

two-dimensionalfun tionswhoserestri tiontoanymeshtriangleT isoftheform

uj

T



T



x

y



+



T

T



; (12)

where thereal s alar oeÆ ients

T ,

T and

T

depend onthetriangleT.Thepressure eld

is approximatedby the triangle-basedpie ewise onstant fun tions while the pressure tra e

overea h ell-interfa ebytheedge-basedpie ewise onstantones.

With respe t to Referen e [12℄, thepresentwork di ers substantially in the hoi e of the

dis rete fun tional spa eused fortheapproximationofthe velo ity eld u. Weuseherethe

lowest-orderRT

0

dis ontinuouselementsinsteadoftheBDM

1

onesofReferen e[12℄,wherea

fulllineardependen eontheposition is onsidered.Noti ealsothatthe ontinuity ondition

ofthenormal omponentofthevelo ity uxisrelaxed,andaweaker onditionisimposedby

asetofsuitableLagrangemultiplierswhi happroximatesthepressuretra es.

Weexperien edin fa t that RT

0

elementso ersasatisfa torya ura ylevelataredu ed

omputational ostwithrespe ttoBDM

1

elements,seeReferen e[13℄.Theselatteronesare

formallymorea uratebutalsosigni antlymoredemandingfroma omputationalviewpoint

be ausetheyinvolvetwi ethenumberofunknownstobestoredand al ulated.

Thisissueisparti ularlyimportantbe auseinthisworkthepressureandthevelo ity elds

are iterativelyupdatedat ea h time step,see Referen e [11℄, while in thework des ribed in

Referen e [12℄ they were al ulatedonly on e at the beginning of ea h simulation and then

(8)

3.3. Rea tionSour eTermsandMi robial Population Equation

Therea tiontermsdes ribedinequations(6)are omputedbysolvingasetofnodewisenon-

linear systems via aNewton iterative method with fra tional multistep integration s heme,

see Referen e[12℄.

4. NUMERICALEXPERIMENTS

se :experiment

In this se tion we illustrate the performan e of the proposed mathemati al and numeri al

model in predi ting the e e tiveness of a human remediation intervention to redu e the

ontaminant on entrationof a pollutedaquifer. Theaquifer is hara terized by a onstant

porosity  = 0:3 and a heterogeneous isotropi transmissivity, whose prin ipal values are

assumed to be onstant on ea h triangle of the omputational mesh, and di er triangle by

triangleintherangebetween10 5

and1m 2

/day,ina ordwithanequiprobabilitysto hasti

distribution.

The rst test ase that wepresentin this paper onsists in the initial soil ontamination

phaseand islabeledby T1.Thesoil ontaminationisdue tothe leakageofCy lo-Aromati -

Hydro arbons, CAH, whi h forms a plume transported by the groundwater ow eld and

spreadinthesaturatedaquifer.

Thenextthreetest ases,labeledbyT2,T3andT4,des ribesthreepossibleinterventions

fortheremediationphase.Basi ally,we onsideranetworkofpumpingwellsthatextra tthe

polluted water and onveyit to a treatment plant, where the ontaminant is removed. The

puri edwatermaybeenri hedinoxygenandnutrientstostimulatesoilba terialgrowthand

isthen re-inje tedin theaquiferviaanetworkofinje tion wells.Figure1sket hesthewater

treatmentpro edure.

All ofthewells anbesele tivelyusedeitherin inje tionorin extra tionmodeandareall

supposed to be onne tedvia pipelines to the watertreatment plant. Point \A" is also the

lo ationoftheleakingtankwhen ontaminationo urs.Theproperpositionand on guration

ofthewellshasbeen hosenbyinvestigatingtheir apabilityofinter eptingthe ontaminated

plumetransportedbythegroundwater owinasetofpreliminarysimulations.

These simulations are based on the four spe ies model proposed by Molz et al. [21℄ and

Widdowson et al. [27℄, and des ribed in [12℄. For the sake of ompleteness, we report the

modelinthe nalappendix,givingalsothevaluesoftheparametersusedin thesimulations.

