• Non ci sono risultati.

In questo lavoro si è scelto di valutare le caratteristiche di stabilità statica latero direzionali del PrandtlPlane PARSIFAL nella configurazione MS-1 attraverso il codice Digital DATCOM. Lo studio di questo particolare problema ha richiesto una verifica dell’applicabilità del metodo alla fattispecie in esame (attraverso un’indagine del codice sorgente) e la definizione di convenzioni specifiche che permettessero la modellazione delle varie componenti caratterizzanti l’aeromobile.

Si è quindi proceduto al calcolo delle derivate aerodinamiche 𝐶𝑁𝛽, 𝐶𝑙𝛽 e 𝐶𝑌𝛽, ottenendo un’ottima stima per la rigidezza in imbardata (𝐶𝑁𝛽) ed una buona stima per le altre due derivate.

In particolare, 𝐶𝑁𝛽 è predetto in modo accurato per la configurazione MS-1 e presenta una deviazione rispetto al risultato ottenuto con la CFD (solutori RANS) prossima al 3%. La valutazione del coefficiente di side-force, 𝐶𝑌𝛽, e dell’effetto diedro, 𝐶𝑙𝛽, per la medesima configurazione è meno accurata ma comunque buona, essendo l’errore commesso nella loro stima contenuto entro il 15%. Per tutte e tre le derivate aerodinamiche valutate, l’errore commesso è in senso conservativo.

In seguito attraverso le convenzioni definite nel capitolo 3 è stato sviluppato un codice in ambiente MATLAB che permettesse di ridefinire la geometria del PARSIFAL al variare, rispetto alla MS-1, dei seguenti parametri:

• La separazione verticale tra ala anteriore e ala posteriore (ℎ𝑏) • L’inclinazione dei fin (𝜑𝑓)

• Freccia anteriore (𝑎) • Freccia posteriore (𝑝) • Diedro anteriore: o Inboard (𝛤𝑎𝑖𝑛) o Outboard (𝛤𝑎𝑜𝑢𝑡) • Diedro posteriore (𝛤𝑝)

Ciò ha permesso di generare 105 configurazioni aerodinamiche differenti. Sono state quindi definite tre differenti condizioni di bilanciamento del peso del velivolo:

• 𝑀𝑇𝑂𝑊 con carburante distribuito equamente tra serbatoio anteriore e serbatoio posteriore • 𝑀𝑇𝑂𝑊 con il 75% del carburante nel serbatoio anteriore e il restante 25% in quello posteriore • 𝐵𝐸𝑊

Con l’utilizzo di un secondo script MATLAB sono state combinate le 105 configurazioni aerodinamiche con le tre condizioni di carico del carburante, ottenendo un dominio composto da 315 configurazioni. È stata automatizzata la procedura di generazione dei file di input al digital DATCOM, la loro analisi e la successiva lettura dei risultati relativi alle derivate 𝐶𝑁𝛽, 𝐶𝑙𝛽 e 𝐶𝑌𝛽.

Lo strumento così realizzato ha dimostrato di poter analizzare molteplici configurazioni con costi computazionali contenuti; in poco più di 4 minuti, con un normale notebook, è possibile generare oltre 300 varianti di velivolo PrP e valutarne per ciascuna le caratteristiche di stabilità latero direzionali.

Sono stati quindi tracciati gli andamenti per le tre derivate aerodinamiche di stabilità in esame, al variare dei parametri geometrici elencati in precedenza. L’analisi dei risultati ottenuti ha evidenziato la loro coerenza con quanto previsto dai modelli tradizionali. È stato inoltre osservato come il contributo principale alla stabilità direzionale sia dato dai piani di coda verticale e come quindi qualsiasi modifica geometrica che comporti un loro aumento di superficie sia benefica in tal senso. Le variazioni di geometria delle paratie verticali hanno invece un effetto trascurabile sulla rigidezza in imbardata, mentre il loro contributo alle variazioni di 𝐶𝑙𝛽, dovuto alle variazioni di angolo diedro (dell’ala anteriore o di quella posteriore) e della separazione verticale tra le ali è paragonabile a quello dovuto all’angolo 𝛤 stesso.

In virtù dei risultati ottenuti e della rapidità di calcolo espressa si ritiene che lo strumento proposto possa essere idoneo per condurre analisi comparative, tra varie configurazioni PrP, mirate in particolare alla valutazione delle caratteristiche di stabilità latero direzionale nelle prime fasi del progetto preliminare. È stato infine analizzato un caso di studio, così da verificare l’applicabilità del modello e delle convenzioni proposte ad altri velivoli caratterizzati dal doppio fin. Si sono quindi valutate, con i medesimi strumenti applicati al caso del PARSIFAL, le caratteristiche di stabilità latero direzionale per il velivolo F/A-18, per poi confrontarle con quanto ottenuto in campagne di prove sperimentali condotte dalla NASA.

