• Non ci sono risultati.

Di fronte a un bambino con bassa statura è necessaria un’accurata valutazione clinica che, se necessario, deve essere completata con le opportune indagini endocrine e genetiche al fine di identificare forme in cui è disponibile un’efficace terapia.

Alla luce di quanto emerso dai dati di questa tesi e dal confronto con quelli della letteratura, il razionale di una ricerca dell’aploinsufficienza del gene SHOX in bambini con bassa statura idiopatica, specie se disarmonica, deriva dalla sua relativa elevata frequenza. Una più diffusa conoscenza di questa patologia e l’introduzione di nuove tecniche di genetica molecolare hanno permesso un aumento della sensibilità diagnostica, tanto che ad oggi l’aploinsufficienza del gene è considerata la più frequente causa monogenica di ipostaturalità. I dati ottenuti in questa tesi dimostrano un’incidenza del 12,1%, che rientra nel range riscontrato anche in altri studi (Tabella 10). Tuttavia, questi risultati sono verosimilmente i più corrispondenti alla realtà in quanto si tratta di un’ampia casistica di pazienti selezionati mediante criteri omogenei e sui quali l’analisi mutazionale è stata effettuata mediante una combinazione di tecniche genetiche che permettono di rilevare sia le mutazioni puntiformi che delezioni/microduplicazioni del gene e/o delle regioni regolatorie. A questo proposito, un dato innovativo è rappresentato dall’elevata frequenza di mutazioni puntiformi di SHOX nella popolazione esaminata rispetto ai dati della letteratura, nella quale sono più frequentemente rilevate delezioni (Tabella 10). Sono state identificate 9 varianti de novo. Nel loro insieme, questi dati suggeriscono un probabile diverso background genetico nella popolazione italiana per quanto riguarda le mutazioni di SHOX, ma tale rilievo dovrà essere approfondito con un

73

ampliamento della casistica. I dati di questa tesi confermano, inoltre, la variabile espressività clinica dell’aploinsufficienza di SHOX che può presentarsi solo con ipostaturalità più o meno grave, senza significativi ritardi dell’età ossea o alterate proporzioni corporee. Il follow-up a 2 anni di un sottogruppo di pazienti trattati con rGH, ha dimostrato un’evidente efficacia di questa terapia nell’incrementare la velocità di crescita e ridurre pertanto il deficit staturale. La risposta alla terapia sembra dipendere da una serie di variabili (età di inizio del trattamento, dose, anni di terapia, età di inizio e durata dello sviluppo puberale), ma solo il follow-up fino al raggiungimento della statura adulta potrà meglio definire il loro impatto sui risultati del trattamento. Nel futuro, un ulteriore caratterizzazione dei pathway SHOX-correlati potrà consentire l’introduzione di nuove strategie terapeutiche mirate a una correzione eziopatogenetica dei disordini da aploinsufficienza del gene SHOX.

74

BIBLIOGRAFIA

1. Bartolozzi G. Pediatria. Principi e pratica clinica. 4.a ed. Milano: Edra; 2013.

2. Keane V. Valutazione della crescita. In: Kliegman RM, Stanton BMD, Geme JS, Schor NF, Behrman RE, eds. Pediatria di Nelson. 19a ed. Milano: Elsevier; 2013: 42.

3. Picca M, Pierattelli M. I bilanci di salute. Milano: Tecniche Nuove; 2016.

4. Bernasconi S, Iughetti L, Ghizzoni L. Endocrinologia pediatrica. MIlano: McGraw-Ill libri Italia; 2000.

5. Bartolozzi C. Crescita e sviluppo. In: Bartolozzi G, ed. Pediatria Principi e pratica clinica. 4.a ed. Milano: Edra; 2013: 275-93.

6. Picca M, Bernasconi S, Pierattelli M, al.]. La valutazione auxologica in età evolutiva. in età evolutiva Sintesi del Documento di consenso intersocietario SICuPP, SIEDP, SIP. Area pediatrica 2018; 19(1): 33-7. 7. Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Archives of disease in childhood 1970; 45(239): 13-23. 8. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Archives of disease in childhood 1969; 44(235): 291-303.

9. Greulich WW, Pyle SI. Radiographic Atlas of Skeletal Development

of the Hand and Wrist: Stanford University Press; 1959.

10. Tanner JM, Healy MJR, Cameron N, Goldstein H. Assessment of Skeletal Maturity and Prediction of Adult Height (TW3 Method). 3rd ed. Philadelphia: Saunders; 2001.

