• Non ci sono risultati.

Dal punto di vista evolutivo, le piante terrestri si sono evolute seguendo lo stesso percorso di tutte le forme di vita pluricelluari, ovvero tramite la differenziazione dei ruoli cellulari nell’organismo: le radici deputate all’ancoraggio e alla captazione, i complessi foliari alla produzione di energia etc. Il fatto che molecole come gli ormoni vegetali, siano presenti in organismi ritenuti i precursori delle piante terrestri e che non vi siano all’interno di questi microrganismi dei pathway molecolari chiaramente deputati alla produzione di queste molecole o al loro “sensing”, non chiarisce, a livello evolutivo, se sia comparso prima un bersaglio molecolare per queste molecole con una sua cascata di segnale con uno specifico scopo, oppure il suo complesso proteico di produzione e successivamente il suo target molecolare. Come è probabile, nella storia dell’evoluzione, queste molecole probabilmente sono presenti all’interno di questi microrganismi, perché derivanti, forse, da un metabolismo secondario o con scopi di cui ancora non si conosce l’obiettivo e solo nel corso dell’evoluzione si sono indirizzate verso il ruolo a loro assegnato nelle piante terrestri. La serie di esperimenti sopra riportati conferma l’assenza di auxine nell’estratto di Dunaliella, ma lascia spazio a nuovi interrogativi, come l’identificazione del picco 4 in D.salina e D.tertiolecta e il “branching” radicale che si è osservato nella prova in vitro. I risultati di questo lavoro confermano la

presenza di molecole fitoattive all’interno di Dunaliella e rafforzano l’ipotesi di Cowan A.K. e Rose P.D. del 1991 relativa alla presenza di un pathway di sintesi di Acido Abscissico dentro Dunaliella, pathway che potrebbe interagire con quello del β-carotene in seguito a variazioni della concentrazione di NaCl nel mezzo di crescita. Un altro interrogativo che apre questa tesi, potrebbe essere la ricerca di pathway di sintesi alternativi a quelli ad oggi conosciuti per gli attuali fito-ormoni e lo studio di come variazioni delle condizioni di coltura influenzino la produzione di metaboliti secondari di questi organismi.

Al momento le alghe unicellulari stanno conoscendo una rapida ascesa agli occhi degli industriali, a causa dei vari risvolti applicativi che dimostrano di avere: dal settore energetico, a quello cosmetico e nutraceutico. Certo è che se si ritrovassero ulteriori tracce di ormoni vegetali, non solo negli organismi presi in considerazione in questo lavoro, ma anche in altri, si aprirebbe un nuovo capitolo sulle possibili vie di sfruttamento di questi microrganismi. Inoltre, il tema della green-economy è sempre più di vitale importanza e una nuova fonte di ormoni vegetali di origine biologica aprirebbe a nuovi scenari economici e occupazionali.

Grazie agli strumenti forniti dalla bioinformatica si potrà aprire un campo d’indagine alla ricerca di elementi conservati nel codice genetico, per alcuni dei pathway noti delle vie di segnalazione degli ormoni. Inoltre, se ciò venisse confermato, questi microrganismi si rivelerebbero un organismo modello migliore per lo studio dell’evoluzione delle vie di segnalazione ormonale, rispetto agli attuali. Inoltre il tema della green-economy è sempre più di vitale importanza e una nuova fonte di ormoni vegetali di origine biologica aprirebbe a nuovi scenari economici e occupazionali.

Bibliografia

 Adl S.M., Leander B.S., Simpson A.G., Archibald J.M., Anderson O.R., Bass D., Bowser S.S., Brugerolle G., Farmer M.A., Karpov S., Kolisko M., Lane C.E., Lodge D.J., Mann D.G., Meisterfeld R., Mendoza L., Moestrup Ø., Mozley-Standridge S.E., Smirnov A.V., Spiegel F.. Diversity Nomenclature and Taxonomy of Protists. Syst Biol. (2007) 56(4):684-9.