Al netto delle incertezze nella modellazione fisica del particolare velivolo e dei valori di rigidezza in imbardata ed effetto diedro estremamente vicini alla neutralità si può affermare che per il velivolo F/A-18:

• Il segno di 𝐶𝑁𝛽, 𝐶𝑙𝛽 e 𝐶𝑌𝛽 è predetto in modo corretto

• L’ordine di grandezza di tutte e tre le derivate è valutato correttamente, in particolare:

o L’accuratezza nella valutazione di 𝐶𝑁𝛽 e 𝐶𝑌𝛽 è paragonabile a quella garantita dalle prove sperimentali e l’errore commesso è conservativo rispetto ad esse

o Il 𝐶𝑙𝛽 per il velivolo in esame è circa 2 ordini di grandezza più piccolo di quello dei velivoli convenzionali e la sua stima è meno accurata, essendo il suo modulo paragonabile alla sensibilità dello strumento impiegato.

Gli andamenti dei coefficienti di forza e di momento relativi alle perturbazioni in sideslip in funzione dell’angolo di incidenza 𝛼, valutati con digital DATCOM, mostrano una buona correlazione con i trend ottenuti sperimentalmente.

Un ampliamento di questo lavoro potrebbe consistere nell’integrare i risultati ottenuti con il metodo qui presentato, con quelli ottenuti con un solutore di tipo Vortex Lattice (come per esempio AVL), il quale permette di ottenere buoni risultati per quanto riguarda le caratteristiche aeromeccaniche afferenti al piano longitudinale. L’analisi congiunta, condotta con entrambi i metodi, permetterebbe di ottenere una caratterizzazione completa delle caratteristiche aeromeccaniche di PARSIFAL con stime rapide e con livelli di accuratezza accettabili in fase di progetto preliminare

Un ulteriore sviluppo di questo lavoro potrebbe consistere nella realizzazione di uno studio di sensibilità, analogo a quello qui presentato, con l’ausilio della CFD (solutori RANS), che analizzando alcune configurazioni PrP chiave potrebbe essere utilizzato per verificare il dominio di applicabilità del metodo proposto.

Appendice

A - Script relativi alla modellazione dei vari componenti dell’aeromobile

Fusoliera:

Ala anteriore:

Fin:

B - File di input per la configurazione MS-1

CASEID Parsifal MS01  Nome della configurazione esaminata

DIM M  Dichiarazione unità di misura Kilo Metro Secondo

DERIV RAD  Dichiarazione unità di misura misure angolari

$FLTCON NMACH=1.0,MACH(1)=0.4,NALPHA=1.,  Condizioni di volo

ALSCHD(1)=0.,RNNUB(1)=4.28E6,

NALT=1.0,ALT(1)=3000.,WT=1.218e+05,GAMMA=0.$

$OPTINS SREF=266.7,CBARR=4.31,BLREF=36.$  Grandezze di riferimento

$SYNTHS XCG=22.7,ZCG=0.64$  Posizione baricentro

$BODY NX=20.0,  Definizione della fusoliera

X(1)=0.,.45,.9,1.8,2.7,3.6,4.5,6.,7.,8.098,18.0,31.098,34., 35.5,37.,38.5,40.,41.5,43.,44.198, S(1)=0.,.59,1.69,4.69,7.95,10.82,13.,16.,17.4,17.55,17.55, 17.55,16.35,14.8,12.9,10.6,8.11,5.49,1.48,.72, P(1)=0.,2.7,4.3,7.7,10.,11.8,13.1,14.5,15.,15.2,15.2,15.2, 14.6,14.,13.5,12.2,11.1,9.9,8.7,7.8, R(1)=0.,.45,.775,1.317,1.735,2.055,2.297,2.563,2.659,2.696, 2.696,2.696,2.621,2.569,2.493,2.391,2.266,2.12,1.95,1.8$ $BODY BNOSE=2.,BLN=8.098,BLA=23.$ $BODY ZU(1)=0.,.422,.696,1.134,1.45,1.675,1.835,2.002,2.061,2.083, 2.083,2.083,1.99,1.87,1.7,1.47,1.2,.858,.194,.1, ZL(1)=0.,-.422,-.696,-1.134,-1.45,-1.675,-1.835,-2.002,-2.061, -2.083,-2.083,-2.083,-1.99,-1.87,-1.7,-1.47,-1.2,-.858, -.194,-.1, ELLIP=0.7726$ $BODY DS=0.19$

$SYNTHS XW=6.69,ZW=-1.17,ALIW=3.87$  Definizione dell’ala anteriore

$WGPLNF

CHRDTP=1.85,SSPNOP=13.34,SSPNE=15.304,SSPN=18.,CHRDBP=5.34,CHRDR=9.29, SAVSI=40.3,SAVSO=40.3,TWISTA=1.5,SSPNDD=13.34,DHDADI=4.963,DHDADO=2.721, TYPE=3.0, CHSTAT=0.$

NACA-W-4-1811

$SYNTHS XH=34.85,ZH=6.96,ALIH=3.67$  Definizione dell’ala posteriore

$HTPLNF SSPNE=18.,SSPN=18.,CHRDR=5.284,SAVSI=-21.94,CHSTAT=0., CHRDTP=1.85,

TWISTA=1.4,SSPNOP=0.0,DHDADI=0.0,DHDADO=0.,TYPE=1.0$ NACA-H-4-1811

$SYNTHS XV=30.77,ZV=1.09,YV=1.9,PHIV=15.0$  Definizione dei fin

$VTPLNF SSPN=5.87,SSPNE=5.47,CHRDTP=2.178,CHRDR=5.57, SAVSI=0.,CHSTAT=1.,TYPE=1.0$

NACA-V-4-0012

$SYNTHS XVF=21.96,YF=18.,ZVF=-0.2353,PHIF=0.$  Definizione paratie

$VFPLNF CHRDTP=1.85,CHRDR=1.85,SSPN=7.195,SSPNE=7.195, SAVSI=37.6,CHSTAT=0.,TYPE=1.0$

C - Modellazione alternativa delle paratie verticali

Riga di codice relativa alla definizione delle paratie verticali come end plate. Sostituisce le righe dalla 40 alla 43 riportate nel paragrafo 0.

