Tra le variabili statisticamente significative emerse dall’analisi troviamo il sito
d’infezione: si è dimostrata più grave un’infezione respiratoria (presente nel 40,0%
dei pazienti deceduti vs. 22,2% dei sopravvissuti) piuttosto che genito-urinaria (6,7% nello stesso gruppo vs. 33,3%).
Una recente metanalisi del 2016 analizza l’impatto del focolaio infettivo sulla mortalità per sepsi. Diversi studi presi in considerazione dagli autori hanno trovato un rischio di mortalità ospedaliera significativamente inferiore per le infezioni genitourinarie rispetto a quelle respiratorie 122.
Tra le variabili correlate a decesso risulta significativo anche l’indice di Charlson (in media 7,2 vs. 5,9). La presenza di questo score non è sorprendente in quanto esso stesso è un indicatore di sopravvivenza a 10 anni, inoltre la letteratura evidenzia come le comorbidità del paziente e lo stato di salute siano fattori prognostici importanti nella sepsi 114.
Come prevedibile, nei pazienti deceduti, il SOFA score è risultato in media maggiore (8,4 vs. 5) come anche la percentuale di progressione a shock (60% vs 20%). Anche i giorni di ricovero sono stati minori nei pazienti deceduti (mediana pari a 1 giorno vs. una media di 5,5 nei pazienti trasferiti o dimessi).
CONCLUSIONI
La gestione dei pazienti con sepsi e shock settico nell’Unità Operativa è risultata conforme a quanto indicato dalle linee guida della SSC.
Per quanto riguarda le tempistiche non tutti i pazienti presi in considerazione hanno ricevuto la prima dose di antibiotici entro 3h ma questo è dovuto principalmente al fatto che la maggior parte di essi non presentava parametri di criticità tali (cioè un qSOFA≥2) da giustificare una somministrazione di antimicrobici prima di ricevere ulteriori dati a supporto di una condizione settica. Inoltre, essendo stata più della metà della popolazione valutata con un codice di priorità non rosso al triage, ha giocato un ruolo importante l’attesa prima della visita medica: in questo senso l’introduzione della “Incharge Room” in Pronto Soccorso ha portato a un incremento significativo della velocità di presa in carico dei pazienti.
L’affollamento nel DEA non sembra condizionare l’inizio della terapia: al contrario, è proprio in condizioni di maggiori accessi che è stata evidenziata una maggior rapidità d’inizio della somministrazione di fluidi.
Come prevedibile sono stati i pazienti più critici (qSOFA score ≥2, pressione arteriosa media inferiore) a ricevere prima i fluidi.
Considerando il ruolo del qSOFA anche nella somministrazione di antimicrobici (più veloce in presenza di un punteggio ≥2), la presenti tesi ha dimostrato come questo “score”, introdotto dalle nuove linee guida, si sia rilevato nell’U.O. uno strumento innovativo importante per la gestione rapida del paziente settico.
Nei pazienti con numerose comorbidità rimane però meno facile individuare precocemente una condizione infettiva sottostante il quadro clinico e quindi iniziare rapidamente il trattamento antimicrobico.
I fattori principali che condizionano l’evoluzione a shock settico sono legati al paziente (leucociti bassi), al grado di disfunzione d’organo raggiunto (SOFA score elevato, MAP ridotta) e al tipo d’infezione (focolai infettivi multipli e residenza in RSA dove è probabilmente presente un maggior rischio di colonizzazione da parte di batteri multi-resistenti).
I fattori principali che condizionano il decesso, avvenuto nella metà dei casi entro il primo giorno di ricovero, sono anch’essi legati al paziente (maggior numero di
comorbidità), al grado di disfunzione d’organo raggiunto (SOFA score elevato, evoluzione a shock) e al tipo d’infezione (focolaio infettivo respiratorio).
Infine, mentre i pazienti più critici hanno una distribuzione più omogenea degli accessi durante la giornata, sembra che i pazienti dimostratisi a minor rischio di evoluzione verso shock e decesso si siano concentrati soprattutto durante le ore diurne, in presenza di un maggior numero di ingressi in Pronto Soccorso.