11. Grimberg A, Lifshitz F. Growth and growth disorders. In: Lifshitz F, ed. Pediatric Endocrinology. 5th ed. Boca Raton: CRC Press; 2006: 1-49.

75

12. Organization WH, Health WHONf, Development. WHO Child

Growth Standards: Growth Velocity Based on Weight, Length and Head Circumference : Methods and Development. Geneva: World Health Organization, Department of Nutrition for Health and Development; 2009. 13. Ranke MB. The KIGS aetiology classification system. In: Ranke MB, Price DA, Reiter EO, eds. Growth Hormone Therapy in Pediatrics: 20 Years of KIGS. Basel: Karger; 2007: 29-37.

14. Bertelloni S. L’ipostaturalità. Il Pediatra 2015: 20-34.

15. Burgio GR, Perinotto G. Pediatria essenziale. 3a ed. Torino: UTET; 1991.

16. Ogata T, Matsuo N, Nishimura G. SHOX haploinsufficiency and overdosage: impact of gonadal function status. Journal of medical genetics 2001; 38(1): 1-6.

17. Bhangoo A, Anhalt H, Rosenfeld RG. Idiopathic short stature. In: Lifshitz F, ed. Pediatric Endocrinology. 5th ed. Boca Raton: CRC Press; 2006: 51-63.

18. Simi F, D’i Mauro D, Saggese G. Terapia con ormone della crescita in età pediatrica. Importanza delle dosi nelle varie indicazioni. Pediatria preventiva & sociale 2016; XI: 10-4.

19. Wit JM, Ranke MB, Albertsson-Wikland K, et al. Personalized approach to growth hormone treatment: clinical use of growth prediction models. Hormone research in paediatrics 2013; 79(5): 257-70.

20. AIFA. Modifica alla nota AIFA 39 cui alla determina del 29 luglio 2010 (Determina n. 616/2014). 2014 (accessed 09.2018.

21. Ranke MB, Lindberg A, Mullis PE, et al. Towards optimal treatment with growth hormone in short children and adolescents: evidence and theses. Hormone research in paediatrics 2013; 79(2): 51-67.

76

22. Marchini A, Ogata T, Rappold GA. A Track Record on SHOX: From

Basic Research to Complex Models and Therapy. Endocrine reviews 2016;

37(4): 417-48.

23. Durand C, Rappold GA. Height matters-from monogenic disorders to normal variation. Nature reviews Endocrinology 2013; 9(3): 171-7.

24. Ogata T, Matsuo N. Sex chromosome aberrations and stature: deduction of the principal factors involved in the determination of adult height. Human genetics 1993; 91(6): 551-62.

25. Rao E, Weiss B, Fukami M, et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nature genetics 1997; 16(1): 54-63. 26. Ogata T, Goodfellow P, Petit C, Aya M, Matsuo N. Short stature in a girl with a terminal Xp deletion distal to DXYS15: localisation of a growth gene(s) in the pseudoautosomal region. Journal of medical genetics 1992;

29(7): 455-9.

27. May CA, Shone AC, Kalaydjieva L, Sajantila A, Jeffreys AJ. Crossover clustering and rapid decay of linkage disequilibrium in the Xp/Yp pseudoautosomal gene SHOX. Nature genetics 2002; 31(3): 272-5.

28. Durand C, Roeth R, Dweep H, et al. Alternative splicing and nonsense-mediated RNA decay contribute to the regulation of SHOX expression. PloS one 2011; 6(3): e18115.

29. Gehring WJ, Affolter M, Burglin T. Homeodomain proteins. Annual

review of biochemistry 1994; 63: 487-526.

30. Boncinelli E. Homeobox genes and disease. Current opinion in genetics & development 1997; 7(3): 331-7.

31. Clement-Jones M, Schiller S, Rao E, et al. The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome. Human molecular genetics 2000; 9(5): 695-702.

77

32. Liu H, Chen CH, Espinoza-Lewis RA, et al. Functional redundancy between human SHOX and mouse Shox2 genes in the regulation of sinoatrial node formation and pacemaking function. The Journal of biological chemistry 2011; 286(19): 17029-38.

33. Sabherwal N, Bangs F, Roth R, et al. Long-range conserved non- coding SHOX sequences regulate expression in developing chicken limb and are associated with short stature phenotypes in human patients. Human molecular genetics 2007; 16(2): 210-22.

