• Non ci sono risultati.

(1) A. Pasqualino, G.L Panattoni - Anatomia Umana. Citologia Istologia Embriologia

Anatomia Sistematica. Editore Utet. Capitolo 25.

(2) M. Gesi, M. Ferrucci, G. Ghelarducci - Anatomia del Corpo Umano con elementi di

Istologia, vol. II. Editore CDL Libri, Terza Edizione.

(3) R.M. Berne, M.N. Levy – Principi di Fisiologia. Casa Editrice Ambrosiana, Terza Edizione 2002. Capitolo 27.

(4) AIRC-Associazione Italiana Ricerca sul Cancro

http://www.airc.it/tumori/mesotelioma.asp

(5) ONA - Osservatorio Nazionale Amianto, Dipartimento di ricerca e cura del Mesotelioma.

http://osservatorioamianto.jimdo.com/dipartimento-ricerca-e-curadel-mesotelioma

(6) C. Terzano - Malattie dell’apparato respiratorio. Editore Springer.

(7) Galateau-Salle F. Pathology of Malignant Mesothelioma. Springer-Verlag London Limited: London. 2006.

(8) SOS Amianto SRL ®. Rimozione e smaltimento amianto.

http://www.sosamianto.it/index.html

(9) Rimozione amianto e smaltimento Eternit.

www.rimuovereamianto.it

(10) Ministero della Salute.

www.ministerodellasalute.it

(11) Yang H., Testa J.R, Carbone M. Mesothelioma epidemiology, carcinogenesis and

pathogenesis.

(12) Benedetti S, Nuvoli B, Catalani S, Galati R. Reactive oxygen species a doubleedged

81

(13) Kamp DW, Graceffa P, Pryor WA, Weitzman SA. The role of free radicals in

asbestos-induced diseases. Free Radic. Biol. Med. 1992; 12:293-315.

(14) Choe N, Tanaka S, Kagan E. Asbestos fibers and interleukin-1 upregulate the formation

of reactive nitrogen species in rat pleural mesothelial cells. Am J Respir Cell Mol Biol.

1998; 19:226–36.

(15) Monteiro de Assis LV, Isoldi MC. Overview of the biochemical and genetic processes in

malignant mesothelioma. Bras Pneumol. 2014; 40(4):429-442

(16) Miller J, Shukla A. The Role of inflammation in development and therapy of malignant

mesothelioma. American Medical Journal 2012; 3:240–48.

(17) Yang H, Bocchetta M, Kroczynska B, Elmishad AG, Chen Y, Liu Z, Bubici C, Mossman BT, Pass HI, Testa JR, Franzoso G, Carbone M. TNF-alpha inhibits asbestos-induced

cytotoxicity via a NF-kappaB dependent pathway a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci USA. 2006; 103:10397–402.

(18) Sekido Y. Molecular pathogenesis of malignant mesothelioma. Carcinogenesis 2013; 34(7):1413–1419.

(19) Altomare DA, Vaslet CA, Skele KL, De Rienzo A, Devarajan K, Jhanwar SC, McClatchey AI, Kane AB, Testa JR. A mouse model recapitulating molecular features of human

mesothelioma. Cancer Res. 2005; 65:8090–8095.

(20) Altomare DA, You H, Xiao GH, Ramos-Nino ME, Skele KL, De Rienzo A, Jhanwar SC, Mossman BT, Kane AB, Testa JR. Human and mouse mesotheliomas exhibit elevated

AKT/PKB activity which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene 2005; 24:6080–89.

(21) Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L. The nuclear deubiquitinase

BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011; 43(7):668-72.

(22) Heffner JE, Klein JS. Recent advances in the diagnosis and management of malignant

82

(23) Radiologia diagnostica ed interventistica, Università di Pisa.

www.rad.unipi.it

(24) Gordon W Jr, Antman KH, Greenberger JS. Radiation therapy in the management of

patients with mesothelioma. Int J Radiat Oncol Biol Phys.1982; 8:19-25.

(25) Manuale MSD, edizione professionisti.

http://www.msdmanuals.com/it/professionale

(26) Edwards JC, Abrams KR, Leverment JN. Prognostic factors for malignant

mesothelioma in 142 patients: validation of CALGB and EORTC prognostic scoring systems. Thorax. 2000; 55(9):731-735.

