• Non ci sono risultati.

2. Introduzione alla parte sperimentale

3.2. Caratteristiche chimico-fisiche e spettroscopiche de

- 6-bromo-2-(4-metossifenil)-H-imidazo[1,2-a]piridina, 18a - 6-bromo-2-fenil-H-imidazo[1,2-a]piridina, 18b

Il primo step della sintesi dei derivati eterociclici a nucleo imidazopi- ridinico prevede la formazione dell’eterociclo a partire da 2-ammino- 5-bromopiridina e dall’opportuno 2-bromoacetofenone, in rapporto equimolare.

10.00 mmol di 2-ammino-5-bromopiridina e 10.00 mmol dell’opportuno 2-bromoacetofenone, prodotti commerciali, sono me- scolati intimamente in un mortaio, trasferiti in un pallone e fatti rea- gire a fusione per circa 6-8 ore a una temperatura di 80°C. La misce- la è mescolata ogni tanto con una bacchetta di vetro.

Il termine della reazione è controllato mediante T.L.C. dalla quale si nota la scomparsa dei reagenti di partenza.

Il prodotto desiderato, sottoforma di solido giallo, è recuperato per cristallizzazione con MeOH.

N N Br

R

Caratteristiche chimico-fisiche

Composto R Resa Solvente di cri-stallizzazione P.f. (°C) Formula

18a OCH3 84% MeOH 280-285 C14H11BrN2O

Caratteristiche spettroscopiche Composto R 1H-NMR (DMSO-d(δ, ppm) 6) 18a OCH3 9,21 (s, 1H, Ar) 8,59 (s, 1H, Ar) 8,03-7,83 (m, 4H, Ar) 7,15 (d, 2H, Ar) 3,85 (s, 3H, OCH3) 18b H 9,24 (s, 1H, Ar) 8,69 (s, 1H, Ar) 8,03-7,86 (m, 4H, Ar) 7,63-7,52 (m, 3H, Ar)

- 6-(4-metossifenil)-2-(4-metossifenil)-H-imidazo[1,2-a]piridina, 20a - 6-(3,4-dimetossifenil)-2-(4-metossifenil)-H-imidazo[1,2- a]piridina, 20b - 6-(3,5-dimetossifenil)-2-(4-metossifenil)-H-imidazo[1,2- a]piridina, 20c - 2-(4-metossifenil)-6-fenil-H-imidazo[1,2-a]piridina, 20d - 6-(3,4-dimetossifenil)-2-fenil-H-imidazo[1,2-a]piridina, 20e - 6-(4-metossifenil)-2-fenil-H-imidazo[1,2-a]piridina, 20f

L’opportuno bromo derivato 18a,b è trasformato nei corrispondenti derivati metossilati 20a-f mediante reazione al microonde. In ciascu- na vial, contenente 10.00 mmol di bromoderivato, sono aggiunti: 15.00 mmol dell’opportuno acido fenilboronico (rapporto 1:1,5), 0,10 mmol di catalizzatore Tetrakis(trifenilfosfina)palladio (rapporto 1:0,01) e 2 mL di soluzione K2CO3 2M. la reazione è condotta al microonde

Biotage nelle seguenti condizioni:  Power: 100 W  Rampa: 1’  Tempo di reazione: 15’-20’  Temperatura: 100°C  Pressione: 80 PSI  Stirring: off  Power max: on

Il termine della reazione è controllato mediante T.L.C.

Al grezzo è addizionata acqua ed è successivamente eseguita l’estrazione con AcOEt. La fase organica è seccata su MgSO4 ed eva-

N N R R1 R2 R3 20a: R=R2=OCH3 ; R1=R3=H 20b: R=R1=R2=OCH3 ; R3=H 20c: R=R1=R3=OCH3 ; R2=H 20d: R=OCH3 ; R1=R2=R3=H 20e: R=R3=H ; R1=R2=OCH3 20f: R=R1=R3=H ; R2=OCH3 Caratteristiche chimico-fisiche

Composto R R1 R2 R3 Resa Miscela eluente P.f. (°C) Formula

20a OCH3 H OCH3 H 38% A=3/E=7 205 C21H18N2O2

20b OCH3 OCH3 OCH3 H 22% A=3/E=7 139-144 C22H20N2O3

20c OCH3 OCH3 H OCH3 20% A=3/E=7 150 C22H20N2O3

20d OCH3 H H H 40% A=5/E=5 160 C20H16N2O

20e H OCH3 OCH3 H 54% A=3/E=7 161-163 C21H18N2O2

Caratteristiche spettroscopiche

Composto R R1 R2 R3 1H-NMR (DMSO-d6) ( ,ppm)