Il timing della terapia non influenza in maniera significativa l’esito: dalle tendenze emerse nello studio sembra essere stata più importante una precoce rianimazione emodinamica rispetto alla terapia antimicrobica.
In conclusione il qSOFA ha permesso di individuare e trattare precocemente il paziente settico. Purtroppo nei pazienti con età avanzata ed alto numero di comorbidità, questo non ha portato ad un significativo beneficio in termini prognostici. A questo va aggiunto che il medico di Pronto Soccorso non sa in quali pazienti il processo patologico sia progredito oltre l’”inflection point” ma proprio per questo motivo non può ritardare la somministrazione dell’antimicrobico, per riuscire a salvare quella percentuale di pazienti ancora recuperabile.
BIBLIOGRAFIA
1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama. 2016;315(8):801-810.
2. Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):775-787.
3. Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA.
2016;315(8):762-774.
4. Freund Y, Lemachatti N, Krastinova E, et al. Prognostic Accuracy of Sepsis-3 Criteria for In- Hospital Mortality Among Patients With Suspected Infection Presenting to the Emergency Department.
JAMA. 2017;317(3):301-308.
5. Raith EP, Udy AA, Bailey M, et al. Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for In-Hospital Mortality Among Adults With Suspected Infection Admitted to the
Intensive Care Unit. JAMA. 2017;317(3):290-300.
6. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31(4):1250-1256.
7. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45(3):486-552.
8. Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med.
1995;23(10):1638-1652.
9. Le Gall JR, Klar J, Lemeshow S, et al. The Logistic Organ Dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU Scoring Group. JAMA. 1996;276(10):802-810. 10. Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707- 710.
11. Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014;311(13):1308-1316.
12. Churpek MM, Zadravecz FJ, Winslow C, Howell MD, Edelson DP. Incidence and Prognostic Value of the Systemic Inflammatory Response Syndrome and Organ Dysfunctions in Ward Patients.
Am J Respir Crit Care Med. 2015;192(8):958-964.
13. Knaus WA, Sun X, Nystrom O, Wagner DP. Evaluation of definitions for sepsis. Chest. 1992;101(6):1656-1662.
14. Kreger BE, Craven DE, McCabe WR. Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med. 1980;68(3):344-355.
15. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit
Care Med. 2001;29(7):1303-1310.
16. Poutsiaka DD, Davidson LE, Kahn KL, Bates DW, Snydman DR, Hibberd PL. Risk factors for death after sepsis in patients immunosuppressed before the onset of sepsis. Scand J Infect Dis. 2009;41(6-7):469-479.
17. O'Brien JM, Lu B, Ali NA, et al. Alcohol dependence is independently associated with sepsis, septic shock, and hospital mortality among adult intensive care unit patients. Crit Care Med.
2007;35(2):345-350.
18. Danai PA, Moss M, Mannino DM, Martin GS. The epidemiology of sepsis in patients with malignancy. Chest. 2006;129(6):1432-1440.
19. Tolsma V, Schwebel C, Azoulay E, et al. Sepsis severe or septic shock: outcome according to immune status and immunodeficiency profile. Chest. 2014;146(5):1205-1213.
20. Leligdowicz A, Dodek PM, Norena M, Wong H, Kumar A, Group C-oAToSSDR. Association between source of infection and hospital mortality in patients who have septic shock. Am J Respir Crit
Care Med. 2014;189(10):1204-1213.
21. Labelle A, Juang P, Reichley R, et al. The determinants of hospital mortality among patients with septic shock receiving appropriate initial antibiotic treatment*. Crit Care Med. 2012;40(7):2016- 2021.
22. Howell MD, Davis AM. Management of Sepsis and Septic Shock. JAMA. 2017;317(8):847- 848.
23. Luce JM. Pathogenesis and management of septic shock. Chest. 1987;91(6):883-888. 24. Ghosh S, Latimer RD, Gray BM, Harwood RJ, Oduro A. Endotoxin-induced organ injury. Crit
Care Med. 1993;21(2 Suppl):S19-24.
25. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368-1377.
26. Yealy DM, Kellum JA, Huang DT, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683-1693.
27. Peake SL, Delaney A, Bailey M, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496-1506.
28. Mouncey PR, Osborn TM, Power GS, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301-1311.
29. Angus DC, Barnato AE, Bell D, et al. A systematic review and meta-analysis of early goal- directed therapy for septic shock: the ARISE, ProCESS and ProMISe Investigators. Intensive Care
Med. 2015;41(9):1549-1560.
30. Rowan KM, Angus DC, Bailey M, et al. Early, Goal-Directed Therapy for Septic Shock - A Patient-Level Meta-Analysis. N Engl J Med. 2017;376(23):2223-2234.
31. Casserly B, Phillips GS, Schorr C, et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit Care Med. 2015;43(3):567- 573.
32. Tang Y, Choi J, Kim D, et al. Clinical predictors of adverse outcome in severe sepsis patients with lactate 2-4 mM admitted to the hospital. QJM. 2015;108(4):279-287.
33. Haas SA, Lange T, Saugel B, et al. Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients. Intensive Care Med. 2016;42(2):202-210.
34. Finfer S, Bellomo R, Boyce N, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247-2256.
35. Caironi P, Tognoni G, Masson S, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412-1421.
36. Rochwerg B, Alhazzani W, Sindi A, et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014;161(5):347-355.
37. Patel A, Laffan MA, Waheed U, Brett SJ. Randomised trials of human albumin for adults with sepsis: systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ. 2014;349:g4561.
38. Rochwerg B, Alhazzani W, Gibson A, et al. Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis. Intensive Care Med.
2015;41(9):1561-1571.
39. Raghunathan K, Bonavia A, Nathanson BH, et al. Association between Initial Fluid Choice and Subsequent In-hospital Mortality during the Resuscitation of Adults with Septic Shock. Anesthesiology. 2015;123(6):1385-1393.
40. Xu JY, Chen QH, Xie JF, et al. Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: a meta-analysis of randomized clinical trials. Crit Care. 2014;18(6):702.
41. Jiang L, Jiang S, Zhang M, Zheng Z, Ma Y. Albumin versus other fluids for fluid resuscitation in patients with sepsis: a meta-analysis. PLoS One. 2014;9(12):e114666.
42. Gaieski DF, Mikkelsen ME, Band RA, et al. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med. 2010;38(4):1045-1053.
43. Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med. 2003;31(12):2742-2751. 44. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest. 2000;118(1):146-155.
45. Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am
J Med. 2003;115(7):529-535.
46. Leibovici L, Paul M, Poznanski O, et al. Monotherapy versus beta-lactam-aminoglycoside combination treatment for gram-negative bacteremia: a prospective, observational study. Antimicrob
Agents Chemother. 1997;41(5):1127-1133.
47. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589-1596.
48. Schramm GE, Johnson JA, Doherty JA, Micek ST, Kollef MH. Methicillin-resistant Staphylococcus aureus sterile-site infection: The importance of appropriate initial antimicrobial treatment. Crit Care Med. 2006;34(8):2069-2074.
49. Kumar A, Ellis P, Arabi Y, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009;136(5):1237-1248.
50. Ferrer R, Martin-Loeches I, Phillips G, et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med. 2014;42(8):1749-1755.
51. Whiles BB, Deis AS, Simpson SQ. Increased Time to Initial Antimicrobial Administration Is Associated With Progression to Septic Shock in Severe Sepsis Patients. Crit Care Med.
2017;45(4):623-629.
52. Johnson MT, Reichley R, Hoppe-Bauer J, Dunne WM, Micek S, Kollef M. Impact of previous antibiotic therapy on outcome of Gram-negative severe sepsis. Crit Care Med. 2011;39(8):1859-1865. 53. Verhoef J, Hustinx WM, Frasa H, Hoepelman AI. Issues in the adjunct therapy of severe sepsis. J Antimicrob Chemother. 1996;38(2):167-182.
54. Sibbald WJ, Vincent JL. Round table conference on clinical trials for the treatment of sepsis.
Crit Care Med. 1995;23(2):394-399.
