• Non ci sono risultati.

approssimazione di Fraunhofer

Nel documento Quantizzazione di onde evanescenti (pagine 67-76)

In tale regime propagativo, considereremo sempre valide le condizioni cosθ 1 e 1/r ≃ 1/z, per l’esponenziale possiamo ulteriormente semplificare l’e- spressione (A.11). Abbiamo visto, infatti, che nell’approssimazione di Fre- snel: r = [ z + x 2+ y2+ ξ2+ η2− 2xξ − 2yη 2z ]

ora quando z tende ad infinito i termini ξ2ed η2tendono a dare un contributo molto trascurabile alla fase percui possiamo eliminarli ed ottenere quella che va sotto il nome di “approssimazione di Fraunhofer” del campo:

V (x, y, z) = −ie i[kz+2zk(x2+y2)] λz ∫∫ V0(ξ, η)e− 2πi λz(xξ+yη)dξdη (A.13)

L’integrale che compare nella (A.13) coincide esattamente con la trasformata di Fourier di V0 calcolata in x/(λz) e y/(λz).

Bibliografia

[1] Girish S. Agarwal, Quantum Optics, Cambridge University Press (2013).

[2] Howard Carmichael,An Open Systems Approach to Quantum Optics, Springer-Verlag (1993).

[3] Heinz-Peter Breuer, Francesco Petruccione, The Theory of Open

Quantum Systems, Oxford Univ Pr on Demand (2007).

[4] S. Severini, A. Settimi, C. Sibilia, M. Bertolotti, A. Napoli and A. Messina, Second quantization and atomic spontaneous emission inside

one-dimensional photonic crystals via a quasinormal-modes approach,

Phys. Rev. E, 70, n. 5, 056614 (2004).

[5] K. C. Ho, P. T. Leung, Alec Maassen van den Brink, and K. Young,

Second quantization of open systems using quasinormal modes, Phys.

Rev. E 58 , 2965 (1998).

[6] E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M. Suen, S. S. Tong, and K. Young, Quasinormal-mode expansion for waves in

open systems, Rev. Mod. Phys. 70, 1545 (1998).

[7] A. Settimi, S. Severini et al., Quasinormal-mode description of waves

in one-dimensional photonic crystals, Phys. Rev. E, n. 2, 026614 (2003)

[8] Herbert Walther, Benjamin T H Varcoe, Berthold-Georg Englert and Thomas Becker, Cavity Quantum Electrodynamics, Rep. Prog. Phys.

69 1325 (2006).

[9] Sergio M. Dutra Cavity Quantum Electrodynamics: The Strange Theory Of Light In A Box, Wiley-Interscience (2004).

[10] Serge Haroche and Daniel Kleppner Cavity quantum electrodynamics, Phys. Today 42, 1, 24 (1989). 3

[11] L. Mandel, E. Wolf Optical coherence and quantum optics, Cambridge University Press, (1995).

[12] Franco Gori, Elementi di Ottica, Accademica Roma (1997).

[13] Alfred J. Meixner, Martin A. Bopp, and Guido Tarrach, Direct measu-

rement of standing evanescent waves with a photon-scanning tunneling microscope, APPLIED OPTICS Vol. 33, No. 34 7995-8000 (1994).

[14] Y. Ben-Arieh, Tunneling of evanescent waves into propagating waves, Appl. Phys. B 84, 121-124 (2006).

[15] Daniela Dragoman, Mircea Dragoman, Quantum-classical analogies, Springer-Verlag Berlin (2004).

[16] Claude Itzykson and Jean-Bernard Zuber, Quantum Field Theory, McGraw-Hill (2005)

[17] F. Mandl and G. Shaw, Quantum Field Theory, John Wiley & Sons (2007).

[18] Amitabha Lahiri, Palash B. Pal, A first book of Quantum Field Theory, CRC Press (2001).

[19] Steven Weinberg, La teoria quantistica dei campi, Zanichelli (1999). [20] W. H. Louiselle, Quantum Statistical properties of radiation, Wiley-

Interscience (1990).

[21] Hermann A. Haus, Electromagnetic Noise and Quantum Optical

Measurements, Springer-Verlag (2000).

[22] W. H. Louiselle, Coupled mode and parametric electronic, John Wiley & Sons (1960).