20a OCH3 H OCH3 H

8,79 (s, 1H, Ar) 8,26 (s, 1H, Ar) 7,90 (d, 2H, Ar) 7,53-7,68 (m, 4H, Ar) 7.00-7,10 (m, 4H, Ar) 3,82 (s, 6H, OCH3)

20b OCH3 OCH3 OCH3 H

8,82 (s, 1H, Ar) 8,27 (s, 1H, Ar) 7,92 (d, 2H, Ar) 7,56-7,63 (m, 2H, Ar) 7,22-7,31 (m, 2H, Ar) 7,00-7,10 (m, 2H, Ar) 3,87 (s, 3H, OCH3) 3,80 (s, 6H, OCH3)

20c OCH3 OCH3 H OCH3

8,90 (s, 1H, Ar) 8,28 (s, 1H, Ar) 7,93 (d, 2H, Ar) 7,61 (t, 2H, Ar) 7,07-6,68 (m, 2H, Ar) 6,88 (d, 2H, Ar) 6,57 (t, 1H, Ar) 3,88 (s, 6H, OCH3) 20d OCH3 H H H 8,88 (s, 1H, Ar) 8,30 (s, 1H, Ar) 7,93 (d, 2H, Ar) 7,78-7,40 (m, 7H, Ar) 3,80 (s, 3H, -OCH3)

20e H OCH3 OCH3 H

8,84 (s, 1H, Ar) 8,38 (s, 1H, Ar) 7,99 (d, 2H, Ar) 7,62 (s, 2H, Ar) 7,46 (t, 2H, Ar) 7,36-7,22 (m, 3H, Ar) 7,06 (d, 1H, Ar) 3,87 (s, 3H, OCH3) 3,80 (s, 3H, OCH3) 20f H H OCH3 H 8,80 (s, 1H, Ar) 8,38 (s, 1H, Ar) 7,98 (d, 2H, Ar) 7,67-7,32 (m, 7H, Ar) 7,06 (d, 2H, Ar) 3,81 (s, 3H, OCH3)

- 4-(2-(4-idrossifenil)-H-imidazo[1,2-a]piridin-6-il)fenolo, 21a - 4-(2-(4-idrossifenil)-H-imidazo[1,2-a]piridin-6-il)benzene-3,4- diolo, 21b - 4-(2-(4-idrossifenil)-H-imidazo[1,2-a]piridin-6-il)benzene-3,5- diolo, 21c - 4-(2-(4-idrossifenil)-H-imidazo[1,2-a]piridin-6-il)benzene, 21d - 4-(2-fenil-H-imidazo[1,2-a]piridin-6-il)benzene-3,4-diolo, 21e - 3-metossi-4-(2-fenil-H-imidazo[1,2-a]piridin-6-il)fenolo, 21f - 4-(2-fenil-H-imidazo[1,2-a]piridin-6-il)fenolo, 21g

10.00 mmol dell’opportuno metossiderivato 14a-f sono solubilizzati in diclorometano anidro. Alla soluzione risultante è aggiunta goccia a goccia, in atmosfera di azoto e alla temperatura di -15°C, una solu- zione di BBr3 (15.00 mmol). I reagenti sono lasciati reagire a tempera-

tura ambiente, sotto agitazione, per circa 20 ore. Terminata la reazio- ne l’eccesso di BBr3 è degradato con acqua. Il solido è raccolto me-

diante filtrazione sotto vuoto e cristallizzato da opportuno solvente.

N N R1 R2 R3 R 21a: R=R2=OH ; R1=R3=H 21b: R=R1=R2=OH ; R3=H 21c: R=R1=R3=OH ; R2=H 21d: R=OH ; R1=R2=R3=H 21e: R=R3=H ; R1=R2=OH 21f: R=R3=H ; R1=OCH3 ; R2=OH 21g: R=R1=R3=H ; R2=OH

Caratteristiche chimico-fisiche Com- posto R R1 R2 R3 Resa Solv. cri- stal. P.f. (°C) Formula 21a OH H OH H 31% EtOH 335 C19H14N2O2 21b OH OH OH H 26% EtOH 330 C19H14N2O3 21c OH OH H OH 22% --- 360 C19H14N2O3 21d OH H H H 82% --- 315 C19H14N2O 21e H OH OH H 83% EtOH 270 C19H14N2O2 21f H OCH3 OH H 61% MeOH 280 C20H16N2O2 21g H H OH H 44% MeOH 320-325 C19H14N2O

