• Non ci sono risultati.

73 I risultati ottenuti hanno dimostrato che:

Con il progredire della malattia, a livello cerebrale si ha una riduzione dei livelli di proteina α-sin totale accompagnato da un aumento della stessa proteina a livello intestinale. Nell’invecchiamento fisiologico, i livelli di proteina tendono ad aumentare in tutti e due i tessuti presi in esame. La proteina risulta essere coinvolta nella malattia e l’analisi della sua concentrazione potrebbe costituire un buon biomarker sia a livello centrale che periferico.

I livelli dell’eterocomplesso α-sin/Aβ tendono a diminuire con il progredire della malattia sia a livello cerebrale che a livello intestinale. Nell’invecchiamento fisiologico, invece, a livello centrare si ha un aumento di eterocomplesso, mentre nel colon non si ha una significativa differenza tra i due stadi di invecchiamento. Il complesso risulta essere correlato alla malattia e potrebbe costituire un biomarker sia centrale che periferico utile alla diagnosi della malattia di Alzheimer.

L’eterocomplesso α-sin/tau nel cervello diminuisce, mentre nell’intestino non ci sono differenze significative tra i gruppi presi in esame nel nostro studio. È interessante notare come a livello cerebrale i livelli di complesso, al primo stadio della malattia, siano notevolmente più elevati rispetto al controllo, mentre nel secondo stadio si ha un cambio di andamento e risultano maggiori i livelli di α-sin/tau in topi con invecchiamento fisiologico. A livello cerebrale il complesso risulta essere coinvolto nella malattia e quindi sembra essere un biomarker centrale.

Nei topi con invecchiamento fisiologico i livelli di citochina risultano essere bassi suggerendo che non vi sia in corso un processo infiammatorio. Nei topi che presentano la malattia, i livelli di IL-1β aumentano notevolmente con l’avanzare della malattia sia nel cervello che nel colon. IL-1β è uno dei principali marker di infiammazione ed è coinvolto nella rottura della BEE tipica della malattia. L’asse intestino-cervello permette ai due organi di essere strettamente interconnessi e recenti studi hanno dimostrato che alterazioni del microbioma intestinale possono attivare citochine pro-infiammatorie e portare ad un’aumentata permeabilità della barriera intestinale con conseguente fuoriuscita di

74

microrganismi che entrano nel flusso sanguigno e possono attraversare la BEE. Poiché IL- 1β risulta essere coinvolta in questi processi potrebbe costituire un buon biomarker di infiammazione a livello centrale e periferico.

In conclusione, la proteina α-sin e i suoi eterocomplessi α-sin/Aβ e α-sin/tau sembrano essere coinvolti nella neurodegenerazione. Sembra sia coinvolto anche il processo infiammatorio a carico dell’intestino che, tramite l’asse intestino-cervello, può presentarsi anche a livello centrale. Questo studio, in accordo a studi in corso, apre la via a nuove prospettive future per quanto riguarda il coinvolgimento dell’infiammazione nella neurodegenerazione e l’individuazione di marker di tale processo infiammatorio.

75

76

Baldacci F,Daniele S,Piccarducci R,Giampietri L,Pietrobono D,Giorgi FS,Nicoletti V,Frosini D,Libertini P,Lo Gerfo A,Petrozzi L,Donadio E,Betti L,Trincavelli ML,Siciliano G,Ceravolo R,Tognoni G,Bonuccelli U,Martini C . Potential Diagnostic Value of Red Blood Cells α-Synuclein Heteroaggregates in Alzheimer’s Disease. Molecular Neurobiology (2019) 56:6451–6459.

Bartus RT,Dean RL 3rd,Beer B,Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 30 Jul 1982: Vol. 217, Issue 4558, pp. 408-414.

Bekkering P, Jafri I, van Overveld FJ, et al. The intricate association between gut microbiota and development of type 1, type 2 and type 3 diabetes. Expert Rev Clin Immunol. 2013;9:1031–1041.

Brosch JR,Farlow MR,Risacher SL,Apostolova LG. Tau Imaging in Alzheimer’s Disease Diagnosis and Clinical Trials. Neurotherapeutics (2017) 14:62–68.

Butterfield DA, Poon HF. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. Exp. Gerontol. 2005; 40: 774–783.

Butterfield DA, Stadtman ER. Protein oxidation processes in aging brain. Adv. Cell Aging Gerontol. 1997; 2: 161–191.

Burokas A, Moloney RD, Dinan TG, et al. Microbiota regulation of the mammalian gut–brain axis. Adv Appl Microbiol. 2015;91:1–62.