D - Output completo dell’analisi relativa alla configurazione MS-1 ottenuto con digital

DATCOM

THIS SOFTWARE AND ANY ACCOMPANYING DOCUMENTATION IS RELEASED "AS IS". THE U.S. GOVERNMENT MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, CONCERNING THIS SOFTWARE AND ANY ACCOMPANYING DOCUMENTATION, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL THE U.S. GOVERNMENT BE LIABLE FOR ANY DAMAGES, INCLUDING LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE, OR INABILITY TO USE, THIS SOFTWARE OR ANY

ACCOMPANYING DOCUMENTATION, EVEN IF INFORMED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES.

****************************************************

* USAF STABILITY AND CONTROL DIGITAL DATCOM *

* PROGRAM REV. JAN 96 DIRECT INQUIRIES TO: *

* WRIGHT LABORATORY (WL/FIGC) ATTN: W. BLAKE *

* WRIGHT PATTERSON AFB, OHIO 45433 *

* PHONE (513) 255-6764, FAX (513) 258-4054 *

**************************************************** 1 CONERR - INPUT ERROR CHECKING

0 ERROR CODES - N* DENOTES THE NUMBER OF OCCURENCES OF EACH ERROR 0 A - UNKNOWN VARIABLE NAME

0 B - MISSING EQUAL SIGN FOLLOWING VARIABLE NAME

0 C - NON-ARRAY VARIABLE HAS AN ARRAY ELEMENT DESIGNATION - (N) 0 D - NON-ARRAY VARIABLE HAS MULTIPLE VALUES ASSIGNED

0 E - ASSIGNED VALUES EXCEED ARRAY DIMENSION 0 F - SYNTAX ERROR

0****************************** INPUT DATA CARDS ****************************** CASEID Parsifal MS01 DIM M DERIV RAD $FLTCON NMACH=1.0,MACH(1)=0.4,NALPHA=1., ALSCHD(1)=0.,RNNUB(1)=4.28E6, NALT=1.0,ALT(1)=3000.,WT=1.195E+06,GAMMA=0.$ $OPTINS SREF=266.7,CBARR=4.31,BLREF=36.$ $SYNTHS XCG=22.7,ZCG=0.64$ $BODY NX=20.0, X(1)=0.,.45,.9,1.8,2.7,3.6,4.5,6.,7.,8.098,18.0,31.098,34., 35.5,37.,38.5,40.,41.5,43.,44.198, S(1)=0.,.59,1.69,4.69,7.95,10.82,13.,16.,17.4,17.55,17.55, 17.55,16.35,14.8,12.9,10.6,8.11,5.49,1.48,.72, P(1)=0.,2.7,4.3,7.7,10.,11.8,13.1,14.5,15.,15.2,15.2,15.2, 14.6,14.,13.5,12.2,11.1,9.9,8.7,7.8, R(1)=0.,.45,.775,1.317,1.735,2.055,2.297,2.563,2.659,2.696, 2.696,2.696,2.621,2.569,2.493,2.391,2.266,2.12,1.95,1.8$ $BODY BNOSE=2.,BLN=8.098,BLA=23.$ $BODY ZU(1)=0.,.422,.696,1.134,1.45,1.675,1.835,2.002,2.061,2.083, 2.083,2.083,1.99,1.87,1.7,1.47,1.2,.858,.194,.1, ZL(1)=0.,-.422,-.696,-1.134,-1.45,-1.675,-1.835,-2.002,-2.061, -2.083,-2.083,-2.083,-1.99,-1.87,-1.7,-1.47,-1.2,-.858, -.194,-.1, ELLIP=0.7726$ $BODY DS=0.19$ $SYNTHS XW=6.69,ZW=-1.17,ALIW=3.87$ $WGPLNF CHRDTP=1.85,SSPNOP=13.34,SSPNE=15.304,SSPN=18.,CHRDBP=5.34,CHRDR=9.29, SAVSI=40.3,SAVSO=40.3,TWISTA=1.5,SSPNDD=13.34,DHDADI=4.963,DHDADO=2.721, TYPE=3.0, CHSTAT=0.$ NACA-W-4-1811 $SYNTHS XH=34.85,ZH=6.96,ALIH=3.67$ $HTPLNF SSPNE=18.,SSPN=18.,CHRDR=5.284,SAVSI=-21.94,CHSTAT=0., CHRDTP=1.85, TWISTA=1.4,SSPNOP=0.0,DHDADI=0.0,DHDADO=0.,TYPE=1.0$ NACA-H-4-1811 $SYNTHS XV=30.77,ZV=1.09,YV=1.9,PHIV=15.0$ $VTPLNF SSPN=5.87,SSPNE=5.47,CHRDTP=2.178,CHRDR=5.57, SAVSI=0.,CHSTAT=1.,TYPE=1.0$

NACA-V-4-0012 $SYNTHS XVF=21.96,YF=18.,ZVF=-0.2353,PHIF=0.$ $VFPLNF CHRDTP=1.85,CHRDR=1.85,SSPN=7.195,SSPNE=7.195, SAVSI=37.6,CHSTAT=0.,TYPE=1.0$ NACA-F-4-0014 1 THE FOLLOWING IS A LIST OF ALL INPUT CARDS FOR THIS CASE.