The ontaminantCAHistheorgani substrateSofthemodel,whiletheotherspe iesinvolved

arethedissolvedoxygeninthesoil,O,some ompounds hemi allybasedonnitrates,N,and

some ammonia-based ompounds whi h onstitute a generi nutrient supply A. The initial

on entrationsofthesespe iesfollowarandomdistribution,withvaluesintherangesreported

in TableI.

Figure 2depi tstheben hmark aseand theposition of thewellsonthe aquifer|labels

\A" through \M" | in the remediation phase. A onstant gradient of p=x = 0:04 is

superimposedonthesubsurfa ebulk ow eldintheaquifer,whi histhusorientedalongthe

(9)

TableI.Mi ro olony on entrationranges(ing=m 3

)atthebeginningofthesimulation(t=0).

tab:initial_values

S

(t=0)

O

(t=0)

N

=

A (t=0)

(g/m 3

) (g/m 3

) (g/m

3

)

[0:1;1℄ [0:1;1℄ 1000

TableII.Simulationrunparameters

tab:simulation_parameters

RunLabel

Parameter

T1 T2 T3 T4

t(days) 0.5 0.2 0.05 0.05

T

max

(days) 410 2800 500 700

wells Water

Treatment

Water Enricher O 2

Recycled water Contaminated

water

Nutrients waste

Contaminant

From pumping wells

To injection

Figure 1.Te hni al s hemeofthe remediationplant installedasideofthe wellnetworkfor polluted

watertreatmentand leanwaterenri hment.

fig:plant

ondition,withanhydrauli pressureheadgivenasafun tion ofx.Forea h simulationrun,

wereportin TableII thetimesteptandthe nal timeT

max

atwhi hthesimulationends

up.

During the initial pollution phase (T1), the plume of CAH spreads with an irregular,

or \ ngered", front be ause of the sto hasti soil heterogeneity whi h establishes several

preferentialpaths. Figure 3 illustrates the situation at the intermediate time t = 410 days,

(10)

River

B

C

D

E G

H I F L

M A

Groundwater flow

Figure2.Planarsket hofthewelllo ations.

fig:wells

of the on ning river.A steadystate solutionisrea hed at t=600days,shownin gure 3,

when the ontaminantplume doesnot spreadfurther and thetransport of the ontaminant

alongsomepreferentialpathsisthusestablished.

Three di erent possible interventionstrategies havebeen investigated. Remediation starts

after t = 410 days sin e the pollution started, that is before the ontaminant rea hes the

river on ningwiththeaquifer.Wesupposethat the ontaminantsour eisremovedandthe

lean-up of the soilis performedby using anetwork of extra tion/inje tionwells. Forall of

thesimulationswewillshowthespatialdistributionoftheorgani substrate,CAH,andofthe

dissolvedoxygen,DO{thespe iesOin ourfourspe iesmodel.

InthesimulationT2we onsidertheso- alledpump-and-treatmethod.ThewellsGthrough

M of the pipeline network are a tive and extra t the ontaminated water, whi h is then

onveyedtowatertreatmentplants.

The owboundary onditionsare thesameasforthe soil ontamination phase,ex ept at

the lo ation orrespondingto the pumping wells: here,ade rease of 0.5 m in pressurehead

withrespe ttothenaturalgradient onditionisimposedinorder tomodifythe owpattern

for ontaminant re overy. As in the soil ontamination phase, just one hemi al spe ies is

onsidered inthesimulation,bynegle tingthee e tsoftheotherspe ies.

The resultof the simulation is shown in gure 5at the intermediate time t =1490 days,

that is about4yearsafter theremovalof the ontaminantsour e. Heterogeneitystill a e ts

(11)

The omputersimulationisterminated att=2500days{about7years.Itisworthnoti ing

that theremovaloftheorgani ontaminantplumehasnotyet beenfully ompleted.