(27) Panou V, Vyberg M, Weinreich UM, Meristoudis C, Falkmer U.G. The established and

future biomarkers of malignant pleural mesothelioma. Cancer Treatment Reviews

2014; 41:486–495.

(28) Gotzos V, Vogt P, Celio MR. The calcium binding protein calretinin is a selective

marker for malignant pleural mesotheliomas of the epithelial type. Pathol Res Pract

1996; 192:137–47.

(29) Saad RS, Lindner JL, Lin X, Liu YL, Silverman JF. The diagnostic utility of D240 for

malignant mesothelioma versus pulmonary carcinoma with pleural involvement.

Diagn Cytopathol 2006; 34:801–6.

(30) Davies HE, Sadler RS, Bielsa S, Maskell NA, Rahman NM, Davies RJO. Clinical impact

and reliability of pleural fluid mesothelin in undiagnosed pleural effusions. Am J

Respir Crit Care Med 2009; 180:437–44.

(31) Bonelli MA, Fumarola C, La Monica S, Alfieri R. New therapeutic strategies for

malignant pleural mesothelioma. Pharmacol. 2016; 1-8.

(32) G.L. Ceresoli, B. Castagneto, P.A. Zucali, A. Favaretto, M. Mencoboni, F. Grossi, D. Cortinovis, G. Del Conte, A. Ceribelli, A. Bearz, S. Salamina, F. De Vincenzo, F. Cappuzzo, M. Marangolo, V. Torri, A. Santoro. Pemetrexed plus carboplatin in elderly

83

patients with malignant pleural mesothelioma: combined analysis of two phase II trials. Br. J. Cancer 99 (1) (2008) 51–56.

(33) N. Katirtzoglou, I. Gkiozos, N. Makrilia, E. Tsaroucha, A. Rapti, G. Stratakos, G. Fountzilas, K.N. Syrigos. Carboplatin plus pemetrexed as first-line treatment of

patients with malignant pleural mesothelioma: a phase II study. Clin. Lung Cancer 11

(1) (2010) 30–35.

(34) Ak G, Metintas S, Akarsu M, Metintas M. The effectiveness and safety of

platinum-based pemetrexed and platinum-based gemcitabine treatment in patients with malignant pleural mesothelioma. BMC Cancer 15 2015; 510.

(35) W. Weder, P. Kestenholz, C. Taverna, S. Bodis, D. Lardinois, M. Jerman, R.A. Stahel.

Neoadjuvant chemotherapy followed by extrapleural pneumonectomy in malignant pleural mesothelioma. J. Clin. Oncol. 22 (17) (2004) 3451–3457.

(36) L.L. Garland, C. Rankin, D.R. Gandara, S.E. Rivkin, K.M. Scott, R.B. Nagle, A.J. Klein-Szanto, J.R. Testa, D.A. Altomare, E.C. Borden. Phase II study of erlotinib in

patients with malignant pleural mesothelioma. A Southwest Oncology Group Study, J.

Clin. Oncol. 25 (17) (2007) 2406–2413.

(37) R. Govindan, R.A. Kratzke, J.E. Herndon 2nd, G.A. Niehans, R. Vollmer, D. Watson, M.R. Green, H.L. Kindler. Gefitinib in patients with malignant mesothelioma: a phase

II study by the Cancer and Leukemia Group B. Clin. Cancer Res. 11 (6) (2005)

2300–2304

(38) Xin HW, Yang JH, Nguyen DM. Sensitivity to epidermal growth factor receptor

tyrosine kinase inhibitor requires E-cadherin in esophageal cancer and malignant pleural mesothelioma. Anticancer Res. 2013; 33(6):2401–2408.

(39) J. Kurai, H. Chikumi, K. Hashimoto, M. Takata, T. Sako, K. Yamaguchi, N. Kinoshita, M. Watanabe, H. Touge, H. Makino, T. Igishi, H. Hamada, S. Yano, E. Shimizu.