0 CASEID Parsifal MS01 DIM M DERIV RAD $FLTCON NMACH=1.0,MACH(1)=0.4,NALPHA=1., ALSCHD(1)=0.,RNNUB(1)=4.28E6, NALT=1.0,ALT(1)=3000.,WT=1.195E+06,GAMMA=0.$ $OPTINS SREF=266.7,CBARR=4.31,BLREF=36.$ $SYNTHS XCG=22.7,ZCG=0.64$ $BODY NX=20.0, X(1)=0.,.45,.9,1.8,2.7,3.6,4.5,6.,7.,8.098,18.0,31.098,34., 35.5,37.,38.5,40.,41.5,43.,44.198, S(1)=0.,.59,1.69,4.69,7.95,10.82,13.,16.,17.4,17.55,17.55, 17.55,16.35,14.8,12.9,10.6,8.11,5.49,1.48,.72, P(1)=0.,2.7,4.3,7.7,10.,11.8,13.1,14.5,15.,15.2,15.2,15.2, 14.6,14.,13.5,12.2,11.1,9.9,8.7,7.8, R(1)=0.,.45,.775,1.317,1.735,2.055,2.297,2.563,2.659,2.696, 2.696,2.696,2.621,2.569,2.493,2.391,2.266,2.12,1.95,1.8$ $BODY BNOSE=2.,BLN=8.098,BLA=23.$ $BODY ZU(1)=0.,.422,.696,1.134,1.45,1.675,1.835,2.002,2.061,2.083, 2.083,2.083,1.99,1.87,1.7,1.47,1.2,.858,.194,.1, ZL(1)=0.,-.422,-.696,-1.134,-1.45,-1.675,-1.835,-2.002,-2.061, -2.083,-2.083,-2.083,-1.99,-1.87,-1.7,-1.47,-1.2,-.858, -.194,-.1, ELLIP=0.7726$ $BODY DS=0.19$ $SYNTHS XW=6.69,ZW=-1.17,ALIW=3.87$ $WGPLNF CHRDTP=1.85,SSPNOP=13.34,SSPNE=15.304,SSPN=18.,CHRDBP=5.34,CHRDR=9.29, SAVSI=40.3,SAVSO=40.3,TWISTA=1.5,SSPNDD=13.34,DHDADI=4.963,DHDADO=2.721, TYPE=3.0, CHSTAT=0.$ NACA-W-4-1811 $SYNTHS XH=34.85,ZH=6.96,ALIH=3.67$ $HTPLNF SSPNE=18.,SSPN=18.,CHRDR=5.284,SAVSI=-21.94,CHSTAT=0., CHRDTP=1.85, TWISTA=1.4,SSPNOP=0.0,DHDADI=0.0,DHDADO=0.,TYPE=1.0$ NACA-H-4-1811 $SYNTHS XV=30.77,ZV=1.09,YV=1.9,PHIV=15.0$ $VTPLNF SSPN=5.87,SSPNE=5.47,CHRDTP=2.178,CHRDR=5.57, SAVSI=0.,CHSTAT=1.,TYPE=1.0$ NACA-V-4-0012 $SYNTHS XVF=21.96,YF=18.,ZVF=-0.2353,PHIF=0.$ $VFPLNF CHRDTP=1.85,CHRDR=1.85,SSPN=7.195,SSPNE=7.195, SAVSI=37.6,CHSTAT=0.,TYPE=1.0$

NACA-F-4-0014 0 INPUT DIMENSIONS ARE IN M , SCALE FACTOR IS 1.0000

0*** WARNING *** WING NOT STRAIGHT TAPERED. UNIFORM SECTION ASSUMED. 1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

WING SECTION DEFINITION

0 IDEAL ANGLE OF ATTACK = -.50448 DEG. ZERO LIFT ANGLE OF ATTACK = -1.74511 DEG. IDEAL LIFT COEFFICIENT = .15389 ZERO LIFT PITCHING MOMENT COEFFICIENT = -.05664

MACH ZERO LIFT-CURVE-SLOPE = .09684 /DEG. LEADING EDGE RADIUS = .01333 FRACTION CHORD

MAXIMUM AIRFOIL THICKNESS = .11000 FRACTION CHORD

DELTA-Y = 2.90490 PERCENT CHORD

0 MACH= .4000 LIFT-CURVE-SLOPE = .11802 /DEG. XAC = .25835

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

HORIZONTAL TAIL SECTION DEFINITION

0 IDEAL ANGLE OF ATTACK = -.50448 DEG. ZERO LIFT ANGLE OF ATTACK = -1.74511 DEG. IDEAL LIFT COEFFICIENT = .15389 ZERO LIFT PITCHING MOMENT COEFFICIENT = -.05664