The bioremediation interventions onsidered in this paper{ simulationsT3 and T4{are

essentiallybasedon thestimulation ofthe growthof thesubsurfa e ba terialpopulationby

in reasing the on entrationofoxygenand nutrientsdissolvedin soil. Weassumethat these

hemi al substan es be dire tly supplied via inje tion of \enri hed water" into the aquifer.

Part of the wells are, thus, used for extra ting the ontaminated water to be onveyed to

treatmentplants.Partoralloftheremainingwellsareusedforre-inje tingwaterwith hemi al

additivesinto thesoil. Thee e tiveness of thisstrategy stronglydependson theextra tion-

inje tionoperationalmode hosenin thewell on gurationpattern, whi hisdi erentforthe

twosimulationsT3andT4.

Inthe on gurationofthesimulationT3thewellsA throughD work ininje tion mode {

anoverpressureof0:5misimposed.Nutrientsandnitratesaredeliveredinex ess,sin etheir

solubility in water is mu h largerthan the one of oxygen. This latter hemi al is kept at a

onstant on entrationof20mg/l.Theremainingwellsworkinextra tionmode,atthesame

pressure onditionofthe\pump-and-treat"method.

The result of this simulation is shown at the intermediate time t = 178 days after the

removalofthe ontaminantstarted.Nosigni antimprovementsin ontaminantsremovalare

a hievedfromthis on gurationof pumpingandinje tingwellsaftert=360days.A \dead-

zone"developsin thetriangularregionde ned bythewells\F-G-H",allworkinginpumping

onditions.Itisevidentby omparing gures8and6thedi eren einthe ontaminantremoval

betweenthe urrentsimulationandthepre edingone,parti ularlywheredissolvedoxygenhas

beendelivered.

Inthe on gurationofthesimulationT4wellsGthroughMstillworkin extra tionmode,

wellsEandFinje tnutrientsandoxygen,whilewellsAthroughDaredismissed. gure9shows

the ontaminant and dissolved oxygen distributions at the intermediate time t = 600 days.

Weremarkthatthemajorpartoftheresidual ontaminantmassintheaquiferisremoved.A

ompleteremovalofthe ontaminantisa hievedatthe naltimet=875days,asillustrated

byFigure9.

Finally, gure 11 reports the residual ontaminant mass in the aquifer as a de reasing

fun tion oftimeandsummarizestheperforman eofthedi erentremediationapproa hesT2,

T3andT4.This gureemphasizeshowthebioremediationstrategy anbemoree e tivethan

thesimplepump-and-treatmethod.AlthoughbothinterventionstrategiesT2andT4a hieves

analmost ompleteremovalofthe ontaminant,theremediationtime isverydi erentinthe

two ases.Nevertheless,bioremediation analsobesensitivetothewell on gurationnetwork

hosenfortheintervention,asshownbytheperforman e urveT3.

4.1. ModelPerforman es

Inthisse tionwereportsomeinformationaboutthe ostsintermofCPUtimeofthe omputer

simulations.

All the simulations des ribed in the previous se tion were run on a omputational mesh

omposed of about 5000 triangles using an IBM RISC 6000/390 ma hine. The simulations

involvingthefullfour-spe iesmodelareveryexpensiveandtakeabout12hours,whilesingle-

(12)

Table 2:CPU Costs(minutes)

RunLabel

Parameter

T1 T2 T3 T4

CPU 80 90 720 720

The CPU ost is quite high in the former ase be ause all of the non-linear intera tions

among the di erent spe ies must be taken into a ount. A 44 non-linear systems must

be solved for ea h ell at ea h time step, by using a Newton iterative s heme, whi h takes

approximately40% of the total CPU osts. Moreover,the nite volume method requires a

limitedpie ewise-linearre onstru tionofea hunknown eld toensure2 nd

-order a ura yin

spa e.Thelimitingpro edureisneededtoensuremonotoni ityofre onstru tedgradientsand

to preservenon-linear stability,see Referen e [12℄ fordetails.The omputational ost ofthe

re onstru tion pro edure is also signi ant, being about35% of the total CPU osts of the

simulation.Thisin rementisevidentwhenthefullspe iesmodelis onsideredinsteadofthe

single-spe iesone.