 Adl S.M., Simpson A.G.B., Farmer M.A., Andersen R.A., Anderson O.R., Barta J.R., Bowser S.S., Brugerolle G., Fensome R.A., Fredericq S., James T.Y., Karpov S., Kugrens P., Krug J., Lane C.E., Lewis L.A., Lodge J., Lynn Denis H., Mann D.G., McCourt R.M., Mendoza L., Moestrup J., Mozley-Standrige S.E., Shearer N.C.A., Smirnov A.V., Spiegel F.W., Taylor M.F.J.R.. The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists. J. Eukaryot Microbiol. 2005 Sep-Oct;52(5):399-451.

 Agar A.W.. The story of European commercial electron microscopes. T.Mulvey (Ed.) The growth of electron microscopy. Academic Press, London (1996), pp. 413–578.

 Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature (2000) 408, 796-815.

 Arthur G. D., Stirk W. A., Novák O., Hekera P. and Van Staden, J.. Occurrence of nutrients and plant hormones (cytokinins and IAA) in the water fern Salvinia

molesta during growth and composting. Environ. Exp. Bot. (2007) 61:137–44.

 Ashen J.B. ,Cohen J.D., Goff L.J.. GC-SIM-MS detection and quantification of free indole-3-acetic acid in bacterial galls on the marine alga Prionitis lanceolata (Rhodophyta) J. Phycol., 35 (1999), pp. 493–500.

 Azachi M., Sadka A., Fisher M., Goldshlag P., Gokhman I., Zamir A.. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol. (2002) 129(3):1320-9.

 Bach M.K. and Fellig J.. Effect of ethanol and auxins on the growth of unicellular algae Nature. Nature (1958) 182, 1359 - 1360.

 Baluska F., Mancuso S., Volkmann D., Barlow P.W..The 'root-brain' hypothesis of Charles and Francis Darwin: Revival after more than 125 years. Plant Signal Behav. (2009) 4(12):1121-7.

 Barnes R., Calow P., Olive P. 1990. Invertebrati, una nuova sintesi. Zanichelli  Basu S., Sun H., Brian L., Quatrano R.L., Muday GK.. Early embryo development

in Fucus distichus is auxin sensitive. Plant Physiol. (2002); 130(1): 292–302.

 Becker B, Marin B. Streptophyte algae and the origin of embryophytes. Ann Bot. (2009) 103(7):999-1004.

 Beer L.L., Boyd E.S., Peters J.W., Posewitz M.C.. Engineering algae for biohydrogen and biofuel production Biotechnology (2009) Volume 20, Issue 3, Pages 264–271

 Ben-Amotz A. and Avron M. On the mechanism of osmoregulation in Dunaliella. In Energetic and Structure of Halophilic Microorganism. ed. Caplan, S.R. and Gizburg, M. pp. 529–541. (1987) Amesterdam: Elsevier/North-Holland.  Ben-Amoz A. and Avron M.. Accumulation of metabolites by halotollerant algae

and its industrial potential. (1983)Ann. Rev. Microbiol., 37:95-119

 Ben-Amoz A., Glycerol production in the alga Dunaliella. In:Biochemical and photosynthetic Aspect of Energy Production, ed. A. San Pietro (1980), pp. 191- 208.New York: academic Press.

 Boenigka J., Ereshefskyb M., Hoef-Emdenc K., Malletd J., Basse D.. Concepts in protistology: Species definitions and boundaries European Journal of Protistology (2012) Volume 48, Issue 2 Pages 96–102 ECOP 2011

 Boysen-Jensen P. Über die Leitung des phototropischen Reizes in der Avenakoleoptile. Berichte der Deutschen Botanischen Gesellschaf (1913) Volume 31, Issue 10, pages 559–566.