MACH ZERO LIFT-CURVE-SLOPE = .09684 /DEG. LEADING EDGE RADIUS = .01333 FRACTION CHORD

MAXIMUM AIRFOIL THICKNESS = .11000 FRACTION CHORD

DELTA-Y = 2.90490 PERCENT CHORD

0 MACH= .4000 LIFT-CURVE-SLOPE = .11752 /DEG. XAC = .25839

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

VERTICAL TAIL SECTION DEFINITION

0 IDEAL ANGLE OF ATTACK = .00000 DEG. ZERO LIFT ANGLE OF ATTACK = .00000 DEG. IDEAL LIFT COEFFICIENT = .00000 ZERO LIFT PITCHING MOMENT COEFFICIENT = .00000

MACH ZERO LIFT-CURVE-SLOPE = .09596 /DEG. LEADING EDGE RADIUS = .01587 FRACTION CHORD

MAXIMUM AIRFOIL THICKNESS = .12000 FRACTION CHORD

DELTA-Y = 3.16898 PERCENT CHORD

0 MACH= .4000 LIFT-CURVE-SLOPE = .11696 /DEG. XAC = .25875

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

VENTRAL FIN SECTION DEFINITION

0 IDEAL ANGLE OF ATTACK = .00000 DEG. ZERO LIFT ANGLE OF ATTACK = .00000 DEG. IDEAL LIFT COEFFICIENT = .00000 ZERO LIFT PITCHING MOMENT COEFFICIENT = .00000

MACH ZERO LIFT-CURVE-SLOPE = .09427 /DEG. LEADING EDGE RADIUS = .02160 FRACTION CHORD

MAXIMUM AIRFOIL THICKNESS = .14000 FRACTION CHORD

DELTA-Y = 3.69714 PERCENT CHORD

0 MACH= .4000 LIFT-CURVE-SLOPE = .11312 /DEG. XAC = .26024

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP

DATCOM BODY ALONE CONFIGURATION

Parsifal MS01

--- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

0 --- ---DERIVATIVE (PER RADIAN)---

0 ALPHA CD CL CM CN CA XCP CLA CMA CYB CNB CLB

0

.0 .006 .000 .0000 .000 .006 ****** 1.570E-01 7.209E-01 -1.570E-01 -8.631E-02 0.000E+00

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP WING ALONE CONFIGURATION Parsifal MS01 --- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

0 --- ---DERIVATIVE (PER RADIAN)---

0 ALPHA CD CL CM CN CA XCP CLA CMA CYB CNB CLB

0

.0 .005 .126 .1757 .126 .005 1.398 1.860E+00 2.893E+00 -1.735E-02 1.495E-03 -2.479E-02

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP HORIZONTAL TAIL CONFIGURATION Parsifal MS01 --- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

0 --- ---DERIVATIVE (PER RADIAN)---

0 ALPHA CD CL CM CN CA XCP CLA CMA CYB CNB CLB

0

.0 .008 .259 -.6202 .259 .008 -2.395 2.366E+00 -5.544E+00 1.863E-04 3.434E-03 4.308E-02

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP VERTICAL TAIL CONFIGURATION Parsifal MS01 --- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

0 --- ---DERIVATIVE (PER RADIAN)---

0 ALPHA CD CL CM CN CA XCP CLA CMA CYB CNB CLB

0

.0 .001 .000 .0000 .000 NDM ****** 0.000E+00 0.000E+00 -5.961E-01 1.747E-01 -4.895E-02

0*** NDM PRINTED WHEN NO DATCOM METHODS EXIST

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP VENTRAL FIN CONFIGURATION Parsifal MS01 --- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

0 --- ---DERIVATIVE (PER RADIAN)---

0 ALPHA CD CL CM CN CA XCP CLA CMA CYB CNB CLB

0

.0 .000 .000 .0000 .000 NDM ****** 0.000E+00 0.000E+00 -1.259E-01 -9.706E-04 1.400E-02

0*** NDM PRINTED WHEN NO DATCOM METHODS EXIST

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP WING-BODY CONFIGURATION Parsifal MS01 --- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

0 --- ---DERIVATIVE (PER RADIAN)---

0 ALPHA CD CL CM CN CA XCP CLA CMA CYB CNB CLB

0

.0 .011 .167 .2113 .167 .011 1.264 0.000E+00 0.000E+00 -2.087E-01 -6.939E-02 -9.394E-02

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP BODY-HORIZONTAL TAIL CONFIGURATION Parsifal MS01 --- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

0 --- ---DERIVATIVE (PER RADIAN)---

0 ALPHA CD CL CM CN CA XCP CLA CMA CYB CNB CLB

0

.0 .014 .259 -.6083 .259 .014 -2.349 0.000E+00 0.000E+00 -1.#IOE+00 -6.939E-02 3.683E-02

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP

BODY-VERTICAL TAIL-VENTRAL FIN CONFIGURATION

Parsifal MS01

--- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

0 --- ---DERIVATIVE (PER RADIAN)---

0 ALPHA CD CL CM CN CA XCP CLA CMA CYB CNB CLB

0

.0 .007 .000 .0000 .000 .007 ****** 1.570E-01 7.209E-01 -8.789E-01 8.738E-02 -3.496E-02

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP WING-BODY-HORIZONTAL TAIL CONFIGURATION Parsifal MS01 --- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