CPU ostsare alsoin uen edbythewaythesimulationisrun.Forinstan e,in theinitial

pollutantphaseT1,the ontaminantistransportedbyasteadygroundwater ow eld,whi h

is omputedonlyon e at thebeginningof therun.Instead,thesimulationT2stills involves

a single-spe ies model, but makes usage of a transient groundwater velo ity eld, whi h is

updatedevery50transport steps,thusresultinginamoreexpensive omputation.

5. CONCLUSIONS

In this work we illustrated a numeri al model to investigate the bioremediation pro ess

in heterogeneous saturated aquifers and its appli ations in devising di erent intervention

strategiesona eld-sizes enarios.Themethodisparti ularlysuitableindete tingdead-zones

due to theheterogeneityof themedium anddependentonthe welllo ationand operational

mode.

Ourapproa hisbasedonthedis retizationofamultispe iestransportmodel oupledwitha

ba terialdegradationkineti sofMonodtype.Themi ro olonydes riptionofba teriala tivity

is onsidered.Thebulk owvelo ityisapproximatedbyamixed-hybrid niteelementmethod

whilethespe iestransportequationsaredis retizedbyusingasemi-impli it ell- enter nite

volumes heme.

The performan e of the method are assessed by studying the ontamination pro ess and

severalremediationstrategiesonarealisti subsurfa es enario.

A omparison of the numeri al experiments reported in this work learly illustrates the

advantageofa ombinedbiologi al-hydrauli interventionwithrespe ttothesimplehydrauli

oneinthe aseofasto hasti allyheterogeneoussoil.Theremediationtimeintheformer ase

is shown to be about half the oneof the latter ase. This fa t implies that the operational

ostsmaybesubstantiallyredu ed.

When theaquifer is stronglyheterogeneous, preferential owzones mayappear and large

quantities of ontaminant may remain isolated if the simplest pump-and-treat remediation

(13)

presentwhen remediation is enhan ed byba terial a tivity. In su h a ase, an optimal well

on gurationhasadramati impa tonthee e tivenessofthehumanintervention.Forthese

reasons,itis evidentthat abetterunderstandingofhowandwheretrappingzonesappearis

riti alin devisingane e tiveremediationstrategy.

Inorder tostudy thenear-sour e ontamination zone,that isthethezone surroundingan

organi ontaminantspill,amultiphasemodelisneeded,be auseanorgani phaseappears.It

is informativeto saythatsomepreliminarywork[14, 11℄hasbeenperformedbytheauthors

todevelopasuitablenumeri alapproa htomultiphasesimulationsaswellas onsideringthe

problem of pore- loggingin bio lm models. However,these topi swill betheissue of future

work.

ACKNOWLEDGEMENT

The work of Claudio Gallo has been nan ially supported by Sardinian Regional Authorities.

The authors would like to thank Dr. Fabio Bettio for his help in visualization and

Dr. Enri o Bertolazzi (University of Trento, Italy) for his areful reading of the preliminary

version of the paper and his useful suggestions. The unstru tured Delaunay grids were

generated by the mesh generator Triangle, a ode implemented by Shew hu k, see the

URL:http://almond.srv. s. mu.edu /afs / s/ proje t/q uake/ publ i /w ww/tr iang le.ht ml.

REFERENCES

Bailey:1977 1. J.E.BaileyandD.F.Ollis. Bio hemi alEngineeringFundamentals. M Graw-Hill,NewYork,1977.

Baveye:1989 2. P.BaveyeandA.Valo hi. Anevaluationofmathemati almodelsofthetransportbiologi allyrea ting

solutesinsaturatedsoilsandaquifers. WaterResour.Res.,25(6):1413{1421,1989.

Bear:1979 3. J.Bear. Hydrauli sofGroundwater. M Graw-Hill,NewYork,1979.

Bergamas hi:1995 4. L.Bergamas hi,C.Gallo,G.Manzini,C.Pani oni,and M.Putti. Amixed nite-elements/TVD nite-

volumess hemeforsaturated owandtransportingroundwater. InCe hietal.,editor,FiniteElements

inFluids,pages1223{1232,Padova,Italy,1995.