34. Blaschke RJ, Topfer C, Marchini A, Steinbeisser H, Janssen JW, Rappold GA. Transcriptional and translational regulation of the Leri-Weill and Turner syndrome homeobox gene SHOX. The Journal of biological chemistry 2003; 278(48): 47820-6.

35. van Heyningen V, Bickmore W. Regulation from a distance: long- range control of gene expression in development and disease. Philosophical transactions of the Royal Society of London Series B, Biological sciences 2013; 368(1620): 20120372.

36. Fukami M, Kato F, Tajima T, Yokoya S, Ogata T. Transactivation function of an approximately 800-bp evolutionarily conserved sequence at the SHOX 3' region: implication for the downstream enhancer. American journal of human genetics 2006; 78(1): 167-70.

37. Benito-Sanz S, Royo JL, Barroso E, et al. Identification of the first recurrent PAR1 deletion in Leri-Weill dyschondrosteosis and idiopathic short stature reveals the presence of a novel SHOX enhancer. Journal of medical genetics 2012; 49(7): 442-50.

38. Durand C, Bangs F, Signolet J, Decker E, Tickle C, Rappold G. Enhancer elements upstream of the SHOX gene are active in the developing limb. European journal of human genetics : EJHG 2010; 18(5): 527-32.

78

39. Kenyon EJ, McEwen GK, Callaway H, Elgar G. Functional analysis

of conserved non-coding regions around the short stature hox gene (shox) in whole zebrafish embryos. PloS one 2011; 6(6): e21498.

40. Schneider KU, Marchini A, Sabherwal N, et al. Alteration of DNA binding, dimerization, and nuclear translocation of SHOX homeodomain mutations identified in idiopathic short stature and Leri-Weill dyschondrosteosis. Human mutation 2005; 26(1): 44-52.

41. Sabherwal N, Schneider KU, Blaschke RJ, Marchini A, Rappold G. Impairment of SHOX nuclear localization as a cause for Leri-Weill syndrome. Journal of cell science 2004; 117(Pt 14): 3041-8.

42. Rao E, Blaschke RJ, Marchini A, Niesler B, Burnett M, Rappold GA. The Leri-Weill and Turner syndrome homeobox gene SHOX encodes a cell- type specific transcriptional activator. Human molecular genetics 2001;

10(26): 3083-91.

43. Marchini A, Daeffler L, Marttila T, et al. Phosphorylation on Ser106 modulates the cellular functions of the SHOX homeodomain protein. Journal of molecular biology 2006; 355(3): 590-603.

44. Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harbor perspectives in biology 2013; 5(1): a008334.

45. Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423(6937): 332-6.

46. Adamo, Comoglio, Dolfi. Istologia di V. Monesi. 6a ed. Padova; 2012. 47. Lui JC, Nilsson O, Baron J. Recent research on the growth plate: Recent insights into the regulation of the growth plate. Journal of molecular endocrinology 2014; 53(1): T1-9.

48. Baron J, Savendahl L, De Luca F, et al. Short and tall stature: a new paradigm emerges. Nature reviews Endocrinology 2015; 11(12): 735-46.

79

49. Munns CJ, Haase HR, Crowther LM, et al. Expression of SHOX in human fetal and childhood growth plate. The Journal of clinical endocrinology and metabolism 2004; 89(8): 4130-5.

50. Marchini A, Marttila T, Winter A, et al. The short stature homeodomain protein SHOX induces cellular growth arrest and apoptosis and is expressed in human growth plate chondrocytes. The Journal of biological chemistry 2004; 279(35): 37103-14.

51. Hristov G, Marttila T, Durand C, Niesler B, Rappold GA, Marchini A. SHOX triggers the lysosomal pathway of apoptosis via oxidative stress. Human molecular genetics 2014; 23(6): 1619-30.

52. Marchini A, Hacker B, Marttila T, et al. BNP is a transcriptional target of the short stature homeobox gene SHOX. Human molecular genetics 2007;

16(24): 3081-7.

53. Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 2015; 142(5): 817-31.

54. Decker E, Durand C, Bender S, et al. FGFR3 is a target of the homeobox transcription factor SHOX in limb development. Human molecular genetics 2011; 20(8): 1524-35.