 Buggeln R.G., Craigie Evaluation of evidence for the presence of indole-3-acetic acid in marine algae. Planta (1971) 97, pp. 173–178

 Chen H., Jiang J.G. and Wu G.H. Effects of salinities on the gene expression of a (NAD+)-dependent glycerol-3-phosphate dehydrogenase in Dunaliella salina. Sci Total Environ (2011) 409(7):1291-7.

 Chen H., Jiang J.G. and Wu G.H.. Effects of salinity changes on the growth of Dunaliella salina and its isozyme activities of glycerol-3-phosphate dehydrogenase. J. Agric Food Chem. (2009) Jul 22;57(14):6178-82.

 Chen H., Yong-Min L., Jian-Guo J.. Effects of salinities on the gene expression of a (NAD+)-dependent glycerol-3-phosphate dehydrogenase in Dunaliella salina. Science of The Total Environment (2011) Volume 409, Issue 7, Pages 1291–1297.  Christensen-Dalsgaard K.K. and Fenchel T.. Complex flagellar motions and

swimming patterns of the flagellates Paraphysomonas vestita and Pteridomonas danica. Protist. (2004) 155(1):79-87.

 Clark K.D. and Nelson D.L.. An automated assay for quantifying the swimming behavior of Paramecium and its use to study cation responses. Cell Motil Cytoskeleton. (1991) 19(2):91-8.

 Coman D., Gruissem W. and Hennig L.. Transcript profiling in Arabidopsis with genome tiling microarrays. Methods Mol Biol. (2013) 1067:35-49.

 Conrad H.,Saltman P. and Eppley R. Effects of Auxin and Gibberellic Acid on Growth of Ulothrix. Nature (1959) 184, 556 - 557;doi:10.1038/184556a0

 Coppens I.. Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies. Nat Rev Microbiol. (2013) 11(12):823-35.

 Corliss J.O.. Haeckel’s Kingdom Protista and Current Concepts in Systematic Protistology stapfia 56 zugleich kataloge des OO landes museum, neue folge (1998) nr. 131 85-104.

Cowan A.K., Rose P. D. and Horne L. G. . Dunaliella salina: A model System for Studying the Response of Plant Cells to Stress. J. Exp. Bot. (1992) 43 (12): 1535- 1547.

 Domozych D.S., Ciancia M., Fangel J.U., Mikkelsen M.D., Ulvskov P., Willats W.G.. The Cell Walls of Green Algae: A Journey through Evolution and Diversity. Front Plant Sci. (2012) 3: 82.

 Douglas C.J. and Ehlting J. Arabidopsis thaliana full genome longmer microarrays: a powerful gene discovery tool for agriculture and forestry. Transgenic Res. (2005);14(5):551-61.

Dwain V.B.. Phytohormone effects on cell division in Chlorella

pyrenoidosa chick (TX-7-11-05) (chlorellaceae). Journal of Plant Growth

Regulation (1987), Volume 5, Issue 3, pp 169-173

 Froissard M., Kissmehl R., Dedieu J.C., Gulik-Krzywicki T., Plattner H., Cohen J.. N- ethylmaleimide-sensitive factor is required to organize functional exocytotic microdomains in paramecium. Genetics (2002) 161(2):643-50.

 Galappaththy G.N., Tharyan P., Kirubakaran R.. Primaquine for preventing relapse in people with Plasmodium vivax malaria treated with chloroquine. Cochrane Database Syst Rev. (2013) 10:CD004389.

 Gellenbeck K. W.. Utilization of algal materials for nutraceutical and cosmeceutical applications – what do manufacturers need to know? J. Appl. Phycol. (2012).24:309–13.

 Gómez P.I., Barriga A., Cifuentes A.S., González M.A.. Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta. Biol Res. (2003);36(2):185-92.

 Gray W.M., Estelle I. Function of the ubiquitin-proteasome pathway in auxin response. Trends Biochem Sci. (2000);25(3):133-8.