Caratteristiche spettroscopiche Composto R R1 R2 R3 1H-NMR (DMSO-d6) (δ,ppm) 21a OH H OH H 10,15 (s, 1H, OH, exc) 9,85 (s, 1H, OH, exc) 9,10 (s, 1H, Ar) 8,53 (s, 1H, Ar) 8,18 (d, 2H, Ar) 7,90 (d, 2H, Ar) 7,80 (d, 2H, Ar) 7,62 (d, 2H, Ar) 7,00-6,90 (m, 4H, Ar) 21b OH OH OH H 10,15 (s, 1H, OH, exc) 9,40 (s, 1H, OH, exc) 9,20 (s, 1H, OH, exc) 9,05 (s, 1H, Ar) 8,55 (s, 1H, Ar) 8,13 (d, 1H, Ar) 7,90 (d, 1H, Ar) 7,80 (d, 2H, Ar) 7,17-6,90 (m, 5H, Ar) 21c OH OH H OH 10.18 (s, 1H, OH, exc) 9,60 (s, 1H, OH, exc) 9.10 (s, 1H, OH, exc) 8,60 (s, 1H, Ar) 8,10 (d,1H, Ar) 7,95 (d, 1H, Ar) 7,80 (d, 2H, Ar) 7,00 (d, 2H, Ar) 6,60 (s, 2H, Ar) 6,38 (s, 1H, Ar) 21d OH H H H 10,15 (s, 1H, OH, exc) 9,20 (s, 1H, Ar) 8,55 (s, 1H, Ar) 8,20 (d, 1H, Ar) 7,95 (d, 1H, Ar) 7,80 (t, 4H, Ar) 7,60 (t, 2H, Ar) 7,50 (t, 2H, Ar) 7,00 (d, 2H, Ar) 21e H OH OH H 9.45 (s, 1H, OH, exc) 9,30 (s, 1H, OH,exc) 9,08 (s,1H, Ar) 8,73 (s,1H, Ar) 8,12-8,18 (dd, 1H, Ar) 7,94-8,00 (t, 3H, Ar) 7.62 (t, 2H, Ar) 7,53 (t, 1H, Ar) 7,17 (d, 1H, Ar) 7,08 (dd, 1H, Ar) 6,92 (d, 1H, Ar) 21f H OCH3 OH H 8,99 (s, 1H, OH, exc) 8,64 (s, 1H, Ar) 8,14 (d, 1H, Ar) 7,90 (d,3H, Ar) 7,57 (d, 3H, Ar)

7,09 (t, 3H, Ar) 6,90 (d, 1H, Ar) 3,14 (s, 3H, OCH3) 21g H H OH H 9,98 (s, 1H, OH, exc) 9,14 (s, 1H, Ar) 8,74 (s, 1H, Ar) 8,21 (d, 1H, Ar) 7,97 (d, 3H, Ar) 7,61 (t, 5H, Ar) 6,94 (d, 2H, Ar)

BIBLIOGRAFIA

1. Kumar V., Abbas A.K., Fausto N.; “Le basi patologiche delle malattie – patologia generale”, 7a edizione, Elsevier, 107-108.

2. www.airc.it/tumori/tumore.asp

3. Roskoski R. Jr.; “Vascular Endothelial Growth Factor (VEGF) signaling in tumor progression”, Critical Reviews in

Oncology/Hematology, 2007, 62, 179-213.

4. Hoeben A., Landuyt B., Highley M.S., Wildiers H., Van Oosterom A.T., De Bruijn E.A.; “Vascular Endothelial Growth Factor and Angiogenesis”, Pharmacology Reviews, 2004, 56, 549-580.

5. Tonini T., Rossi F., Claudio P.P.; “Molecular basis of angiogenesis and cancer”, Oncogene, 2003, 22, 6549-6556.

6. Hanahan D., Folkman J.; “Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis”, Cell, 1996, 86, 353-364.

7. Liekens S., De Clercq E., Neyts J.; “Angiogenesis: regulators and clinical applications”, Biochemical Pharmacology, 2001, 61, 253-270.

8. Gupta M.K., Qin R-Y; “Mechanism and its regulation of tumor- induced angiogenesis”, World Journal of Gastroenterology,

2003, 9, 1144-1155.