55. Xie Y, Zhou S, Chen H, Du X, Chen L. Recent research on the growth plate: Advances in fibroblast growth factor signaling in growth plate development and disorders. Journal of molecular endocrinology 2014;

53(1): T11-34.

56. Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes & development 1999;

80

57. Aza-Carmona M, Shears DJ, Yuste-Checa P, et al. SHOX interacts with the chondrogenic transcription factors SOX5 and SOX6 to activate the aggrecan enhancer. Human molecular genetics 2011; 20(8): 1547-59.

58. Beiser KU, Glaser A, Kleinschmidt K, et al. Identification of novel SHOX target genes in the developing limb using a transgenic mouse model. PloS one 2014; 9(6): e98543.

59. Durand C, Decker E, Roeth R, Schneider KU, Rappold G. The homeobox transcription factor HOXA9 is a regulator of SHOX in U2OS cells and chicken micromass cultures. PloS one 2012; 7(9): e45369.

60. Yu L, Liu H, Yan M, et al. Shox2 is required for chondrocyte proliferation and maturation in proximal limb skeleton. Developmental biology 2007; 306(2): 549-59.

61. Schiller S, Spranger S, Schechinger B, et al. Phenotypic variation and genetic heterogeneity in Leri-Weill syndrome. European journal of human genetics : EJHG 2000; 8(1): 54-62.

62. Benito-Sanz S, del Blanco DG, Aza-Carmona M, et al. PAR1 deletions downstream of SHOX are the most frequent defect in a Spanish cohort of Leri-Weill dyschondrosteosis (LWD) probands. Human mutation 2006; 27(10): 1062.

63. Chen J, Wildhardt G, Zhong Z, et al. Enhancer deletions of the SHOX gene as a frequent cause of short stature: the essential role of a 250 kb downstream regulatory domain. Journal of medical genetics 2009; 46(12): 834-9.

64. Binder G. Short stature due to SHOX deficiency: genotype, phenotype, and therapy. Hormone research in paediatrics 2011; 75(2): 81- 9.

81

65. Fukami M, Dateki S, Kato F, et al. Identification and characterization of cryptic SHOX intragenic deletions in three Japanese patients with Leri- Weill dyschondrosteosis. Journal of human genetics 2008; 53(5): 454-9. 66. Marchini A, Rappold G, Schneider KU. SHOX at a glance: from gene to protein. Archives of physiology and biochemistry 2007; 113(3): 116-23. 67. Benito-Sanz S, Barroso E, Heine-Suner D, et al. Clinical and molecular evaluation of SHOX/PAR1 duplications in Leri-Weill dyschondrosteosis (LWD) and idiopathic short stature (ISS). The Journal of clinical endocrinology and metabolism 2011; 96(2): E404-12.

68. Bunyan DJ, Baffico M, Capone L, et al. Duplications upstream and downstream of SHOX identified as novel causes of Leri-Weill dyschondrosteosis or idiopathic short stature. American journal of medical genetics Part A 2016; 170a(4): 949-57.

69. Gervasini C, Grati FR, Lalatta F, et al. SHOX duplications found in some cases with type I Mayer-Rokitansky-Kuster-Hauser syndrome. Genetics in medicine : official journal of the American College of Medical Genetics 2010; 12(10): 634-40.

70. Sandoval GT, Jaimes GC, Barrios MC, Cespedes C, Velasco HM. SHOX gene and conserved noncoding element deletions/duplications in Colombian patients with idiopathic short stature. Molecular genetics & genomic medicine 2014; 2(2): 95-102.

71. Blaschke RJ, Rappold G. The pseudoautosomal regions, SHOX and disease. Current opinion in genetics & development 2006; 16(3): 233-9. 72. Binder G, Ranke MB, Martin DD. Auxology is a valuable instrument for the clinical diagnosis of SHOX haploinsufficiency in school-age children with unexplained short stature. The Journal of clinical endocrinology and metabolism 2003; 88(10): 4891-6.

82

73. Blaschke RJ, Rappold GA. SHOX: growth, Leri-Weill and Turner syndromes. Trends in endocrinology and metabolism: TEM 2000; 11(6): 227-30.

74. Madelung OW. Die Spontane Subluxation der Hand nach vorne. Verh

Dtsch Ges Chir 1878; 7: 259-76.