 Hai Wang, Chang-en Tian, Jun Duan and Keqiang Wu. Research progresses on GH3s, one family of primary auxin-responsive genes (2008), Volume 56, Issue 3, pp 225-232.

 Han L.J.. The auxin concentration in sixteen Chinese marine algae Chin. J. Oceanology Limnol. (2006), 24 pp. 329–332

 Hodge A., Berta G., Doussan C., Merchan F., Crespi M.. Plant root growth, architecture and function. Plant Soil (2009) 321:153–187

 Hodge V..F, Hoffman F.L., Folsom T.R. Rapid accumulation of plutonium and polonium on giant brown algae. Health Phys. (1974);27(1):29-35.

 Hodge V.F., Hoffman F.L., Folsom TR.,Blunden, G. The effect of aqueous seaweed extract as fertilizer additives. Proc. VII. Int. Seaw. Symp. (1971) Tokyo, 584–589.  Hosseini T. A. and Shariati M. Dunaliella biotechnology : method and application.

J. appl microbial (2009) 107:14-35.

 Ito H., Sugiura M. Antitumor polysaccharide fraction from Sargassum thunbergli. Chem Pharm Bull (Tokyo). (1976);24(5):1114-5.

 Jacobs W. P., Falkenstein, K. & Hamilton, R. H. . Nature and amount of auxin in algae. Plant Physiol.( 1985) 78:844–8

 Jin Q., Scherp P., Heimann K., Hasenstein K.H..Auxin and cytoskeletal organization in algaeCell Cell Biol Int. (2008);32(5):542-5.

 Jirásková D.,Poulíčková A., Novák O.,Sedláková K., Hradecká V., Strnad M.. High- throughput screening technology for monitoring phytohormones production in microalgae. J. Phycol. (2009). 45:108–18.

 Kai T., Nimura K., Yasui H., Mizuta H.. Regulation of Sorus Formation by Auxin in Laminariales Sporophyte. Journal of Applied Phycology (2006), Volume 18, Issue 1, pp 95-101.

 Katz A., Waridel P., Shevchenko A., Pick U. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by Blue-Native gel electrophoresis and nanoLC-MS/MS analysis. Molecular and Cellular Proteomics, 14 .(2007) 6(9):1459-72.

 Keeling P.J., Burger G., Durnford D.G., Lang B.F., Lee R.W., Pearlman R.E., RogerA. J., Gray M. W.. The tree of eukaryotes. Trends Ecol. Evol. (2005) ;20:670-676.  Keith Cowan A. and Rose P.D. Abscisic Acid Metabolism in Salt-Stressed Cells of

Dunaliella salina Possible Interrelationship with β-Carotene Accumulation. Plant Physiol. (1991) 97(2):798-803.

 Kieber J.. Cytokinins: regulators of cell division. In Taiz, L. & Zeiger, E. [Eds.] Plant Physiology. (2002) Sinauer Associates Inc. Publishers, Sunderland, Massachusetts, USA, pp. 493–517

 Kingman A.R., and Moore J. Isolation, purification and quantification of several growth regulating substances in Ascophyllum nodosum (Phaeophyta). Bot. Mar. (1982) 25:149–53.

 Kissmehl R., Froissard M., Plattner H., Momayezi M., Cohen J.. N.S.F.regulates membrane traffic along multiple pathways in Paramecium. J Cell Sci. (2002) ;115(Pt 20):3935-46.

 Krupinski P., Jönsson H.. Modeling auxin-regulated development. Cold Spring Harb Perspect Biol. (2010);2(2):a001560.

 Kutschera U., Niklas K.J., Evolutionary plant physiology: Charles Darwin's forgotten synthesis. Naturwissenschaften. (2009);96(11):1339-54.

 Kutschera U., Wang Z.Y.. Brassinosteroid action in flowering plants: a Darwinian perspective. (2012) Journal of Experimental Botany, Page 1 of 12 doi:10.1093/jxb/ers065

 Lau S., Shao N., Bock R., Jürgens G., De Smet I.. Auxin signaling in algal lineages: fact or myth? Trends Plant Sci. (2009);14(4):182-8.