9. Papetti M., Herman I.M.; “Mechanisms of normal and tumor- derived angiogenesis”, American Journal of Physiology Cell

Physiology, 2002, 282, 947-970.

10. Ferrara N., Henzel WJ.; “Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells”, Biochemical and Biophysical Research Communications,

1989, 161, 851-858.

11. Ferrara N.; “Vascular Endothelial Growth Factor: Basic Science and Clinical Progress”, Endocrine Reviews, 2004, 25,581-611.

12. Sato Y.; “Role of Aminopeptidase in Angiogenesis”, Biological

and Pharmaceutical Bulletin, 2004, 27, 772-776.

13. McDonald NQ.,Hendrickson WA.; “A structural superfamily of growth factors containing a cysteine knot motif”, Cell, 1993, 73, 421-424.

14. Tammela T., Enholm B., Alitalo K., Paavonen K.; “The biology of vascular endothelial growth factor”, Cardiovascular

15. Olofsson B., Pajusola K., von Euler G., Chilov D., Alitalo K., Eriksson U.; “Genomic organization of the mouse and human genes for vascular endothelial growth factor B (VEGF-B) and characterization of a second splice isoform”, The Journal of

Biological Chemistry, 1996, 271, 19310-19317.

16. Salven P., Lymboussaki A., Heikkila P. et al.; “Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors”, The American Journal of Pathology, 1998, 153, 103-108.

17. Joukov V., Pajusola K., Kaipainen A. et al; “A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases”, The

EMBO Journal, 1996, 15, 290-298.

18. Lymboussaki A., Olofsson B., Eriksson U., Alitalo K.; “Vascular endothelial growth factor (VEGF) and VEGF-C show overlapping binding sites in embryonic endothelia and distinct sites in differentiated adult endothelia”, Circulation Research,

1999, 85, 992–999.

19. Karkkainen MJ., Haiko P., Sainio K. et al; “Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins”, Nature Immunology, 2004, 5, 74–80.

20. Stacker SA., Stenvers K., Caesar C. et al.; “Biosynthesis of vascular endothelial growth factor-D involves proteolytic

processing which generates non-covalent homodimers”, The

Journal of Biological Chemistry, 1999, 274, 32127–32136.

21. Baldwin ME., Halford MM., Roufail S. et al.; “Vascular endothelial growth factor D is dispensable for development of the lymphatic system”, Molecular and Cellular Biology, 2005, 25, 2441–2449.

22. Nakamura Y., Yasuoka H., Tsujimoto M. et al.; “Prognostic significante of vascular endothelial growth factorDin breast carcinoma with long-term follow-up”, Clinical Cancer Research,

2003, 9, 716–721.

23. Yasuoka H., Nakamura Y., Zuo H. et al.; “VEGF-D expression and lymph vessels play an important role for lymph node metastasis in papillary thyroid carcinoma”, Modern Pathology,

2005, 18, 1127–1133.

24. Funaki H., Nishimura G.; Harada S. et al.; “Expression of vascular endothelial growth factor D is associated with lymph node metastasis in human colorectal carcinoma”, Oncology,

2003, 64, 416–422.

25. Maglione D., Guerriero V., Viglietto G., Delli-Bovi P., Persico MG.; “Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor”, Proceedings of the

26. Maglione D., Guerriero V., Viglietto G. et al.; “Two alternative mRNAs coding for the angiogenic factor, placenta growth factor (PlGF), are transcribed from a single gene of chromosome 14”,

Oncogene, 1993, 8, 925–931.

27. Parr C., Watkins G., Boulton M., Cai J., Jiang WG.; “Placenta growth factor is over-expressed and has prognostic value in human breast cancer”, European Journal of Cancer, 2005, 41, 2819–2827.

28. Robinson C.J., Stringer S.E.; “The splice variants of vascular endothelial growth factor (VEGF) and their receptors”, Journal

of Cell Science, 2001, 114, 853-865.

29. Ferrara N.; “Role of vascular endothelial growth factor in regulation of physiological angiogenesis”, The American Journal

of Physiology-Cell Physiology, 2001, 280, 1358-1366.

30. Takahashi H., Shibuya M.; “The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions”, Clinical Science,

2005, 109, 227-241.