75. Seki A, Jinno T, Suzuki E, Takayama S, Ogata T, Fukami M. Skeletal Deformity Associated with SHOX Deficiency. Clinical pediatric endocrinology : case reports and clinical investigations : official journal of the Japanese Society for Pediatric Endocrinology 2014; 23(3): 65-72. 76. Binder G, Fritsch H, Schweizer R, Ranke MB. Radiological signs of Leri-Weill dyschondrosteosis in Turner syndrome. Hormone research 2001;

55(2): 71-6.

77. Child CJ, Kalifa G, Jones C, et al. Radiological Features in Patients with Short Stature Homeobox-Containing (SHOX) Gene Deficiency and Turner Syndrome before and after 2 Years of GH Treatment. Hormone research in paediatrics 2015; 84(1): 14-25.

78. Rappold G, Blum WF, Shavrikova EP, et al. Genotypes and phenotypes in children with short stature: clinical indicators of SHOX haploinsufficiency. Journal of medical genetics 2007; 44(5): 306-13.

79. Shears DJ, Vassal HJ, Goodman FR, et al. Mutation and deletion of the pseudoautosomal gene SHOX cause Leri-Weill dyschondrosteosis. Nature genetics 1998; 19(1): 70-3.

80. Zinn AR, Wei F, Zhang L, et al. Complete SHOX deficiency causes

Langer mesomelic dysplasia. American journal of medical genetics 2002;

110(2): 158-63.

81. Fukami M, Okuyama T, Yamamori S, Nishimura G, Ogata T.

Microdeletion in the SHOX 3' region associated with skeletal phenotypes of Langer mesomelic dysplasia in a 45,X/46,X,r(X) infant and Leri-Weill

83

dyschondrosteosis in her 46,XX mother: implication for the SHOX enhancer. American journal of medical genetics Part A 2005; 137(1): 72-6. 82. Rappold GA, Fukami M, Niesler B, et al. Deletions of the homeobox gene SHOX (short stature homeobox) are an important cause of growth failure in children with short stature. The Journal of clinical endocrinology and metabolism 2002; 87(3): 1402-6.

83. Huber C, Rosilio M, Munnich A, Cormier-Daire V. High incidence of SHOX anomalies in individuals with short stature. Journal of medical genetics 2006; 43(9): 735-9.

84. Jorge AA, Souza SC, Nishi MY, et al. SHOX mutations in idiopathic short stature and Leri-Weill dyschondrosteosis: frequency and phenotypic variability. Clinical endocrinology 2007; 66(1): 130-5.

85. Funari MF, Jorge AA, Souza SC, et al. Usefulness of MLPA in the detection of SHOX deletions. European journal of medical genetics 2010;

53(5): 234-8.

86. Ross JL, Scott C, Jr., Marttila P, et al. Phenotypes Associated with SHOX Deficiency. The Journal of clinical endocrinology and metabolism 2001; 86(12): 5674-80.

87. Malaquias AC, Scalco RC, Fontenele EG, et al. The sitting height/height ratio for age in healthy and short individuals and its potential role in selecting short children for SHOX analysis. Hormone research in paediatrics 2013; 80(6): 449-56.

88. Blum WF, Ross JL, Zimmermann AG, et al. GH treatment to final height produces similar height gains in patients with SHOX deficiency and Turner syndrome: results of a multicenter trial. The Journal of clinical endocrinology and metabolism 2013; 98(8): E1383-92.

84

89. Donze SH, Meijer CR, Kant SG, et al. The growth response to GH treatment is greater in patients with SHOX enhancer deletions compared to SHOX defects. European journal of endocrinology 2015; 173(5): 611-21. 90. Wit JM, Oostdijk W. Novel approaches to short stature therapy. Best practice & research Clinical endocrinology & metabolism 2015; 29(3): 353- 66.

91. Ogata T, Onigata K, Hotsubo T, Matsuo N, Rappold G. Growth hormone and gonadotropin-releasing hormone analog therapy in haploinsufficiency of SHOX. Endocrine journal 2001; 48(3): 317-22.

92. Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Archives of disease in childhood 1976; 51(3): 170-9.

93. Cacciari E, Milani S, Balsamo A, et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). Journal of endocrinological investigation 2006; 29(7): 581-93.

94. Bayley N, Pinneau SR. Tables for predicting adult height from skeletal age: revised for use with the Greulich-Pyle hand standards. The Journal of pediatrics 1952; 40(4): 423-41.

95. Stuppia L, Calabrese G, Gatta V, et al. SHOX mutations detected by FISH and direct sequencing in patients with short stature. Journal of medical genetics 2003; 40(2): E11.

96. Morizio E, Stuppia L, Gatta V, et al. Deletion of the SHOX gene in patients with short stature of unknown cause. American journal of medical genetics Part A 2003; 119a(3): 293-6.

97. Rosilio M, Huber-Lequesne C, Sapin H, Carel JC, Blum WF, Cormier-Daire V. Genotypes and phenotypes of children with SHOX deficiency in France. The Journal of clinical endocrinology and metabolism 2012; 97(7): E1257-65.

85

98. Wolters B, Lass N, Wunsch R, Bockmann B, Austrup F, Reinehr T.

Short stature before puberty: which children should be screened for SHOX deficiency? Hormone research in paediatrics 2013; 80(4): 273-80.

99. Flanagan SF, Munns CF, Hayes M, et al. Prevalence of mutations in the short stature homeobox containing gene (SHOX) in Madelung deformity of childhood. Journal of medical genetics 2002; 39(10): 758-63.

100. Falcinelli C, Iughetti L, Percesepe A, et al. SHOX point mutations and deletions in Leri-Weill dyschondrosteosis. Journal of medical genetics 2002;

39(6): E33.

101. Thomas NS, Harvey JF, Bunyan DJ, et al. Clinical and molecular characterization of duplications encompassing the human SHOX gene reveal a variable effect on stature. American journal of medical genetics Part A 2009; 149a(7): 1407-14.

102. Blaschke RJ, Rappold GA. SHOX in short stature syndromes. Hormone research 2001; 55 Suppl 1: 21-3.

103. Montalbano A, Juergensen L, Roeth R, et al. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency. EMBO molecular medicine 2016; 8(12): 1455-69.

104. Iughetti L, Vannelli S, Street ME, et al. Impaired GH secretion in patients with SHOX deficiency and efficacy of recombinant human GH therapy. Hormone research in paediatrics 2012; 78(5-6): 279-87.

105. Blum WF, Crowe BJ, Quigley CA, et al. Growth hormone is effective in treatment of short stature associated with short stature homeobox- containing gene deficiency: Two-year results of a randomized, controlled, multicenter trial. The Journal of clinical endocrinology and metabolism 2007; 92(1): 219-28.

86

106. Betts PR, Butler GE, Donaldson MD, et al. A decade of growth hormone treatment in girls with Turner syndrome in the UK. UK KIGS Executive Group. Archives of disease in childhood 1999; 80(3): 221-5. 107. Scalco RC, Melo SS, Pugliese-Pires PN, et al. Effectiveness of the combined recombinant human growth hormone and gonadotropin-releasing hormone analog therapy in pubertal patients with short stature due to SHOX deficiency. The Journal of clinical endocrinology and metabolism 2010;

87

RINGRAZIAMENTI

Un ringraziamento di cuore al Prof. Diego Peroni e al Dott. Silvano Bertelloni che, grazie alla loro massima disponibilità, mi hanno permesso di frequentare il loro reparto e realizzare questo lavoro. È stata un’esperienza che mi ha arricchito sia da un punto di vista professionale che personale, facendomi capire l’importanza e la bellezza del lavoro che ho scelto di fare.

Grazie Mamma e Papà, a voi devo tutto. È grazie a voi se sono riuscita a raggiungere ogni mia aspirazione e a valicare ogni scoglio, se non ho mai perso la forza, l’ambizione e la forza di volontà in tutto ciò che ho fatto. Questo grande traguardo per me lo dedico a voi, perché non esiste cosa più bella e grande che la vita potesse donarmi.

Per te, Papà, trovare le parole è veramente difficile. Tu mi hai insegnato tanto o forse tutto, ma soprattutto mi hai insegnato che qualsiasi obiettivo si raggiunge con impegno, costanza e perseveranza, che non bisogna arrendersi mai anzi vedere sempre il lato positivo delle cose nella vita. Sei stato il supervisore di ogni mio passo e spero di ripagarti, in minima parte, per tutto quello che fai per me (per noi) con il bene immenso che ti voglio (che ti vogliamo).

E tu, Mamma, grazie per essere il mio riparo quotidiano, la mia complice, il mio pilastro. Con i tuoi modi dolci, premurosi e rassicuranti, mi hai reso indipendente senza lasciarmi mai sola. Anche io non lo farò mai con te. Grazie per ogni minuto che mi hai dedicato, per esserci sempre stata, di

Documenti correlati