 Lazcano A.. Historical Development of Origins Research. Cold Spring Harb Perspect Biol. (2011):a002089.

 Le Bail A., Billoud B., Kowalczyk N., Kowalczyk M., Gicquel M., Le Panse S., Stewart S., Scornet D., Cock J.M., Ljung K. and Charrier B.. Auxin metabolism and function in the multicellular brown alga Ectocampus siliculosus. Plant Physiol. 2010 May; 153(1): 128–144Lee S., Flores-Encarnación M., Contreras-Zentella M., Garcia-Flores L., Escamilla J. E. and Kennedy C. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J. Bacteriol. (2004) 186(16): 5384– 5391.

 Lobayan R.M., Schmit M.C., Jubert A.H., Vitale A.. Theoretical studies and vibrational spectra of 1H-indole-3-acetic acid. Exploratory conformational analysis of dimeric species. J. Mol. Model. (2011) 17(6):1381-92.

 Louise A. Lewis and Richard M. McCourt. Green algae and the origin of land plants Am. J. Bot. (2004)vol. 91 no. 10 1535-1556.

 Marchant A., Bhalerao R., Casimiroc I., Eklöfb J., Caseroc P.J., Bennetta M. and Sandberg G.. AUX1 Promotes Lateral Root Formation by Facilitating Indole-3- Acetic Acid Distribution between Sink and Source Tissues in the Arabidopsis Seedling. Plant Cell (2002) vol 14 no 3 589-597.

 Maruyama A., Maeda, M. and Simidu, U.. Microbial production of auxin indole-3- acetic acid in marine sediments. Mar. Ecol. Prog. Ser. (1989) 58:69–75.

 Mazur H., Konop A. and Synak R.. Indole-3-actic acid in the culture medium of two axenic green microalgae J. Appl. Phycol., (2001), 13 pp. 35–42

 McCourt R.M., Delwiche C.F., Karol K.G.. Charophyte algae and land plant origins. Trends Ecol Evol. (2004);19(12):661-6.

 Mironova V.V., Omelyanchuk N.A., Yosiphon G., Fadeev S.I., Kolchanov N.A., Mjolsness E., Likhoshvai V.A.. A plausible mechanism for auxin patterning along the developing root. BMC Syst Biol. (2010) 21;4:98.

 Mora D.P., Tittensor S. A., Simpson A.G.B., Worm B.. How many species are there on earth and in the ocean? PLoS Biol., Published: (2011) Doi: 10.1371/journal.pbio.1001127

 Nature 408, 796-815, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.

 Oren A.. A hundred years of Dunaliella research. Saline Systems. 2005; 1: 2. Published (2005). doi: 10.1186/1746-1448-1-2.

 Paál A.. Über Phototropische Reizleitung. Jahrbuch für Wissenschaften Botanik (1919) 58: 406–458.

 Palme K., Gälweiler L.. PIN-pointing the molecular basis of auxin transport. Curr Opin Plant Biol. (1999);2(5):375-81.

 Patterson D.J.. The diversity of eukaryotes. Am Nat. (1999) ;154(S4):S96-S124.  Pawlowski J., Burki F. Untangling the phylogeny of amoeboid protists. J. Eukaryot

Microbiol. (2009);56(1):16-25.

 Pencík A., Rolcík J., Novák O., Magnus V., Barták P., Buchtík R., Salopek-Sondi B., Strnad M.. Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta. (2009);80(2):651-5.

 Perata P., Matsukura C., Vernieri P., Yamaguchi J., Sugar Repression of a Gibberellin-Dependent Signaling Pathway in Barley Embryos Plant Cell (1997); N. 9; 2197:2208 .