Therapeutic antitumor efficacy of anti-epidermal growth factor receptor receptor antibody, cetuximab, against malignant pleural mesothelioma. Int. J. Oncol. 41 (5)

84

(40) R. Kanteti, I. Dhanasingh, I. Kawada, F.E. Lennon, Q. Arif, R. Bueno, R. Hasina, A. N. Husain, W. Vigneswaran, T. Seiwert, H.L. Kindler, R. Salgia. MET and PI3K/ mTOR as

a potential combinatorial therapeutic target in malignant pleural mesothelioma. PLoS

ONE 9 (9) (2014) e105919.

(41) G. Pinton, A.G. Manente, G. Angeli, L. Mutti, L. Moro. Perifosine as a potential novel

anti-cancer agent inhibits EGFR/MET-AKT axis in malignant pleural mesothelioma.

PLoS ONE 7 (5) (2012) e36856.

(42) M. Moriya, T. Yamada, M. Tamura, D. Ishikawa, M.A. Hoda, I. Matsumoto, W. Klepetko, M. Oda, S. Yano, G. Watanabe. Antitumor effect and antiangiogenic potential

of the mTOR inhibitor temsirolimus against malignant pleural mesothelioma. Oncol.

Rep. 31 (3) (2014) 1109–1115.

(43) B. Fischer, C. Frei, U. Moura, R. Stahel, E. Felley-Bosco. Inhibition of

phosphoinositide-3 kinase pathway down regulates ABCG2 function and sensitizes malignant pleural mesothelioma to chemotherapy. Lung Cancer 78 (1) (2012) 23–29.

(44) S.H. Ou, J. Moon, L.L. Garland, P.C. Mack, J.R. Testa, A.S. Tsao, A.J. Wozniak, D.R. Gandara, SWOG S0722: phase II study of mTOR inhibitor everolimus (RAD001) in

advanced malignant pleural mesothelioma (MPM), J. Thorac. Oncol. 10 (2) (2015)

387–391.

(45) J.A. Pachter, J.E. Ring, V.N. Kolev, I.M. Shapiro, C.M. Vidal, M.V. Padval, Q. Xu,

VS-6063 (defactinib) targets cancer stem cells directly and through inhibition of tumor-associated macrophages and cytokine production, Cancer Res. 74 (19 Suppl.)

(2014) [abstract 4797].

(46) Q. Li, S. Yano, H. Ogino, W. Wang, H. Uehara, Y. Nishioka, S. Sone, The therapeutic

efficacy of anti vascular endothelial growth factor antibody, bevacizumab, and pemetrexed against orthotopically implanted human pleural mesothelioma cells in severe combined immunodeficient mice, Clin. Cancer Res. 13 (19) (2007) 5918–5925.

(47) G. Zalcman, J. Mazieres, J. Margery, L. Greillier, C. Audigier-Valette, D. MoroSibilot, O. Molinier, R. Corre, I. Monnet, V. Gounant, F. Riviere, H. Janicot, R. Gervais, C.

85

Locher, B. Milleron, Q. Tran, M.P. Lebitasy, F. Morin, C. Creveuil, J.J. Parienti, A. Scherpereel, Bevacizumab for newly diagnosed pleural mesothelioma in the

Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial, Lancet 387 (10026) (2016) 1405–1414.

(48) R. Hassan, E. Sharon, A. Thomas, J. Zhang, A. Ling, M. Miettinen, R.J. Kreitman, S.M. Steinberg, K. Hollevoet, I. Pastan, Phase 1 study of the antimesothelin immunotoxin

SS1P in combination with pemetrexed and cisplatin for frontline therapy of pleural mesothelioma and correlation of tumor response with serum mesothelin, megakaryocyte potentiating factor, and cancer antigen 125, Cancer 120 (21) (2014)

3311–3319.

(49) Choudhary J, Grant SGN. Proteomics in postgenomic neuroscience: the end of the

beginning. Nature Neuroscience 2004; 5:440-445.

(50) Godovac-Zimmermann J, Soskic V, Poznanovic S, Brianza F. Functional proteomics of

signal transduction by membrane receptors. Electrophoresis 1999; 20:952-961.

(51) Imam-Sghiouar N, Laude-Lemaire I, Labas V, Pflieger D, Le Caer JP, Caron M, Nabias DK, Joubert-Caron R. Subproteomics analysis of phosphorylated proteins: application

to the study of B-lymphoblast from a patient with Scott syndrome. Proteomics 2002;

2:828-838.