0 --- ---DERIVATIVE (PER RADIAN)---

0 ALPHA CD CL CM CN CA XCP CLA CMA CYB CNB CLB

0

.0 NDM NDM NDM NDM NDM NDM NDM NDM -2.085E-01 -6.596E-02 -5.086E-02

0NOTE - CANARD CONFIGURATION EFFECTIVE EPSOLN AND D(EPSOLN)/D(ALPHA) ARE AVAILABLE AS PARTIAL OUTPUT AND IN THE FACT ARRAY

0*** NDM PRINTED WHEN NO DATCOM METHODS EXIST

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP

WING-BODY-VERTICAL TAIL-VENTRAL FIN CONFIGURATION

Parsifal MS01

--- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

0 --- ---DERIVATIVE (PER RADIAN)---

0 ALPHA CD CL CM CN CA XCP CLA CMA CYB CNB CLB

0

.0 NDM NDM NDM NDM NDM NDM NDM NDM -9.307E-01 1.043E-01 -1.289E-01

0*** NDM PRINTED WHEN NO DATCOM METHODS EXIST

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP

WING-BODY-HORIZONTAL TAIL-VERTICAL TAIL- VENTRAL FIN CONFIGURATION

Parsifal MS01

--- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

0 --- ---DERIVATIVE (PER RADIAN)---

0 ALPHA CD CL CM CN CA XCP CLA CMA CYB CNB CLB

0

.0 NDM NDM NDM NDM NDM NDM NDM NDM -9.305E-01 1.077E-01 -8.582E-02

0NOTE - CANARD CONFIGURATION EFFECTIVE EPSOLN AND D(EPSOLN)/D(ALPHA) ARE AVAILABLE AS PARTIAL OUTPUT AND IN THE FACT ARRAY

0*** NDM PRINTED WHEN NO DATCOM METHODS EXIST 0*** VEHICLE WEIGHT = ********* N.

0*** LEVEL FLIGHT LIFT COEFFICIENT = 2.53785

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CONFIGURATION AUXILIARY AND PARTIAL OUTPUT

WING-BODY-VERTICAL TAIL-HORIZONTAL TAIL CONFIGURATION

Parsifal MS01

--- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

BASIC BODY PROPERTIES WETTED AREA XCG ZCG BASE AREA ZERO LIFT DRAG BASE DRAG FRICTION DRAG PRESSURE DRAG

.5970E+03 22.70 .64 5.2650 .5800E-02 .1184E-02 .4616E-02 NA

XCG RELATIVE TO THEORETICAL LEADING EDGE MAC= 10.18

BASIC PLANFORM PROPERTIES

TAPER ASPECT QUARTER CHORD QUARTER CHORD ZERO LIFT FRICTION

AREA RATIO RATIO SWEEP MAC X(MAC) Y(MAC) DRAG COEFFICIENT

0 WING

THEORITICAL INBOARD

+ .6818E+02 .575 .1371E+02 32.463 .749E+01 .104E+02 .212E+01

EXPOSED INBOARD

+ .2425E+02 .762 .6364E+00 32.463 .621E+01 .113E+02 .363E+01 .252E-02

OUTBOARD

+ .9591E+02 .346 .7421E+01 38.049 .388E+01 .141E+02 .755E+01 .271E-02

TOTAL THEORITICAL

+ .1641E+03 .199 .7898E+01 35.820 .538E+01 .139E+02 .687E+01

TOTAL EXPOSED

+ .1202E+03 .264 .7797E+01 36.981 .435E+01 .153E+02 .892E+01 .294E-02 NA

0 HORIZONTAL TAIL TOTAL THEORITICAL

+ .1284E+03 .350 .1009E+02 -24.252 .384E+01 .328E+02 .756E+01

TOTAL EXPOSED

+ .1284E+03 .350 .1009E+02 -24.252 .384E+01 .328E+02 .756E+01 .328E-02 .272E-02

0 VERTICAL TAIL TOTAL THEORITICAL

+ .2274E+02 .391 .1515E+01 23.431 .412E+01 .332E+02 .360E+01

TOTAL EXPOSED

+ .2056E+02 .408 .1455E+01 23.431 .398E+01 .334E+02 .275E+01 .531E-03 .270E-02

0 VENTRAL FIN TOTAL THEORITICAL

+ .1331E+02 1.000 .3889E+01 .000 .185E+01 .224E+02 .336E+01

TOTAL EXPOSED

+ .1331E+02 1.000 .3889E+01 .000 .185E+01 .224E+02 .360E+01 .406E-03 .305E-02

0*** NA PRINTED WHEN METHOD NOT APPLICABLE

1 AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM

CONFIGURATION AUXILIARY AND PARTIAL OUTPUT WING-BODY-VERTICAL TAIL-HORIZONTAL TAIL CONFIGURATION Parsifal MS01 --- FLIGHT CONDITIONS --- --- REFERENCE DIMENSIONS ---