55. Savage RD, Fowler RA, Rishu AH, et al. Pathogens and antimicrobial susceptibility profiles in critically ill patients with bloodstream infections: a descriptive study. CMAJ Open. 2016;4(4):E569- E577.
56. Pletz MW, Bloos F, Burkhardt O, et al. Pharmacokinetics of moxifloxacin in patients with severe sepsis or septic shock. Intensive Care Med. 2010;36(6):979-983.
57. van Zanten AR, Polderman KH, van Geijlswijk IM, van der Meer GY, Schouten MA, Girbes AR. Ciprofloxacin pharmacokinetics in critically ill patients: a prospective cohort study. J Crit Care. 2008;23(3):422-430.
58. Blot S, Koulenti D, Akova M, et al. Does contemporary vancomycin dosing achieve therapeutic targets in a heterogeneous clinical cohort of critically ill patients? Data from the multinational DALI study. Crit Care. 2014;18(3):R99.
59. Zelenitsky S, Rubinstein E, Ariano R, et al. Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob
Agents. 2013;41(3):255-260.
60. Preston SL, Drusano GL, Berman AL, et al. Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. JAMA. 1998;279(2):125-129.
61. Kashuba AD, Nafziger AN, Drusano GL, Bertino JS. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother.
1999;43(3):623-629.
62. Roberts JA, Abdul-Aziz MH, Davis JS, et al. Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am J Respir Crit
Care Med. 2016;194(6):681-691.
63. Harvey S, Harrison DA, Singer M, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial.
Lancet. 2005;366(9484):472-477.
64. Richard C, Warszawski J, Anguel N, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2003;290(20):2713-2720.
65. Wheeler AP, Bernard GR, Thompson BT, et al. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354(21):2213-2224.
66. Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit
Care Med. 2000;162(1):134-138.
67. Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care
Med. 2011;184(5):514-520.
68. Asfar P, Meziani F, Hamel JF, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583-1593.
69. Lamontagne F, Meade MO, Hébert PC, et al. Higher versus lower blood pressure targets for vasopressor therapy in shock: a multicentre pilot randomized controlled trial. Intensive Care Med. 2016;42(4):542-550.
70. Hylands M, Moller MH, Asfar P, et al. A systematic review of vasopressor blood pressure targets in critically ill adults with hypotension. Can J Anaesth. 2017;64(7):703-715.
71. Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42(12):1935-1947.
72. Jones AE, Shapiro NI, Trzeciak S, et al. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303(8):739-746. 73. Liu V, Morehouse JW, Soule J, Whippy A, Escobar GJ. Fluid volume, lactate values, and mortality in sepsis patients with intermediate lactate values. Ann Am Thorac Soc. 2013;10(5):466-473. 74. Jansen TC, van Bommel J, Schoonderbeek FJ, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182(6):752-761.
75. Gu WJ, Zhang Z, Bakker J. Early lactate clearance-guided therapy in patients with sepsis: a meta-analysis with trial sequential analysis of randomized controlled trials. Intensive Care Med. 2015;41(10):1862-1863.
76. Simpson SQ, Gaines M, Hussein Y, Badgett RG. Early goal-directed therapy for severe sepsis and septic shock: A living systematic review. J Crit Care. 2016;36:43-48.
77. Azuhata T, Kinoshita K, Kawano D, et al. Time from admission to initiation of surgery for source control is a critical determinant of survival in patients with gastrointestinal perforation with associated septic shock. Crit Care. 2014;18(3):R87.
78. Buck DL, Vester-Andersen M, Møller MH, Surgery DCRoE. Surgical delay is a critical determinant of survival in perforated peptic ulcer. Br J Surg. 2013;100(8):1045-1049.
79. Karvellas CJ, Abraldes JG, Zepeda-Gomez S, et al. The impact of delayed biliary
decompression and anti-microbial therapy in 260 patients with cholangitis-associated septic shock.
Aliment Pharmacol Ther. 2016;44(7):755-766.
80. Martin C, Papazian L, Perrin G, Saux P, Gouin F. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest. 1993;103(6):1826-1831.