Brezzi:1991 5. F.BrezziandM.Fortin. MixedandHybridFiniteElementMethods. SpringerVerlag,Berlin,1991.

Chavent:1991 6. G.ChaventandJ.E.Roberts. AUni edPhysi alPresentationofMixed,Mixed-HybridFiniteElements

andStandardFiniteDi eren eApproximationfortheDeterminationofVelo itiesinWater owProblems.

Advan esinWaterResour es,14(6):329{348,1991.

Ciarlet:1980 7. P. G.Ciarlet. The niteelement method for ellipti problems. North-Holland Publishing Company,

Amsterdam,Holland,1980.

epa97heat 8. E. L. Davis. How heat an enhan e in-situ and aquifer remediation: important hemi al properties

and guidan e on hoosing the appropriate te hnique. Te hni al Report EPA/540/S-97/502, USEPA,

Te hnologyInnovationOÆ e,OÆ eofSolidWasteandEmergen yResponse,USEPA,Washington,DC,

1997.

epa96state 9. EnvironmentalProte tionAgen y.Statepoli ies on erningtheuseofinje tantsforinsitugroundwater

remediation. Te hni alReportEPA/542/S-96/001,USEPA,Te hnologyInnovationOÆ e,1996.

Freeze:1979 10. R.A.FreezeandJ.A.Cherry. Groundwater. Prenti e-Hall,NewJersey,1979.

Gallo:2000 11. C.GalloandS.M.Hassanizadeh. In uen eofbiodegradationonnapl owanddissolutioningroundwater.

InL.R.Bentleyetal.,editor,ComputationalMethodsinWaterResour esXIII,Volume1,pages129{136.

A.A.Balkema,Rotterdam,Holland,2000.

Gallo:1997 12. C. Galloand G.Manzini. Amixed nite element/ nite volume approa h for solvingbiodegradation

transportingroundwater. InternationalJournal ofNumeri alMethodsinFluids,26:533{556,1998.

Gallo:1998 13. C.Galloand G.Manzini. 2-dnumeri almodelingof bioremediationinheterogeneous saturated soils.

TransportinPorousMedia,31:67{88,1998b.

Gallo-Manzini:2000 14. C.GalloandG.Manzini. Afully ouplednumeri almodelfortwo-phase owwith ontaminanttransport

and biodegradation kineti s. Te hni al report,IAN-1163,1999. to appear inComm.Int.Num.Meth.

(14)

Gallo:2001:IAN:te hni al:rep ort 15. C. Gallo and G. Manzini. Finite volume/mixed nite element analysis of pollutant transport and

bioremediationinheterogeneoussaturatedaquifers. Te hni alreport,IAN-Te h.Rep.,2001.

Hassanizadeh:1999 16. S.M.Hassanizadeh. Ups alingequationsofsolutetransportandbiodegradationinsoils. Te hni alreport,

Dept.ofCivilEngineeringandGeos ien es,TUDelft,TheNetherlands,1999.

Kelly:1996 17. W.R.Kelly,G.M. Hornberger,J. S.Herman,and A.L.Mills. Kineti s ofBTXbiodegradation and

mineralizationinbat hand olumnsystems. J.Contam.Hydrol.,23:113{132,1996.

Kindred:1989 18. J.S.KindredandM.A.Celia. Contaminanttransportandbiodegradation:2. on eptualmodelandtest

simulations. WaterResour esResear h,25(6):1149{1159,1989.

Lensing:1994 19. J.J.Lensing,M.Vogt,andB.Herrling. Modelingbiologi allymediatedredoxpro essesinthesubsurfa e.

J.Hydrol.,159:125{143,1994.

epa95material 20. D.R.M Caulou,D.G.Jewett,andS.G.Huling. Nonaqueousphaseliquids ompatibilitywithmaterials

used inwell nstru tion,sampling, and remediation. Te hni al Report EPA/540/S-95/503, US EPA,

Te hnologyInnovationOÆ e,OÆ eofSolidWasteandEmergen yResponse,USEPA,Washington,DC,

1995.