 Péret B., De Rybel B., Casimiro I., Benková E., Swarup R., Laplaze L., Beeckman T. and Bennett M.J.. Arabidopsis lateral root development: an emerging story. Trends in Plant Science,(2009) Volume 14, Issue 7, 399-408.

 Petrášek J., Mravec J., Bouchard R., Blakeslee J.J., Abas M., Seifertová D., Wiśniewska J., Zerihun T., Kubeš M., Čovanová M., Pankaj D., Petr S., Benková E., Lucie Perry, Křeček P., Lee O.R., Fink G.R., Geisler M., Angus S. M., Luschnig C., Zažímalová E. , Friml J.. PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux. Published Online April 6 2006 Science (2006) Vol. 312 no. 5775 pp. 914-918.

 Plattner H., Contractile vacuole complex-its expanding protein inventory. Int Rev Cell Mol Biol. (2013);306:371-416.

 Plattner H., Walker T.L., Purton S, Becker D.K., Collet C. Mocroalgae asbioreactors. Plant Cell. Rep. (2005) 24:629–641.

 Prasad P.V.D.. Effects of some growth substances on three freshwater green algae, Cryptogamie Algae. (1982) 4:315-21

 Preetha K., John L., Subin C.S., Vijayan K.K. Phenotypic and genetic characterization of Dunaliella (Chlorophyta) from Indian salinas and their diversity. Aquat Biosyst. (2012);8(1):27.

 Rama Rao K. Effect of seaweed extract on Zizyphus mauratiana LamkJ. Indian Bot.Soc., 71 (1991), pp. 19–21

 Ramakrishna A., Dayananda C., Giridhar P., Rajasekaran T., Ravishankar G.A. Photoperiod influences endogenous indoleamines in cultured green alga Dunaliella bardawil. Indian J Exp Biol. (2011) 49(3):234-40.

 Rensing S.A., Lang D., Zimmer A.D., Terry A., Salamov A., Shapiro H., Nishiyama T., Perroud P.F., Lindquist E.A., Kamisugi Y., Tanahashi T., Sakakibara K., Fujita T.,Oishi K., Shin-I T., Kuroki Y., Toyoda A., Suzuki Y., Hashimoto S., Yamaguchi K., Sugano S., Kohara Y., Fujiyama A., Anterola A., Aoki S., Ashton N., Barbazuk W.B.,Barker E., Bennetzen J.L., Blankenship R., Cho S.H., Dutcher S.K., Estelle M., Fawcett J.A., Gundlach H., Hanada K., Heyl A., Hicks K.A., Hughes J., Lohr

M., Mayer K.,Melkozernov A., Murata T., Nelson D.R., Pils B., Prigge M., Reiss B., Renner T., Rombauts S., Rushton P.J., Sanderfoot A., Schween G., Shiu S.H., Stueber K.,Theodoulou F.L., Tu H., Van de Peer Y., Verrier P.J., Waters E., Wood A., Yang L., Cove D., Cuming A.C., Hasebe M., Lucas S., Mishler B.D., Reski R., Grigoriev I.V.,Quatrano R.S., Boore J.L., The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science. (2008) 319(5859):64-9.

 Ross J.J. and Reid J.B.. Evolution of growth-promoting plant hormones. Functional Plant Biology (2010) 37, 795–805.

 Schmit M. C. P., Jubert A.H., Vitale A., Lobayan R. M.. Electronic structure and conformational properties of 1H-indole-3-acetic acid J Mol Model. (2011) 17(6):1227-39.

 Stirk W. A., Ördög V., Novák O., Rolčík J., Strnad M., Bálint P., van Staden J..Auxin and cytokinin relationships in 24 microalgal strains. Journal of Phycology (2013) Volume 49, Issue 3, pages 459–467.