[23] P. T. Leung, S. Y. Liu, and K. Young, Phys. Rev. A 49, 3057 (1994); P. T. Leung, S. S. Tong, and K. Young, J. Phys. A 30, 2139 (1997);

30, 2153 (1997).

[24] S. Severini, Studio delle propriet`a non classiche del campo elettroma- gnetico in presenza di materiali non omogenei e non lineari, XV ciclo di

Dottorato di Ricerca in “Scienze Elettrofisiche ed Elettromagnetismo Applicato”, Roma 26 Novembre (2002).

[25] Gilbert Grynberg, Alain Aspect, Claude Fabre, Introduction to Quan-

tum Optics: From the Semi-classical Approach to Quantized Light,

Cambridge University Press. (2010)

[26] J. J. Sakuray, Meccanica Quantistica Moderna, Zanichelli (1996). [27] Claude Cohen-Tannoudji, Jacques Dupont-Roc, Gilbert Grynberg,

Photons and Atoms, John Wiley & Sons (1989).

[28] R. Loudon, The quantum theory of light, 3rd ed. Oxford University Press, (2000).

[30] E. E. Hall, Phys. Rev. 15, 73 (1902).

[31] Maria Allegrini, L’Onda evanescente e la nano-ottica, Il nuovo Saggiatore vol. 24, 48-55 (2008).

[32] M. Allegrini, C. Ascoli, A. Gozzini, Measurements of changes in length

by an inhomogeneous wave device, Optics Communications 2, 435-437

(1971).

[33] C. K. Carniglia and L. Mandel, Quantization of evanescent electromagnetic waves, Phys. Rev. D vol. 3, n. 2, 280-296 (1971)

[34] Mufei Xiao, Evanescent fields do contribute to the far field, Journal of Modern Optics, 46:4, 729-733 (1999).

[35] P.S. Carney, D.G. Fischer, J.T. Foley, A.T. Friberg, A.V. Shchegrov, T.D. Visser, E. Wolf Comment on the paper: Evanescent waves do

contribute to the far field, Journal of Modern Optics Vol. 47, Iss. 4,

757-758 (2000).

[36] A.B. Katrich, Do evanescent waves really exist in free space?, Optics Communications 255, 169-174 (2005)

[37] Colin J.R. Sheppard et al., Comment on “Do evanescent waves really

exist in free space?”, Optics Communications 266, 448-449 (2006)

[38] Yasushi Oshikane et. al., Observation of nanostructure by scanning

near-field optical microscope with small sphere probe, Science and

Technology of Advanced Materials 8, 181-185 (2007)

[39] H.A. Bethe, Theory of diffraction by small holes, Phys. Rev. 66, 7-8 (1944); Y. Leviatan, Study of near-zone fields of a small aperture, J. Appl. Phys. 60, 5 (1986).

[40] S.K. Sheem, H.F. Taylor , R.P. Moeller, W.K. Burns, Propagation cha-

racteristics of single-mode evanescent field couplers, Appl. Optics 20,

6, 1056 (1981); R.A. Bergh, G. Koitler, H.J. Shaw, Single-mode fibre

optic directional coupler, Electronics Lett. 16, 7, 260 (1980).

[41] P.E. Buckle et. al., The resonant mirror: a novel optical biosensor for

direct sensing of biomolecular interactions. Part II: Applications, Bio-

sens. Bioelectronics, 8, 355 (1993); R.J. Davies, D. Pollard-Knight,

An optical biosensor system for molecular interaction studies, Am.

Biotechnol. Lab. 11, 52 (1993)

[42] Davies R.J., Pollard-Knight D., An optical biosensor system for

molecular interaction studies, Am. Biotechnol. Lab., 11, 52 (1993).

[43] Georges A.J.T., Measurement of the kinetics of biomolecular interac-

tion using the IAsys resonant mirror biosensor, Current Protocol in

Immunology, 33, 18.5.1 (1999).

[44] F. de Fornel, Evanescent Waves: From Newtonian Optics to Atomic

Optics, Springer-Verlag (2001).

[45] F. Goos and H. H¨anchen, Ein neuer und fundamentaler Versuch zur

Totalreflexion, Ann. Phys. (436) 7-8, 333-346 (1947).

[46] Lotsch H.K.V., Beam displacement at total reflection: the Goos- H¨anchen effect,I, Optik 32, 116 (1970).