Moltz:1986 21. F.J.Molz,M.A.Widdowson,andL.D.Bene eld. Simulationofmi robialgrowthdynami s oupledto

nutrientandoxygentransportinporousmedia. WaterResour esResear h,22(8):1207{1216,1986.

insitubio:1993 22. NationalResear h Coun il. In Situ Bioremediation: When Does It Work? NationalA ademyPress,

Washington,D.C.,1993.

leanup:1994 23. National Resear h Coun il. Alternatives for Ground Water Cleanup. National A ademy Press,

Washington,D.C.,1994.

epa92gen 24. R. R. Ross. General methods for remedial operations performan e evaluations. Te hni al Report

EPA/600/R-92/002, US EPA, Te hnology Innovation OÆ e, OÆ e of Solid Waste and Emergen y

Response,USEPA,Washington,DC,1992.

epa92t e 25. H.H.Russel,J.E.Matthews,andG.W.Sewell. TCEremovalfrom ontaminatedsoilandgroundwater.

Te hni alReportEPA/540/S-92/002,USEPA,Te hnologyInnovationOÆ e,OÆ eofSolidWasteand

Emergen yResponse,USEPA,Washington,DC,1992.

Taylor:1990 26. S.W.TaylorandP.R.Ja e. Substrateandbiomasstransportinaporousmedium. WaterResour.Res.,

26(9):2181{2194,1990.

Widdowson:1988 27. M.A.Widdowson,F.J.Molz,andL.D.Bene eld. Anumeri altransportmodelforoxygen-andnitrate-

basedrespirationlinkedtosubstrateandnutrientavailabilityinporousmedia. WaterResour esResear h,

24(9):1553{1565,1988.

(15)

Figure3.Contaminationphase(T1):pollutant on entrationatt=410days

s enario1a

(16)

Figure4.Contaminationphase(T1):pollutant on entrationatt=600days|steadystate s enario1b

(17)

Figure5.Pump-and-treatremediation(T2): on entrationatt=1450 days PAT1a

(18)

Figure6.Pump-and-treatremediation(T2): on entrationatt=2500 days PAT1b

(19)

Figure7.Bioremediationby1 st

well on guration(T3): on entrationatt=178days bio1a

(20)

Figure8.Bioremediationby1 st

well on guration(T3): on entrationatt=360days bio1b

(21)

Figure9.Bioremediationby2 nd

well on guration(T4): on entrationatt=600days(200daysafter

theswit h)

bio2a

(22)

Figure 10. Bioremediationby2 nd

well on guration (T4): on entration at t=875days (475days

aftertheswit h)

bio2b

(23)

Figure11. Contaminantresidualmassremovalvsremediationtime. ompeff

(24)

APPENDIX

Thekineti degradationratesof on entrationswithinmi ro oloniesin(3)forthefourspe iesmodel

usedinallofthesimulationsare

SA (C

S

S )

Æ

= m YS;O0;O



S

K

S;O +

S



O

K

O +

O



A

K

A;O +

A



+ m

Y

S;N



0;N



S

K

S;N +

S



N

K

N +

N



A

K

A;N +

A



I 1

b

(13) S_ olony



O A

(CO O)

Æ

= m

Y

O



0;O



S

KS;O+ S



O

KO+ O



A

KA;O+ A



+ Okd;O



O

K

O 0+ O



; (14) O_ olony

NA (C

N

N )

Æ

= m YN0;N



S

K

S;N +

S



N

K

N +

N



A

K

A;N +

A



I 1

b

;

+

N k

d;N



N

K

N 0+

N



I 1

b

; (15) N_ olony

AA

(CA A)

Æ

= m YA;O0;O



S

KS;O+ S



O

KO+ O



A

KA;O+ A



;