31. Muller Y.A., Li B., Christinger H.W., Wells J.A., Cunningham B.C., De Vos A.M.; “Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site”, Proceedings of the National Academy of

32. Neufeld G., Cohen T., Gengrinovitch S., Poltorak Z.; “Vascular endothelial growth factor (VEGF) and its receptors”, The FASEB

Journal, 1999, 13, 9-22.

33. Ferrara N., Terry D-S.; “The biology of Vascular Endothelial Growth Factor”, Endocrine Reviews, 1997, 18, 4-25.

34. Stuttfeld E., Ballmer-Hofer K.; “Structure and Function of VEGF Receptors”, IUBMB Life, 2009, 61, 915-922.

35. Roskoski R. Jr.; “VEGF receptor protein-tyrosine kinases: Structure and regulation”, Biochemical and Biophysical

Research Communications, 2008, 375, 287-291.

36. Vulpetti A., Bosotti R.; “Sequence and structural analysis of kinase ATP pocket residues”, Il Farmaco, 2004, 59, 759-765.

37. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P.; “L’essenziale di biologia molecolare della cellula”, Zanichelli S.p.A., 2011, 552-561.

38. De Vries C. et al.; “The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor”, Science, 1992, 255, 989- 91.

39. Olofsson B. et al.; “Vascular endothelial growth factor B (VEGF- B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells”, Proceedings of the

National Academy of Sciences of the USA, 1998, 95, 11709-14.

40. Barleon B., et al.; “Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1”, Blood, 1996, 87, 3336-3343.

41. Kendall R.L., Thomas K.A.; “Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor”, Proceeding of the National Academy of Sciences of the

USA, 1993, 90, 10705-10709.

42. Sawano A. et al.; “The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma”, Biochemical and Biophysical Biophys Research

Communications, 1997, 238, 487-491.

43. Ito, N. et al.; “Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules”, The Journal of Biological

Chemistry, 1998, 273, 23410-23418.

44. Ferrara N.; “VEGF and its receptors”, VEGF and Cancer, 2004, 1, 1-11.

45. Bikker J.A., Brooijmans N., Wissner A., Mansour T.S.; “Kinase Domain Mutations in Cancer: Implications for Small Molecule Drug Design Strategies”, Journal of Medicinal Chemistry, 2009, 52, 1493-1509.

46. Günewald F.S., Prota A.E., Giese A., Ballmer-Hofer K.;

“Structure-function analysis of VEGF receptor activation and

the role of coreceptors in angiogenic signaling”, Biochimica et

Biophysica Acta, 2010, 1804, 567-580.

47. Olsson A-K., Dimberg A., Kreuger J., Claesson-Welsh L.; “VEGF receptor signalling – in control of vascular function”, Molecular

Cell Biology, 2006, 7, 359-371.

48. Hughes D.C.; “Alternative splicing of the human VEGFGR- 3/FLT4 gene as a consequence of an integrated human endogenous retrovirus”, Journal of Molecular Evolution, 2001, 53, 77–79.

49. Aprelikova O., Pajusola K., Partanen J., Armstrong E., Alitalo R., Bailey S. K., McMahon J., Wasmuth J., Huebner K., Alitalo K.; “FLT4, a novel class III receptor tyrosine kinase in chromosome 5q33-qter”, Cancer Research, 1992, 52, 746–748.

50. Dixelius J., Mäkinen T., Wirzenius M., Karkkainen M.J., Wernstendt C., Alitalo K., Claesson-Welsh L.; “Ligand-induced Vascular Endothelial Growth Factor Receptor-3 (VEGFR-3) Heterodimerization with VEGFR-2 in Primary Lymphatic

Endothelial Cells Regulates Tyrosine Phosphorylation Sites”,

The Journal of Biological Chemistry, 2003, 278, 40973-40979.

51. Makinen T., Veikkola T., Mustjoki S., Karpanen T., Catimel B., Nice E.C., Wise L., Mercer A., Kowalski H., Kerjaschki D., Stacker S.A., Achen M.G., Alitalo K.; “Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3”, The EMBO

Journal, 2001, 20, 4762−4773.

52. Karar J., Maity A.; “PI3K/AKT/mTOR pathway in angiogenesis”, Frontiers in Molecular Neuroscience, 2011, 4, 1- 8.

53. Keefe S.M., Cohen M.A., Brose M.S; “Targeting Vascular Endothelial Growth Factor Receptor in Thyroid Cancer: The Intracellular and Extracellular Implications”, Clinical Cancer

Research, 2010, 16, 778-783.