[47] Lotsch H.K.V., Beam displacement at total reflection: the Goos- H¨anchen effect,II, Optik 32, 189 (1970).

[48] Lotsch H.K.V., Beam displacement at total reflection: the Goos- H¨anchen effect,III, Optik 32, 319 (1971).

[49] Lotsch H.K.V., Beam displacement at total reflection: the Goos- H¨anchen effect,IV, Optik 32, 553 (1971).

[50] Imbert C., Calculation and experimental proof of the transverse shift

induced by total internal reflection of a circularly polarized light beam,

Phys. Rev. D, 5, 4, 787-796 (1975).

[51] O. Costa de Beauregard and C. Imbert, Quantized longitudinal and

transverse shifts associated with total internal reflection, Phys. Rev. D

7, 3555-3563 (1973);

[52] Goodman J W, Introduction to Fourier Optics, Greenwood, Robert & Co, (2005).

[53] Weyl H, Propagation of electromagnetic waves through a planar screen, (Ausbreitung elektromagnetischer Wellen ¨uber einem ebenen Leiter) Ann. Phys. 365, 481 (1919).

[54] Carnicer Artur, Juvells Ignasi, Maluenda David, Martinez-Herrero Ro- sario and Mejias Pedro M, On the longitudinal component of paraxial

fields, Eur. J. Phys. 33, 1235-1247 (2012).

[55] C. H. Bennett and G. Brassard. Quantum cryptography: Public key

distribution and coin tossing., Proceedings of IEEE International Con-

ference on Computers, Systems and Signal Processing, volume 175, page 8. New York, (1984).

Indice analitico

bagno termico, 6, 17 temperatura, 18 biosensore

schema di principio, 39 cut-off, frequenza di, 7, 11 Damping, 6

Disturbanza, 7

effetto tunnel ottico, 9, 36 equazione d’onda, 7, 12, 16, 20, 45, 46 di Helmholtz, 12 di Liouville, 18 di Schr¨odinger, 36 equazioni di Maxwell covarianti, 14 metrica, 14 lagrangiana, 14 fotone, 5 distribuzione spettrale, 6 Energia, 5 polarizzazione, 5 quantit`a di moto, 5 spazio di Fock, 6 gauge, 15 di Coulomb, 30, 32, 49, 50 di coulomb, 51 di Feynman, 15 Gauss legge di, 50, 55 Goos-H¨anchen, 43

guida d’onda rettangolare, 11 automodi, 12, 13 frequenza di cut-off, 13 relazione di dispersione, 13 onda evanescente, 41 onde p o onde TM, 41 s o onde TE, 41 onde evanescenti applicazioni, 38 biosensori, 38 bidimensionali, 46 monodimensionali, 45 70

onde piane, 8

non omogenee, 8, 46 omogenee, 8

Open Quantum Systems, 6, 17 bagno termico, 6, 17

hamiltoniana d’interazione, 17 operatori

di creazione e distruzione, 15 parassialit`a, 46, 48

confronto con gauge, 49 longitudinalit`a, 49 soluzioni, 47 spettro angolare, 47 SVEA, 47, 48 polarizzazione ellittica, 40 lineare, 40 longitudinale, 49, 50 trasversa, 50–52 potenziale scalare, 14 potenziale vettore, 14 propagazione guidata, 7 quadri-potenziale vettore, 14 quantizzazione canonica, 14 momento coniugato, 14 policromaticit`a, 16 Quasi Normal Modes, 7, 19

discontinuity condition, 20 incoming waves conditions, 22 non hermiticit`a, 22

norma complessa, 21

outgoing waves conditions, 20 quasi-frequenze, 21 rappresentazione multi particella, 27 singola particella, 25 regione di Fraunhofer, 9 regole di commutazione, 15 riflessione totale, 7, 9, 40, 41 angolo critico, 10

campi spazialmente limitati, 43 frustrata, 11

piano d’incidenza, 10

superficie di separazione, 11 Shift di Goos-H¨anchen, 43

longiudinale, 44 trasversale, 44 Snell, legge di, 10 stato coerente, 25, 26

distribuzione Poisson, 26 multimodo, 28

tensore metrico, 15 trasversalit`a

condizione di, 4, 50 tunneling, 36

Nel documento Quantizzazione di onde evanescenti (pagine 67-76)

Documenti correlati