 Stirk W.A., Ördög V., Van Staden J., Jäger K. .Cytokinin-and auxin-like activity in Cyanophyta and microalgae J.Appl. Phycol. (2002), 14, pp. 215–221

 Stirk W.A., Arthur G. D., Lourens A. F., Novák O., Strnad M., van Staden J..Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature J. Appl. Phycol. (2004), 16, pp. 31–39

 Sztein A.E., Cohen J.D., CookT.J.. Evolutionary patterns in the auxin metabolism of green plants. Int. J. Plant Sci. (2000) 161: 849-859.

 Taiz I.L. and Zeiger E. [Eds.] Plant Physiology. Sinauer Associates Inc. Publishers,Sunderland, Massachusetts, USA, pp. 423–60.

 Teale W.D., Paponov I. A., Ditengou F. and Palme K.. Auxin and the developing root of Arabidopsis thaliana. Physiologia Plantarum (2005) 123: 130–138.

 Tie-song L., Chang-hai W., Dong-ling Z.. Isolation and purification of auxin IAA from kelp and analysis by high performance liquid chromatography Journal of Harbin Institute of Technology 2009-05.

 Van Norman J.M. and Benfey P.N. Arabidopsis thaliana as a model organism in systems biology Wiley Interdiscip Rev Syst Biol Med. (2009) 1(3):372-9.

 Vance B.D., Phytohormone effects on cell division in Chlorella pyrenoidosa chick (TX-7-11-05) (Chlorellaceae J. Plant Growth Regul. (1987), 5, pp. 169–173

 Viaene T., Delwiche C.F., Rensing S.A., Friml J. Origin and evolution of PIN auxin transporters in the green lineage. Trends Plant Sci. (2013);18(1):5-10.  Von Schwartzenberg K., Núñez M. F., Blaschke H., Dobrev P. I., Novák O., Motyka

V. and Strnad M.. Cytokinins in the BryophytePhyscomitrella patens: analysis of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol.( 2007) 145:786–800. Walne P.R.. Experiments in the large-scale culture of larvae of Ostrea edulis L.

Fish. Invest. London, (1966) Ser. 2, 25: 1-10.

 Wang F., Bai M.Y., Deng Z., Oses-Prieto J.A., Burlingame A.L., Lu T., Chong K., Wang Z.Y.. Proteomic study identifies proteins involved in brassinosteroid regulation of rice growth. J Integr Plant Biol. (2010) ;52(12):1075-85.

 Wang Y.W., Yuan J.Q., Gao X., Yang X.Y.. Stage specific appearance of cytoplasmic microtubules around the surviving nuclei during the third prezygotic division of Paramecium.Zoological Research, (2012) Vol. 33, No. 6, pp. 98-103  Went F.W.. Wuchsstoff und Wachstum. Doctorial thesis. Extrait du Recueil des

Travaux botaniques nèerlandais vol. XXV 1928.

 Wijffels R. H., Barbosa M. J.. An Outlook on Microalgal Biofuels Science (2010): Vol. 329 no. 5993 pp. 796-799

 Won C., Shen X., Mashiguchi K., Zheng Z., Dai X., Cheng Y., Kasahara H., Kamiya Y., Chory J., Zhao Y.. Conversion of tryptophan to indole-3-acetic acid by Tryptophan Aminotrasferases of Arabidopsis and Yucca in Arabidopsis. Proc Natl Acad Sci U S A. (2011) ;108(45):18518-23.

 Woodward A.W., Bartel B.. Auxin: regulation, action, and interaction. Ann Bot. (2005);95(5):707-35.

 Yokoya N. S., West J.A., Luchi A. E.. Effects of plant growth regulators on callus formation, growth and regeneration in axenic tissue cultures of Gracilaria tenuistipitata and Gracilaria perplexa (Gracilariales, Rhodophyta) Phycological Research (2004) Volume 52, Issue 3, pages 244–254.

 Zhong B., Xi Z., Goremykin V.V., Fong R., McLenachan P.A., Novis P.M., Davis C.C., Penny D.. Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. Molecular biology and evolution (2013): doi: 10.1093/molbev/mst200.

Documenti correlati