Burré J,Sharma M,Südhof TC. Cell Biology and Pathophysiology of α-Synuclein. Cold Spring Harb Perspect Med. ; 8(3). pii: a024091. doi: 10.1101/cshperspect.a024091.

Canudas AM, Gutierrez-Cuesta J, Rodriguez MI, Acuna-Castroviejo D, Sureda FX, Camins A, Pallas M. Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM). Mech. Ageing Dev. 2005; 126: 1300–130.

Chong FP,Ng KY,Koh RY,Chye SM.Tau Proteins and Tauopathies in Alzheimer’s Disease. Cellular and Molecular Neurobiology (2018) 38:965–980.

Clinton LK,Blurton-Jones M,Myczek K,Trojanowski JQ,LaFerla FM. Synergistic Interactions between A, Tau, and -Synuclein: Acceleration of Neuropathology and Cognitive Decline. The Journal of Neuroscience, May 26, 2010 30(21):7281–7289.

Congdon EE,Sigurdsson EM. . Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2018 July ; 14(7): 399–415.

Counts SE,Ikonomovic MD,Mercado N,Vega IE,Mufson EJ. Biomarkers for the Early Detection and Progression of Alzheimer’s Disease. Neurotherapeutics (2017) 14:35–53.

77

Daniele S., Frosini D., Pietrobono D., Petrozzi L., Lo Gerfo A., Baldacci F., Fusi J., Giacomelli C., Siciliano G., Trincavelli M.L., Franzoni F., Ceravolo R., Martini C., Bonuccelli U. (2018). α-Synuclein Heterocomplexes with β-Amyloid Are Increased in Red Blood Cells of Parkinson's Disease Patients and Correlate with Disease Severity. Front. Mol. Neurosci., 2018; Volume 11, Article 53.

Daulatzai MA. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res. 2014;39:624–644.

Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F. 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535 111–116. (10.1038/nature18590).

Dubois B,Feldman HH,Jacova C,Dekosky ST,Barberger-Gateau P,Cummings J,Delacourte A,Galasko D,Gauthier S,Jicha G,Meguro K,O'brien J,Pasquier F,Robert P,Rossor M,Salloway S,Stern Y,Visser PJ,Scheltens P. . Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS–ADRDA criteria. The lancet neurology, Volume 6, Issue 8,August 2007, Pages 734-746.

Farlow M. A clinical overview of cholinesterase inhibitors in Alzheimer's disease. Int Psychogeriatr. 2002;14 Suppl 1:93-126.

Flood JF, Morley JE. Learning and memory in the SAMP8 mouse. Neurosci. Biobehav. Rev. 1998; 22: 1–20.

Flood JF ,Morley JE. Early Onset of Age-Related Impairment of Aversive and Appetitive Learning in the SAM-P/8 Mouse. Journal of Gerontology, Volume 47, Issue 2, March 1992, Pages B52–B59.

Friedland RP. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis. 2015;45:349–362.

Garcia-Matas S, Gutierrez-Cuesta J, Coto-Montes A, Rubio-Acero R, Diez-Vives C, Camius A, Pallas M, Sanfeliu C, Critofol R. Dysfunction of astrocytes in senescence-accelerated mice SAMP8 reduces their neuroprotective capacity. Aging Cell. 2008; 7: 630–640.

Garlanda C, Dinarello CA, Mantovani A. 2013. The interleukin-1 family: back to the future. Immunity 39 1003–1018. (10.1016/j.immuni.2013.11.010).

Giacomelli C, Daniele S., Martini C. (2017). Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochemical Pharmacology, 2017; 131, 1–15.

Grundke-Iqbal I,Iqbal K,Tung YC,Quinlan M,Wisniewski HM,Binder LI. Abnormal phosphorylation of the microtubule-associated protein X (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA Vol. 83, pp. 4913-4917, July 1986 Medical Sciences.

Gupta VB, Sundaram R, Martins RN (2013) Multiplex biomarkers in blood. Alzheimers Res Ther 5(3):31. doi:10.1186/alzrt185.

Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-3 Saecker, A., et al. (2013). NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–

78 678. doi: 10.1038/nature11729.

Hort J1,O'Brien JT,Gainotti G,Pirttila T,Popescu BO,Rektorova I,Sorbi S,Scheltens P;EFNS Scientist Panel on Dementia. . EFNS guidelines for the diagnosis and management of Alzheimers disease. European Journal of Neurology 2010, 17: 1236–1248.