MACH ALTITUDE VELOCITY PRESSURE TEMPERATURE REYNOLDS REF. REFERENCE LENGTH MOMENT REF. CENTER

NUMBER NUMBER AREA LONG. LAT. HORIZ VERT

M M/SEC N/ M**2 DEG K 1/ M M**2 M M M M

0 .400 3000.00 131.42 7.0121E+04 268.659 4.2800E+06 266.700 4.310 36.000 22.700 .640

0 CLA-B(W)= 6.807E-03 CLA-W(B)= 3.636E-02 K-B(W)= 2.096E-01 K-W(B)= 1.120E+00 XAC/C-B(W)= 9.139E-01

0 CLA-B(H)= 1.000E-30 CLA-H(B)= 1.000E-30 K-B(H)= 1.000E-30 K-H(B)= 1.000E-30 XAC/C-B(H)= 3.065E-01

0 SIDEWASH, (1 + D(SIGMA)/D(BETA))QV/Q = 1.1582172E+00

ALPHA IV-B(W) IV-W(H) IV-B(H) GAMMA/ GAMMA/

2*PI*ALPHA*V*R (2*PI*ALPHA*V*R)T .000 .0000E+01 NDM .0000E+01 .0000E+01 NDM CANARD EFFECTIVE DOWNWASH ALPHA (EPSOLN)EFF. D(EPSOLN)/D(ALPHA) EFF. .000 NDM NDM

0*** NDM PRINTED WHEN NO DATCOM METHODS EXIST 1

1 END OF JOB.

E – File di input per il velivolo F/A-18 in configurazione FE

CASEID F/A 18 DIM M DERIV RAD $FLTCON NMACH=1.0,MACH(1)=0.45,NALPHA=1., ALSCHD(1)=5.,RNNUB(1)=4.28E6, NALT=1.0,ALT(1)=10000.,WT=142294.,GAMMA=0.$ $OPTINS SREF=37.16,CBARR=3.464,BLREF=11.4$ $SYNTHS XCG=9.93,ZCG=0.59$ $BODY NX=20.0, X(1)=0.,.508,1.27,2.03,2.794,3.556,4.42,5.08,5.84,6.60,8.128,8.89,9.058,9.324 ,10.67, 12.7,13.97,15.24,16.49,17.07, R(1)=0.,.209,.378,.443,.481,.511,.535,.521,.560,.591, .588,.745,.779,.834,1.109,1.112,1.121,1.08,0.994,0.792$ $BODY BNOSE=1.$ $BODY ZU(1)=0.,.247,.505,0.718,0.907,1.139,1.515,1.724,1.846,1.84, 1.548,1.347,1.333,1.315,1.207,0.988,0.811,.661,.606,.438, ZL(1)=0.,-.189,-.277,-0.295,-0.304,-0.312,-0.325,-0.337,-0.352, -0.367,-0.395,-0.405,-0.408,-0.513,-0.576,-0.612,-0.558,-.448, -.285,-.105$ $SYNTHS XW=2.95,ZW=0.665,ALIW=2.$ $WGPLNF CHRDTP=1.809,SSPNOP=4.28,SSPNE=5.25,SSPN=5.7,CHRDBP=4.126,CHRDR=9.90, SAVSI=76.35,SAVSO=25.23,TWISTA=4.,DHDADI=-3.,DHDADO=-3.,SSPNDD=4.28, TYPE=3.0, CHSTAT=0.$ NACA-W-6-65A003 $SYNTHS XH=12.91,ZH=0.08,ALIH=0.$

$HTPLNF SSPNE=2.28,SSPN=3.36,CHRDR=3.23,SAVSI=46.66,CHSTAT=0., CHRDTP=1.18,

TWISTA=0.,SSPNOP=0.0,DHDADI=-2.,DHDADO=-2.,TYPE=1.0$ NACA-H-6-65A003

$SYNTHS XV=12.1, ZV=0.335, YV=0.754, PHIV=19.3$

$VTPLNF CHRDTP=1.128, SSPNE=2.41, SSPN=2.76, CHRDR=3.22, SAVSI=42.42, CHSTAT=0., TYPE=1.0$

NACA-V-4-0012

F - Output completo dell’analisi relativa al velivolo F/A-18 ottenuto con digital DATCOM

THIS SOFTWARE AND ANY ACCOMPANYING DOCUMENTATION IS RELEASED "AS IS". THE U.S. GOVERNMENT MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, CONCERNING THIS SOFTWARE AND ANY ACCOMPANYING DOCUMENTATION, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL THE U.S. GOVERNMENT BE LIABLE FOR ANY DAMAGES, INCLUDING LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE, OR INABILITY TO USE, THIS SOFTWARE OR ANY

ACCOMPANYING DOCUMENTATION, EVEN IF INFORMED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES.