54. Ushio-FukaiM., Nakamura Y.; “Reactive Oxygen Species and Angiogenesis: NADPH Oxidase as Target for Cancer Therapy”,

Cancer Letters, 2008, 266, 35-52.

55. Tertil M., Jozkowicz A., Dulak J.; “Oxidative Stress in Tumor Angiogenesis – Therapeutic Targets”, Current Pharmaceutical

56. Kumaran G., Clamp A.R., Jayson G.C.; “Angiogenesi sas a therapeutic target in cancer”, Clinical Medicine, 2008, 8, 455- 458.

57. Folkman J.; “Angiogenesis Inhibitors: a new class of drugs”,

Cancer Biology & Therapy, 2003, 2, 127-133.

58. Ferrara N.; Hillan K.J., Novotny W.; “Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy”, Biochemical and Biophysical Research Communications, 2005, 333, 328-335.

59. Broekman F., Giovannetti E., Peters G.J; “Tyrosine kinase inhibitors: Multi targeted or single targeted?”, World Journal of

Clinical Oncology, 2011, 2, 80-93.

60. Morabito A., De Maio E., Di Maio M., Normanno N., Perrone F.; “Tyrosine Kinase Inhibitors of Vascular Endothelial Growth Factor Receptors in Clinical Trials: Current Status and Future Directions”, The Oncologist, 2006, 11, 753-764.

61. Akinleye A., Avvaru P., Furqan M., Song Y., Liu D.; “Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics”, Journal of hematology & oncology, 2013, 88, 1- 17

62. Wu Z., Fraley M.E., Bilodeau M.T., Kaufman M.L., Tasber E.S., Balitza A.E., Hartman G.D., Coll K.E., Rickert K., Shipman J.,

Shi B., Sepp-Lorenzino L., Thomas K.A.; “Design and synthesis of 3,7-diarylimidazopyridines as inhibitors of the VEGF- receptor KDR”, Bioorganic & Medicinal Chemistry Letters, 2004, 14, 909-912.

63. Kim O., Jeong Y., Lee H., Hong S-S., Hong S.; “Design and Synthesis of Imidazopyridine Analogues as Inhibitors of Phosphoinositide 3-kinase Signaling and Angiogenesis”,

Journal of Medicinal Chemistry, 2011, 54, 2455-2466.

64. Cherian P.T., Koikov L.N., Wortman M.D., Knittel J.J.; “Exploring the PI3K alpha and gamma binding sites with 2,6- disubstituted isonicotinic derivatives.”, Bioorg. Med. Chem.

Lett., 2009, 19, 2215-2219.

65. Lee H., Li G-Y., Jeong Y., Jung K.H., Lee J-H., Ham K., Hong S., Hong S-S.; “A novel imidazopyridine analogue as a phosphatidylinositol 3-kinase inhibitor against human breast cancer”, Cancer Letters, 2012, 318, 68-75.

66. Li G-Y., Jung K.H., Lee H., Son M.K., Seo J., Hong S-W., Jeong Y., Hong S., Hong S-S.; “A novel imidazopyridine derivative, HS- 106, induces apoptotis of breast cancer cells and represses angiogenesis by targeting the PI3K/Mtor pathway”, Cancer

Letters, 2013, 329, 59-67.

67. La Motta C., Sartini S., Mugnaini L., Simorini F., Taliani S., Salerno S., Marini A.M., Da Settimo F., Lavecchia A., Novellino E., Cantore M., Failli P., Ciuffi M.; “Pyrido[1,2-a]pyrimidin-4-

one Derivatives as a Novel Class of Selective Aldose Reductase Inhibitors Exhibiting Antioxidant Activity”, Journal of Medicinal

Chemistry, 50, 2007, 4917-4927.

68. Sharma O.P., Bhat T.K.; “DPPH antioxidant assay revisited”,

Food Chemistry, 1313, 2009, 1202-1205.

69. Burton G., Ingold K.U.; “Vitamin E as an in Vitro and in Vivo Antioxidant”, Annals of THE NEW YORK ACADEMY OF SCIENCES, 1989, 570-572.

70. Ottanà R., Maccari R., Giglio M., Del Corso A., Cappiello M., Mura U., Cosconati S., Marinelli L., Novellino E., Sartini S., La Motta C., Da Settimo F.; “Identification of 5-aryldene-4- thiazolidinone derivatives endowed with dual activity as aldose reductase inhibitors and antioxidant agents for the treatment of diabetic complications”, European Journal of Medicinal

Documenti correlati