+ m YA;N0;N



S

KS;N+ S



N

KN+ N



A

KA;N + A



I 1

b

; (16) A_ olony

andthemi robialgrowth/de ayequationis

1

N

N

t

=



0;O



S

KS;O+ S



O

KO+ O



A

KA;O+ A



kd;O



+



0;N



S

K

S;N +

S



N

K

N +

N



A

K

A;N +

A



k

d;N



I 1

b

(17) eq:ba t_growth

where

- 

S

=1:0310 5

[m 2

/day℄,

O

=2:1910 5

[m 2

/day℄,

N

=1:5010 5

[m 2

/day℄,

A

=1:8610 5

[m 2

/day℄ are the mass ex hange oeÆ ients for the bulk ow and the mi ro olony spe ies

on entrations;

- A =3:76810 10

[m 2

℄,isthe onta tareaofthemi ro olonyforthemassdi usionpro ess;

- Æ=5:010 4

[m℄isthethi knessoftheboundarylayerbetweenbulk owandmi ro olonies;

- m =2:8610 11

isthemi ro olonymass;

- 0;O=4:34[1/day℄and0;N =2:9[1/day℄arethespe i aerobi andanaerobi growthrates;

- YS;O=0:278andYS;N =0:5aretheheterotrophi yield oeÆ ients;

- YO =0:278 [{℄ and YN =0:5 [{℄ are the oeÆ ients for theoxygenand nitrogensynthesisof

heterotrophi biomass;

- 0=0:0402[{℄ and N =0:1[{℄ aretheoxygenandnitrogenuse- oeÆ ientsformaintenan e

energyofba teria;

- YA;O =0:122 andYA;N =0:122 are the ammonia-nitrogen oeÆ ients for produ ingbiomass

underaerobi andanaerobi onditions;

- K

S;O

=40 [g/m 3

℄,K

O

= 0:77 [g/m 3

℄, and K

A;O

= 1[g/m 3

℄are the substrate, oxygen, and

ammonia-nitrogensaturation onstantsunderaerobi onditions;

- K

S;N

=40 [g/m 3

℄,K

N

=2:6 [g/m 3

℄,andK

A;N

=1[g/m 3

℄are the substrate,nitrogen, and

ammonia-nitrogensaturation onstantsunderanaerobi onditions;

- K

O

0 =0:77 [g/m 3

℄andK

N

0=2:6[g/m 3

℄aretheoxygenandnitrogensaturation onstants;

- I 0

b

=1and I 1

b

=K

b;N

=(K

b;N +

O

) are theinhibition fun tionsof the oxygen-basedand the

nitrogen-basedrespiration,andK =0:0001[g/m 3

℄istheinhibition oeÆ ient;

(25)

- k

d;O

= 0:02 [1/day℄ and k

d;N

= 0:02 [1/day℄ are the ba terial death-per-unit-time de ay

onstantsforaerobi andanaerobi metabolism.

Riferimenti

Documenti correlati

Supplementary Materials: Method for the determination of H 2 O 2 is reported at p.1 of Supplementary Material, Figure S1: effect of applied polarity on

The formation of H 2 O 2 along plasma treatment was determined using two reagent solutions prepared as follows in two 250 mL flasks: solution A contained 16.5 g of potassium

interactions of two immiscible fluids in porous media. Pore network models, as predictors of fluids movement in porous media, can play undeniable role in determining

The experiment was divided into two groups: ① It only uses indigenous microorganisms from the Yangtze River water and Ancient Canal water for simulating restoration of

Whereas the deletion of the region spanning amino acids 942–1030 (GFP-⌬941) did not influence the localization of the fusion protein, a CDKL5 derivative lacking the most C-terminal

Abstract: A simplified method to determine specific yield (i.e., effective porosity) from hydraulic conductivity data obtained through pumping tests is proposed.. This new

L’impiego delle sfere di vetro (glass beads) come materiale drenante nei pozzi per acqua ha richiesto un notevole sforzo tecnologico ed economico, poiché devono essere soddisfatti

Before comparing the forms of online relationship developed in blogs it is necessary to clear why a blog can be considered both a space of self-publishing and of social interaction