****************************************************

* USAF STABILITY AND CONTROL DIGITAL DATCOM *

* PROGRAM REV. JAN 96 DIRECT INQUIRIES TO: *

* WRIGHT LABORATORY (WL/FIGC) ATTN: W. BLAKE *

* WRIGHT PATTERSON AFB, OHIO 45433 *

* PHONE (513) 255-6764, FAX (513) 258-4054 *

**************************************************** 1 CONERR - INPUT ERROR CHECKING

0 ERROR CODES - N* DENOTES THE NUMBER OF OCCURENCES OF EACH ERROR 0 A - UNKNOWN VARIABLE NAME

0 B - MISSING EQUAL SIGN FOLLOWING VARIABLE NAME

0 C - NON-ARRAY VARIABLE HAS AN ARRAY ELEMENT DESIGNATION - (N) 0 D - NON-ARRAY VARIABLE HAS MULTIPLE VALUES ASSIGNED

0 E - ASSIGNED VALUES EXCEED ARRAY DIMENSION 0 F - SYNTAX ERROR

0****************************** INPUT DATA CARDS ****************************** CASEID F/A 18 DIM M DERIV RAD $FLTCON NMACH=1.0,MACH(1)=0.45,NALPHA=1., ALSCHD(1)=5.,RNNUB(1)=4.28E6, NALT=1.0,ALT(1)=10000.,WT=142294.,GAMMA=0.$ $OPTINS SREF=37.16,CBARR=3.464,BLREF=11.4$ $SYNTHS XCG=9.93,ZCG=0.59$ $BODY NX=20.0, X(1)=0.,.508,1.27,2.03,2.794,3.556,4.42,5.08,5.84,6.60,8.128,8.89,9.058,9.324 , 10.67, 12.7,13.97,15.24,16.49,17.07, R(1)=0.,.209,.378,.443,.481,.511,.535,.521,.560,.591, .588,.745,.779,.834,1.109,1.112,1.121,1.08,0.994,0.792$ $BODY BNOSE=1.$ $BODY ZU(1)=0.,.247,.505,0.718,0.907,1.139,1.515,1.724,1.846,1.84, 1.548,1.347,1.333,1.315,1.207,0.988,0.811,.661,.606,.438, ZL(1)=0.,-.189,-.277,-0.295,-0.304,-0.312,-0.325,-0.337,-0.352, -0.367,-0.395,-0.405,-0.408,-0.513,-0.576,-0.612,-0.558,-.448, -.285,-.105$ $SYNTHS XW=2.95,ZW=0.665,ALIW=2.$ $WGPLNF CHRDTP=1.809,SSPNOP=4.28,SSPNE=5.25,SSPN=5.7,CHRDBP=4.126,CHRDR=9.90, SAVSI=76.35,SAVSO=25.23,TWISTA=4.,DHDADI=-3.,DHDADO=-3.,SSPNDD=4.28, TYPE=3.0, CHSTAT=0.$ NACA-W-6-65A003 $SYNTHS XH=12.91,ZH=0.08,ALIH=0.$ $HTPLNF SSPNE=2.28,SSPN=3.36,CHRDR=3.23,SAVSI=46.66,CHSTAT=0., CHRDTP=1.18, TWISTA=0.,SSPNOP=0.0,DHDADI=-2.,DHDADO=-2.,TYPE=1.0$ NACA-H-6-65A003 $SYNTHS XV=12.1, ZV=0.335, YV=0.754, PHIV=19.3$ $VTPLNF CHRDTP=1.128, SSPNE=2.41, SSPN=2.76, CHRDR=3.22, SAVSI=42.42, CHSTAT=0., TYPE=1.0$ NACA-V-4-0012 1 THE FOLLOWING IS A LIST OF ALL INPUT CARDS FOR THIS CASE.

0

CASEID F/A 18 DIM M

DERIV RAD $FLTCON NMACH=1.0,MACH(1)=0.45,NALPHA=1., ALSCHD(1)=5.,RNNUB(1)=4.28E6, NALT=1.0,ALT(1)=10000.,WT=142294.,GAMMA=0.$ $OPTINS SREF=37.16,CBARR=3.464,BLREF=11.4$ $SYNTHS XCG=9.74,ZCG=0.59$ $BODY NX=20.0, X(1)=0.,.508,1.27,2.03,2.794,3.556,4.42,5.08,5.84,6.60,8.128,8.89,9.058,9.324 , 10.67, 12.7,13.97,15.24,16.49,17.07, R(1)=0.,.209,.378,.443,.481,.511,.535,.521,.560,.591, .588,.745,.779,.834,1.109,1.112,1.121,1.08,0.994,0.792$ $BODY BNOSE=1.$ $BODY ZU(1)=0.,.247,.505,0.718,0.907,1.139,1.515,1.724,1.846,1.84, 1.548,1.347,1.333,1.315,1.207,0.988,0.811,.661,.606,.438, ZL(1)=0.,-.189,-.277,-0.295,-0.304,-0.312,-0.325,-0.337,-0.352, -0.367,-0.395,-0.405,-0.408,-0.513,-0.576,-0.612,-0.558,-.448, -.285,-.105$ $SYNTHS XW=2.95,ZW=0.665,ALIW=2.$ $WGPLNF CHRDTP=1.809,SSPNOP=4.28,SSPNE=5.25,SSPN=5.7,CHRDBP=4.126,CHRDR=9.90, SAVSI=76.35,SAVSO=25.23,TWISTA=4.,DHDADI=-3.,DHDADO=-3.,SSPNDD=4.28, TYPE=3.0, CHSTAT=0.$ NACA-W-6-65A003 $SYNTHS XH=12.91,ZH=0.08,ALIH=0.$ $HTPLNF SSPNE=2.28,SSPN=3.36,CHRDR=3.23,SAVSI=46.66,CHSTAT=0.,

Documenti correlati