Hwang, J. S., Im, C. R., and Im, S. H. (2012). Immune disorders and its correlation with gut microbiome. Immune Netw. 12, 129–138. doi: 10.4110/in.2012.12.4.129.

Ikonomovic MD1,Klunk WE,Abrahamson EE,Mathis CA,Price JC,Tsopelas ND,Lopresti BJ,Ziolko S,Bi W,Paljug WR,Debnath ML,Hope CE,Isanski BA,Hamilton RL,DeKosky ST. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain, Volume 131, Issue 6, June 2008, Pages 1630–1645.

Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., Nageshwar Reddy, D. (2015). Role of the normal gut microbiota. World J. Gastroenterol. 21, 8787–8803. doi: 10.3748/wjg.v21.i29.8787.

Jensen PH,Hager H,Nielsen MS,Hojrup P,Gliemann J,Jakes R. α-Synuclein Binds to Tau and Stimulates the Protein Kinase A-catalyzed Tau Phosphorylation of Serine Residues 262 and 356*. J Biol Chem. 1999 Sep 3;274(36):25481-9.

Jouanne M, Rault S, Voisin-Chiret AS. Tau protein aggregation in Alzheimer's disease: An attractive target for the development of novel therapeutic agents. European Journal of Medicinal Chemistry. Volume 139,20 October 2017, Pages 153-167.

Kim Seonghan, Seo Ji-Heui, Suh Yoo-Hun . α-Synuclein, Parkinson’s disease, and Alzheimer’s disease. Parkinsonism and Related Disorders 10 (2004) S9–S13.

Klafki HW1,Staufenbiel M,Kornhuber J,Wiltfang J. Therapeutic approaches to Alzheimer’s disease. Brain (2006), 129, 2840–2855.

Korff Ane, Liu Changqin,Ginghina Carmen,Shi Min,Zhang Jing. α-Synuclein in cerebrospinal fluid of Alzheimer’s disease and mild cognitive impairment. J Alzheimers Dis. 2013 Jan 1; 36(4): 679–688.

Kumar,Sami,Kashav,Islam,Ahmad,Hassan. Protein aggregation and neurodegenerative diseases: From theory to therapy. European Journal of Medicinal Chemistry 124 (2016) 1105e1120.

Lane C,Hardy J,Schott J. Alzheimer’s disease. European Journal of Neurology 2018, 25: 59–70.

Matej,Tesar,Rusina . Alzheimer's disease and other neurodegenerative dementias in comorbidity: A clinical and neuropathological overview. Clinical Biochemistry Volume 73, November 2019, Pages 26-31.

79

Miyamoto M. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10. Exp. Gerontol. 1997; 32: 139–148.

Mohamed T,Shakeri A,Rao PP. Amyloid cascade in Alzheimer's disease: Recent advances in medicinal chemistry. European Journal of Medicinal Chemistry 113 (2016) 258e272.

Montagne, A., Barnes, S. R., Sweeney,M.D.,Halliday,M. R., Sagare, A. P., Zhao, Z.et al. (2015). Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302. doi: 10.1016/j.neuron.2014.12.032.

Morley JE, Farr SA, Kumar VB, Banks WA. Alzheimer’s disease through the eye of a mouse. Acceptance lecture for the 2001 Gayle A. Olson and Richard D. Olson prize. Peptides. 2002; 23: 589-99.

Morley JE, Farr SA, Kumar VB, Banks WA. Alzheimer’s disease through the eye of a mouse. Acceptance lecture for the 2001 Gayle A. Olson and Richard D. Olson prize. Peptides. 2002; 23: 589-99.

Morley JE, Kumar VB, Bernardo AE, Farr SA, Uezu K, Tumosa N, Flood JF. Beta-amyloid precursor polypeptide in SAMP8 mice affects learning and memory. Peptides. 2000; 21: 1761–1767.

Naseri Nima N., Wang Hong, Guo Jennifer , Sharma Manu, Luo Wenjie . The complexity of tau in Alzheimer’s disease. Neuroscience Letters 705 (2019) 183–194.

Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J. Z., et al. (2016). Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16:90. doi: 10.1186/s12866-016-0708-5.

O’Brien JT. Role of imaging techniques in the diagnosis of dementia. Br J Radiol. 2007; 80: S71-7.

Osorio C,Kanukuntla T,Diaz E,Jafri N2,Cummings M,Sfera A. The Post-amyloid Era in Alzheimer’s Disease: Trust Your Gut Feeling. Frontiers in Aging Neuroscience published: 26 June 2019 doi: 10.3389/fnagi.2019.00143.

Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clin Ther. 2015 May 1;37(5):984-95.

Pistollato F,Sumalla Cano S,Elio I,Masias Vergara M,Giampieri F,Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutrition ReviewsVR Vol. 74(10):624–634.

Ramanan D,Cadwell K. (2016). Intrinsic defense mechanisms of the intestinal epithelium. Cell Host Microbe 19, 434–441. doi: 10.1016/j.chom.2016.03.003.

Reitz Christiane ,Brayne Carol,Mayeux Richard . Epidemiology of Alzheimer disease.Nat Rev Neurol. 2011 Mar; 7(3): 137–152.

80

Robinson RA,Amin B,Guest PC. Multiplexing Biomarker Methods, Proteomics and Considerations for Alzheimer’s Disease. Adv Exp Med Biol. 2017;974:21-48. doi: 10.1007/978-3-319-52479-5_2.

Roher AE,Kokjohn TA,Clarke SG,Sierks MR,Maarouf CL,Serrano GE,Sabbagh MS,Beach TG. APP/Aβ Structural Diversity and Alzheimer’s Disease Pathogenesis. Neurochem Int. 2017 November ; 110: 1–13. Serrano-Pozo A,Frosch MP,Masliah E,Hyman BT. Neuropathological Alterations in Alzheimer Disease. Cold Spring Harb Perspect Med 2011;1:a006189.

Schaffer C, Sarad N, DeCrumpe A, Goswami D, Herrmann S, Morales J (2015). Biomarkers in the diagnosis and prognosis of Alzheimer’s disease. J Lab Autom 20(5):589–600. doi:10.1177/2211068214559979.

Shaftel SS , Griffin WS,O'Banion MK.The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 2008 Feb 26;5:7.

Strong R, Reddy V, Morley JE. Cholinergic deficits in the septal–hippocampal pathway of the SAM-P/8 senescence accelerated mouse. Brain Res. 2003; 966: 150–156.

Tsigelny IF,Crews L,Desplats P,Shaked GM,Sharikov Y,Mizuno H,Spencer B,Rockenstein E,Trejo M,Platoshyn O,Yuan JX,Masliah E. Mechanisms of Hybrid Oligomer Formation in the Pathogenesis of Combined Alzheimer’s and Parkinson’s Diseases. PLoS ONE PLoS One 2008 Sep 4;3(9):e3135.

Tulotta C,Ottewell P. The role of IL-1B in breast cancer bone metastasis. Endocr Relat Cancer.2018 Jul;25(7):R421-R434. doi: 10.1530/ERC-17-0309. Epub 2018 May 14.

Villemagne VL, Okamura N. Tau imaging in the study of ageing, Alzheimer’s disease, and other neurodegenerative conditions. Curr Opin neurobiol. 2016; 36: 43-51.

Villar-Piqué A, Lopes da Fonseca T, Outeiro TF. Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. Journal of neurochemistry 2016.

Vince JE, Silke J. 2016. The intersection of cell death and inflammasome activation. Cellular and Molecular Life Sciences 73 2349–2367. (10.1007/s00018-016-2205-2).

Weber A, Wasiliew P, Kracht M. 2010. Interleukin-1 (IL-1) pathway. Science Signaling 3 cm1 (10.1126/scisignal.3105cm2).

Wirths Oliver, Bayer Thomas A. α-Synuclein, AB and Alzheimer’s disease. Progress in Neuro- Psychopharmacology & Biological Psychiatry 27 (2003) 103– 108.

Wong YC,Krainc D. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies.Nature Medicine 23, 1 (2017).

Wu Y, Zhang AQ, Yew DT. Age related changes of various markers of astrocytes in senescence-accelerated mice hippocampus. Neurochem. Int. 2005; 46: 565–574.

81 Advances in neurological disorders. 2013 Jan;6(1):19-33.

Zhang YW,Thompson R,Zhang H,Xu H. APP processing in Alzheimer’s disease. Molecular Brain 2011, 4:3.

Zhao, Y., Cong, L., and Lukiw,W. J. (2017). Lipopolysaccharide (LPS) accumulates in neocortical neurons of Alzheimer’s disease (AD) brain and impairs transcription in human neuronal–glial primary co-cultures. Front. Aging Neurosci. 9 :407. doi: 10.3389/fnagi.2017.00407.

Zhao Y, Lukiw WJ. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD). J Nat Sci. 2015;1:e138.

Documenti correlati