(52) Graves PR, Haystead ATJ. Molecular Biologist's Guide to Proteomics Microbiology and

Molecular. Biol Rev 2002; 66:39-63.

(53) Phizicky S, Bastiaens E, Zhu PI, Snyder H, Fields M. Protein analysis on a proteomic

scale. Nature2003; 422:208–215.

(54) Pandey M, Mann A. Proteomics to study genes and genomes. Nature2000; 405:837–846.

(55) Herbert K, Harry BR, Packer JL, Gooley NH, Pedersen AA, Williams SK. What place for

86

(56) Birse CE, Lagier RJ, FitzHugh W, Pass HI, Rom WN, Edell ES, Bungum AO, Maldonado F, Jett JR, Mesri M, Sult E, Joseloff E, Li A, Heidbrink J, Dhariwal G, Danis C, Tomic JL, Bruce RJ, Moore PA, He T, Lewis ME, Ruben SM. Blood-based lung cancer biomarkers

identified through proteomic discovery in cancer tissues, cell lines and conditioned medium. Clin Proteomics 2015; 12:18.

(57) Reem M, Sallam K. Proteomics in Cancer Biomarkers Discovery: Challenges and

Applications. Hindawi 2015; 1-3.

(58) Manfredi M, Martinotti S, Gosetti F, Ranzatoa E, Marengoa E. The secretome

signature of malignant mesothelioma cell lines. Journal of Proteomics 2016; 2-4.

(59) Mathivanan S. Quest for Cancer Biomarkers: Assaying Mutant Proteins and RNA That

Provides the Much Needed Specificity. Proteomics Bioinform 2012; 5:11.

(60) Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ. Proteomics analysis of

A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 2010;

9:197-208.

(61) Stoeck A, Keller S, Riedle S, Sanderson MP, Runz S. A role for exosomes in the

constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem.

2006; 393:609-618.

(62) Makridakis M, Vlahou A. Secretome proteomics for discovery of cancer biomarkers. J. Proteome 2010; 73:2291–2305.

(63) Méndez1 O, Villanueva J. Challenges and Opportunities for Cell Line Secretomes in

Cancer Proteomics Proteomics. Clinical Applications 2014; 3-5.

(64) Xue H, Lu B, Lai M. The cancer secretome: a reservoir of biomarkers. Journal of Translational Medicine 2008; 6:52.

(65) Faça, VM, Ventura AP, Fitzgibbon MP, Pereira-Faça SR. Proteomic Analysis of Ovarian

Cancer Cells Reveals Dynamic Processes of Protein Secretion and Shedding of Extra-Cellular Domains. PLoS ONE 2008; 3: 2425.

87

(66) Lawlor K, Nazarian A, Lacomis L, Tempst P, Villanueva J. Pathway-based biomarker

search by high-throughput proteomics profiling of secretomes. J Proteome Res 2009;

8:1489–1503.

(67) Gregori J, Méndez O, Katsila T, Pujals M. Enhancing the Biological Relevance of

Secretome-Based Proteomics by Linking Tumor Cell Proliferation and Protein Secretion. J Proteome Res 2014; 13:3706–3721.

(68) Eustace BK, Sakurai T, Stewart JK, Yimlamai D. Functional proteomic screens reveal

an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol

2004; 6:507–514.

(69) Kim S, You S, Hwang D. Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping Nat Rev Cancer 2011; 11:708-718.

(70) Andreola G. Induction of Lymphocyte Apoptosis by Tumor Cell Secretion of

FasL-bearing Microvesicles. Journal of Experimental Medicine 2002; 195, 1303–1316.

(71) Deng Z, Cheng Z, Xiang X, Yan J. Tumor cell cross talk with tumor-associated

leukocytes leads to induction of tumor exosomal fibronectin and promotes tumor progression. Am J Pathol 2012; 180:390–398.

(72) Weder W. Mesothelioma. Annals of Oncology 2010; 21.

(73) Liu G, Beri R, Mueller A, Kamp DW. Molecular mechanism of asbestos induced lung

88

Documenti correlati