81. De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779-789.
82. Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA. 1994;272(17):1354-1357.
83. De Backer D, Aldecoa C, Njimi H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis*. Crit Care Med. 2012;40(3):725-730.
84. Patel GP, Grahe JS, Sperry M, et al. Efficacy and safety of dopamine versus norepinephrine in the management of septic shock. Shock. 2010;33(4):375-380.
85. SK M, R D, A C. Comparison of norepinephrine and dopamine in the management of septic shock using impedance cardiography. In. Vol 11. Indian J Crit Care Med2007:186-191.
86. Ruokonen E, Takala J, Kari A, Saxén H, Mertsola J, Hansen EJ. Regional blood flow and oxygen transport in septic shock. Crit Care Med. 1993;21(9):1296-1303.
87. Morelli A, Ertmer C, Rehberg S, et al. Phenylephrine versus norepinephrine for initial hemodynamic support of patients with septic shock: a randomized, controlled trial. Crit Care. 2008;12(6):R143.
88. Russell JA, Walley KR, Gordon AC, et al. Interaction of vasopressin infusion, corticosteroid treatment, and mortality of septic shock. Crit Care Med. 2009;37(3):811-818.
89. Lauzier F, Lévy B, Lamarre P, Lesur O. Vasopressin or norepinephrine in early hyperdynamic septic shock: a randomized clinical trial. Intensive Care Med. 2006;32(11):1782-1789.
90. Luckner G, Dünser MW, Stadlbauer KH, et al. Cutaneous vascular reactivity and flow motion response to vasopressin in advanced vasodilatory shock and severe postoperative multiple organ dysfunction syndrome. Crit Care. 2006;10(2):R40.
91. Gordon AC, Mason AJ, Thirunavukkarasu N, et al. Effect of Early Vasopressin vs
Norepinephrine on Kidney Failure in Patients With Septic Shock: The VANISH Randomized Clinical Trial. JAMA. 2016;316(5):509-518.
92. Albanèse J, Leone M, Delmas A, Martin C. Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Crit Care Med. 2005;33(9):1897-1902.
93. Boccara G, Ouattara A, Godet G, et al. Terlipressin versus norepinephrine to correct refractory arterial hypotension after general anesthesia in patients chronically treated with renin-angiotensin system inhibitors. Anesthesiology. 2003;98(6):1338-1344.
94. Myburgh JA, Higgins A, Jovanovska A, et al. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 2008;34(12):2226-2234.
95. Morelli A, Ertmer C, Rehberg S, et al. Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): a randomized, controlled pilot study. Crit Care. 2009;13(4):R130.
96. Havel C, Arrich J, Losert H, Gamper G, Müllner M, Herkner H. Vasopressors for hypotensive shock. Cochrane Database Syst Rev. 2011(5):CD003709.
97. Vasu TS, Cavallazzi R, Hirani A, Kaplan G, Leiby B, Marik PE. Norepinephrine or dopamine for septic shock: systematic review of randomized clinical trials. J Intensive Care Med.
98. Vail E, Gershengorn HB, Hua M, Walkey AJ, Rubenfeld G, Wunsch H. Association Between US Norepinephrine Shortage and Mortality Among Patients With Septic Shock. JAMA.
2017;317(14):1433-1442.
99. Nguyen HB, Lu S, Possagnoli I, Stokes P. Comparative Effectiveness of Second Vasoactive Agents in Septic Shock Refractory to Norepinephrine. J Intensive Care Med. 2017;32(7):451-459. 100. Hollenberg SM, Ahrens TS, Annane D, et al. Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit Care Med. 2004;32(9):1928-1948.
101. Rhodes A, Bennett ED. Early goal-directed therapy: an evidence-based review. Crit Care
Med. 2004;32(11 Suppl):S448-450.
102. Bersten AD, Hersch M, Cheung H, Rutledge FS, Sibbald WJ. The effect of various sympathomimetics on the regional circulations in hyperdynamic sepsis. Surgery. 1992;112(3):549- 561.
103. Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36(1):296-327. 104. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic