• Non ci sono risultati.

~ 66 ~

Nel presente studio è stato dimostrato come UPA non influenzi direttamente la migrazione delle cellule stromali endometriali e come, pertanto, non influisca sul riarrangiamento del citoscheletro di actina o sulle protrusioni di membrana, né inneschi la formazione di complessi di adesione focale o l’attivazione delle vie di segnalazione mediate da molecole correlate alle modifiche conformazionali e al movimento delle ESC come moesina o FAK. Quanto descritto si discosta da ciò che accade fisiologicamente in presenza di E2 e P4 i quali sono in grado di indurre la migrazione delle cellule stromali endometriali, il riarrangiamento del citoscheletro di actina e le protrusione di membrana, con la formazione di filopodi e lamellipodi, per mezzo della fosforilazione di Y397-FAK e T558-Moesina; tuttavia UPA, in combinazione con E2 o P4, è in grado di opporsi ai loro effetti stimolanti cosicché la molecola in questione è in grado di inibire indirettamente la migrazione delle ESC, il riarrangiamento del citoscheletro di actina e le protrusioni di membrana influenzando negativamente l’espressione di p-moesina e p-FAK.

In conclusione i risultati ottenuti forniscono indizi molecolari relativi alle modificazioni endometriali UPA-correlate mostrando come i PAECs potrebbero essere ricondotti ai peculiari effetti citoscheletrici indotti dalla molecola in questione sulle cellule stromali e, in particolare, all’interferenza con l’azione di E2 e P4. Inoltre, attraverso l’identificazione di quest’ultima correlazione, è possibile rafforzare l’idea che le modificazioni strutturali riscontrate nell’endometrio durante l’esposizione ad UPA non siano tanto correlate ad un’iperstimolazione cellulare quanto piuttosto alla possibilità di interferire con gli effetti estrogenici.

Queste informazioni contribuiscono alla prosecuzione della caratterizzazione dell’azione endometriale mediate da UPA e potrebbero rivelarsi utili per il potenziale impiego di questa molecola nel trattamento di condizioni nelle quali l’obiettivo è antagonizzare gli effetti estrogenici sull’endometrio come nel caso dell’endometriosi, dell’iperplasia o delle neoplasie endometriali.

~ 67 ~

~ 68 ~

1. Wagenfeld, A., et al., Selective progesterone receptor modulators (SPRMs):

progesterone receptor action, mode of action on the endometrium and treatment options in gynecological therapies. Expert Opinion on Therapeutic Targets, 2016.

20(9): p. 1045-1054.

2. Gemzell-Danielsson, K. and C.X. Meng, Emergency contraception: potential role

of ulipristal acetate. Int J Womens Health, 2010. 2: p. 53-61.

3. Attardi, B.J., et al., In vitro antiprogestational/antiglucocorticoid activity and

progestin and glucocorticoid receptor binding of the putative metabolites and synthetic derivatives of CDB-2914, CDB-4124, and mifepristone. J Steroid

Biochem Mol Biol, 2004. 88(3): p. 277-88.

4. Melis, G.B., et al., Pharmacokinetic evaluation of ulipristal acetate for uterine

leiomyoma treatment. Expert Opin Drug Metab Toxicol, 2012. 8(7): p. 901-8.

5. Wilcox, A.J., C.R. Weinberg, and D.D. Baird, Timing of sexual intercourse in

relation to ovulation. Effects on the probability of conception, survival of the pregnancy, and sex of the baby. N Engl J Med, 1995. 333(23): p. 1517-21.

6. Dixon, G.W., et al., Ethinyl estradiol and conjugated estrogens as postcoital

contraceptives. JAMA, 1980. 244(12): p. 1336-9.

7. Trussell, J., G. Rodriguez, and C. Ellertson, New estimates of the effectiveness of

the Yuzpe regimen of emergency contraception. Contraception, 1998. 57(6): p. 363-

9.

8. Cheng, L., Y. Che, and A.M. Gulmezoglu, Interventions for emergency

contraception. Cochrane Database Syst Rev, 2012(8): p. CD001324.

9. Serge Rozenberg, J.P., Eliza Pazzaglia, Christine Gilles, Yannick Manigart and Jean Vandromme, The use of selective progestin receptor modulators (SPRM) and

more specifically ulipristal acetate in the practice of gynaecology. Aust N Z J

Obstet Gynaecol, 2017.

10. Brache, V., et al., Immediate pre-ovulatory administration of 30 mg ulipristal

acetate significantly delays follicular rupture. Hum Reprod, 2010. 25(9): p. 2256-

63.

11. Kim, A. and M.B. Bridgeman, Ulipristal Acetate (ella): A Selective Progesterone

Receptor Modulator For Emergency Contraception. P T, 2011. 36(6): p. 325-31.

12. Keenan, J.A., Ulipristal acetate: contraceptive or contragestive? Ann Pharmacother, 2011. 45(6): p. 813-5.

~ 69 ~

13. Creinin, M.D., et al., Progesterone receptor modulator for emergency

contraception: a randomized controlled trial. Obstet Gynecol, 2006. 108(5): p.

1089-97.

14. Glasier, A.F., et al., Ulipristal acetate versus levonorgestrel for emergency

contraception: a randomised non-inferiority trial and meta-analysis. Lancet, 2010.

375(9714): p. 555-62.

15. Glasier, A., Emergency contraception: clinical outcomes. Contraception, 2013.

87(3): p. 309-13.

16. Wallach, E.E. and N.F. Vlahos, Uterine myomas: an overview of development,

clinical features, and management. Obstet Gynecol, 2004. 104(2): p. 393-406.

17. Walker, C.L. and E.A. Stewart, Uterine fibroids: the elephant in the room. Science, 2005. 308(5728): p. 1589-92.

18. Flake, G.P., J. Andersen, and D. Dixon, Etiology and pathogenesis of uterine

leiomyomas: a review. Environ Health Perspect, 2003. 111(8): p. 1037-54.

19. Kjerulff, K.H., et al., Uterine leiomyomas. Racial differences in severity, symptoms

and age at diagnosis. J Reprod Med, 1996. 41(7): p. 483-90.

20. V. Kumar, A.K.A., N. Fausto, J.C. Aster, Robbins e Cotran - Le basi patologiche

delle malattie. 2011.

21. Munro, M.G., et al., The FIGO classification of causes of abnormal uterine

bleeding in the reproductive years. Fertil Steril, 2011. 95(7): p. 2204-8, 2208 e1-3.

22. G. Pescetto, L.D.C., D. Pecorari, Ginecologia e ostetrica. 2009.

23. Levy, B., T. Mukherjee, and K. Hirschhorn, Molecular cytogenetic analysis of

uterine leiomyoma and leiomyosarcoma by comparative genomic hybridization.

Cancer Genet Cytogenet, 2000. 121(1): p. 1-8.

24. Kim, J.J., T. Kurita, and S.E. Bulun, Progesterone action in endometrial cancer,

endometriosis, uterine fibroids, and breast cancer. Endocr Rev, 2013. 34(1): p.

130-62.

25. Marsh, E.E. and S.E. Bulun, Steroid hormones and leiomyomas. Obstet Gynecol Clin North Am, 2006. 33(1): p. 59-67.

26. Bakas, P., et al., Estrogen receptor alpha and beta in uterine fibroids: a basis for

altered estrogen responsiveness. Fertil Steril, 2008. 90(5): p. 1878-85.

27. Ishikawa, H., et al., Progesterone is essential for maintenance and growth of

~ 70 ~

28. Cook, J.D. and C.L. Walker, The Eker rat: establishing a genetic paradigm linking

renal cell carcinoma and uterine leiomyoma. Curr Mol Med, 2004. 4(8): p. 813-24.

29. Tiltman, A.J., The effect of progestins on the mitotic activity of uterine

fibromyomas. Int J Gynecol Pathol, 1985. 4(2): p. 89-96.

30. Lamminen, S., et al., Proliferative activity of human uterine leiomyoma cells as

measured by automatic image analysis. Gynecol Obstet Invest, 1992. 34(2): p. 111-

4.

31. West, C.P., et al., Potential role for medroxyprogesterone acetate as an adjunct to

goserelin (Zoladex) in the medical management of uterine fibroids. Hum Reprod,

1992. 7(3): p. 328-32.

32. Bouchard, P., N. Chabbert-Buffet, and B.C. Fauser, Selective progesterone

receptor modulators in reproductive medicine: pharmacology, clinical efficacy and safety. Fertil Steril, 2011. 96(5): p. 1175-89.

33. Donnez, J., et al., Ulipristal acetate versus placebo for fibroid treatment before

surgery. N Engl J Med, 2012. 366(5): p. 409-20.

34. Lora, V., et al., Gene and protein expression of progesterone receptor isoforms A

and B, p53 and p21 in myometrium and uterine leiomyoma. Arch Gynecol Obstet,

2012. 286(1): p. 119-24.

35. Arnett-Mansfield, R.L., et al., Subnuclear distribution of progesterone receptors A

and B in normal and malignant endometrium. J Clin Endocrinol Metab, 2004.

89(3): p. 1429-42.

36. Mote, P.A., et al., Loss of co-ordinate expression of progesterone receptors A and

B is an early event in breast carcinogenesis. Breast Cancer Res Treat, 2002. 72(2):

p. 163-72.

37. Kowalik, M.K., R. Rekawiecki, and J. Kotwica, The putative roles of nuclear and

membrane-bound progesterone receptors in the female reproductive tract. Reprod

Biol, 2013. 13(4): p. 279-89.

38. Feng, Q., et al., Expression of a mitochondrial progesterone receptor (PR-M) in

leiomyomata and association with increased mitochondrial membrane potential. J

Clin Endocrinol Metab, 2014. 99(3): p. E390-9.

39. Ono, M., et al., Role of stem cells in human uterine leiomyoma growth. PLoS One, 2012. 7(5): p. e36935.

~ 71 ~

40. Farrer-Brown, G., J.O. Beilby, and M.H. Tarbit, Venous changes in the

endometrium of myomatous uteri. Obstet Gynecol, 1971. 38(5): p. 743-51.

41. Stewart, E.A. and R.A. Nowak, Leiomyoma-related bleeding: a classic hypothesis

updated for the molecular era. Hum Reprod Update, 1996. 2(4): p. 295-306.

42. Manyonda, I., E. Sinthamoney, and A.M. Belli, Controversies and challenges in

the modern management of uterine fibroids. BJOG, 2004. 111(2): p. 95-102.

43. Bulletti, C., et al., The role of leiomyomas in infertility. J Am Assoc Gynecol Laparosc, 1999. 6(4): p. 441-5.

44. Bukulmez, O. and K.J. Doody, Clinical features of myomas. Obstet Gynecol Clin North Am, 2006. 33(1): p. 69-84.

45. Cooper, N.P. and S. Okolo, Fibroids in pregnancy--common but poorly understood. Obstet Gynecol Surv, 2005. 60(2): p. 132-8.

46. Lev-Toaff, A.S., et al., Leiomyomas in pregnancy: sonographic study. Radiology, 1987. 164(2): p. 375-80.

47. Phelan, J.P., Myomas and pregnancy. Obstet Gynecol Clin North Am, 1995. 22(4): p. 801-5.

48. Bouchard, P., Current and future medical treatments for menometrorrhagia during

the premenopause. Gynecol Endocrinol, 2011. 27 Suppl 1: p. 1120-5.

49. Chabbert-Buffet, N., N. Esber, and P. Bouchard, Fibroid growth and medical

options for treatment. Fertil Steril, 2014. 102(3): p. 630-9.

50. Machado, R.B., et al., The levonorgestrel-releasing intrauterine system: its effect

on the number of hysterectomies performed in perimenopausal women with uterine fibroids. Gynecol Endocrinol, 2013. 29(5): p. 492-5.

51. Zapata, L.B., et al., Intrauterine device use among women with uterine fibroids: a

systematic review. Contraception, 2010. 82(1): p. 41-55.

52. Mitwally, M.F., L. Gotlieb, and R.F. Casper, Prevention of bone loss and

hypoestrogenic symptoms by estrogen and interrupted progestogen add-back in long-term GnRH-agonist down-regulated patients with endometriosis and premenstrual syndrome. Menopause, 2002. 9(4): p. 236-41.

53. Donnez, J., et al., Ulipristal acetate versus leuprolide acetate for uterine fibroids. N Engl J Med, 2012. 366(5): p. 421-32.

54. Parsanezhad, M.E., et al., A randomized, controlled clinical trial comparing the

~ 72 ~

agonist (triptorelin) on uterine leiomyoma volume and hormonal status. Fertil

Steril, 2010. 93(1): p. 192-8.

55. Hilario, S.G., et al., Action of aromatase inhibitor for treatment of uterine

leiomyoma in perimenopausal patients. Fertil Steril, 2009. 91(1): p. 240-3.

56. Fernandez, H., et al., Real world data of 1473 patients treated with ulipristal

acetate for uterine fibroids: Premya study results. Eur J Obstet Gynecol Reprod

Biol, 2017. 208: p. 91-96.

57. Ferrero, S., et al., Three-month treatment with ulipristal acetate prior to

laparoscopic myomectomy of large uterine myomas: a retrospective study. Eur J

Obstet Gynecol Reprod Biol, 2016. 205: p. 43-7.

58. Donnez, J., et al., Long-term treatment of uterine fibroids with ulipristal acetate. Fertil Steril, 2014. 101(6): p. 1565-73 e1-18.

59. Donnez, J., et al., Efficacy and safety of repeated use of ulipristal acetate in uterine

fibroids. Fertil Steril, 2015. 103(2): p. 519-27 e3.

60. Donnez, J., et al., Long-term medical management of uterine fibroids with ulipristal

acetate. Fertil Steril, 2016. 105(1): p. 165-173 e4.

61. Williams, A.R., et al., Endometrial morphology after treatment of uterine fibroids

with the selective progesterone receptor modulator, ulipristal acetate. Int J

Gynecol Pathol, 2012. 31(6): p. 556-69.

62. Bateman, J., et al., Histomorphological changes in endometriosis in a patient

treated with ulipristal: A case report. Pathol Res Pract, 2017. 213(1): p. 79-81.

63. Whitaker, L.H., et al., Selective progesterone receptor modulator (SPRM) ulipristal

acetate (UPA) and its effects on the human endometrium. Hum Reprod, 2017.

32(3): p. 531-543.

64. Wetendorf, M. and F.J. DeMayo, The progesterone receptor regulates

implantation, decidualization, and glandular development via a complex paracrine signaling network. Molecular and Cellular Endocrinology, 2012. 357(1-2): p. 108-

118.

65. Sivalingam, V.N., et al., Measuring the biological effect of presurgical metformin

treatment in endometrial cancer. British Journal of Cancer, 2016. 114(3): p. 281-

289.

66. Gao, F., et al., Control of regional decidualization in implantation: Role of FoxM1

~ 73 ~

67. Giudice, L.C., Clinical practice. Endometriosis. N Engl J Med, 2010. 362(25): p. 2389-98.

68. Johnson, N.P., L. Hummelshoj, and C. World Endometriosis Society Montpellier,

Consensus on current management of endometriosis. Hum Reprod, 2013. 28(6): p.

1552-68.

69. Allen, C., et al., Nonsteroidal anti-inflammatory drugs for pain in women with

endometriosis. Cochrane Database Syst Rev, 2009(2): p. CD004753.

70. Streuli, I., et al., An update on the pharmacological management of endometriosis. Expert Opin Pharmacother, 2013. 14(3): p. 291-305.

71. Dunselman, G.A., et al., ESHRE guideline: management of women with

endometriosis. Hum Reprod, 2014. 29(3): p. 400-12.

72. Merviel, P., et al., [Interest of selective progesterone receptor modulators in

endometriosis]. Gynecol Obstet Fertil, 2013. 41(9): p. 524-8.

73. Ota, H., et al., Distribution of cyclooxygenase-2 in eutopic and ectopic

endometrium in endometriosis and adenomyosis. Hum Reprod, 2001. 16(3): p. 561-

6.

74. Chishima, F., et al., Increased expression of cyclooxygenase-2 in local lesions of

endometriosis patients. Am J Reprod Immunol, 2002. 48(1): p. 50-6.

75. Jones, R.K., et al., Apoptosis, bcl-2 expression, and proliferative activity in human

endometrial stroma and endometrial granulated lymphocytes. Biol Reprod, 1998.

58(4): p. 995-1002.

76. Huniadi, C.A., et al., The effects of ulipristal on Bax/Bcl-2, cytochrome c, Ki-67

and cyclooxygenase-2 expression in a rat model with surgically induced endometriosis. Eur J Obstet Gynecol Reprod Biol, 2013. 169(2): p. 360-5.

77. Kroemer, G. and J.C. Reed, Mitochondrial control of cell death. Nat Med, 2000.

6(5): p. 513-9.

78. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA Cancer J Clin, 2013. 63(1): p. 11-30.

79. Shah, R., K. Rosso, and S.D. Nathanson, Pathogenesis, prevention, diagnosis and

treatment of breast cancer. World J Clin Oncol, 2014. 5(3): p. 283-98.

80. Knutson, T.P. and C.A. Lange, Tracking progesterone receptor-mediated actions in

~ 74 ~

81. Brisken, C., Progesterone signalling in breast cancer: a neglected hormone coming

into the limelight. Nat Rev Cancer, 2013. 13(6): p. 385-96.

82. McGowan, E.M. and C.L. Clarke, Effect of overexpression of progesterone

receptor A on endogenous progestin-sensitive endpoints in breast cancer cells. Mol

Endocrinol, 1999. 13(10): p. 1657-71.

83. Mote, P.A., et al., Progesterone receptor A predominance is a discriminator of

benefit from endocrine therapy in the ATAC trial. Breast Cancer Res Treat, 2015.

151(2): p. 309-18.

84. Poole, A.J., et al., Prevention of Brca1-mediated mammary tumorigenesis in mice

by a progesterone antagonist. Science, 2006. 314(5804): p. 1467-70.

85. Mote, P.A., et al., Germ-line mutations in BRCA1 or BRCA2 in the normal breast

are associated with altered expression of estrogen-responsive proteins and the predominance of progesterone receptor A. Genes Chromosomes Cancer, 2004.

39(3): p. 236-48.

86. Chlebowski, R.T., et al., Breast cancer after use of estrogen plus progestin in

postmenopausal women. N Engl J Med, 2009. 360(6): p. 573-87.

87. Beral, V. and C. Million Women Study, Breast cancer and hormone-replacement

therapy in the Million Women Study. Lancet, 2003. 362(9382): p. 419-27.

88. Communal, L., et al., Ulipristal acetate does not impact human normal breast

tissue. Hum Reprod, 2012. 27(9): p. 2785-98.

89. Esber, N., et al., Ulipristal Acetate Inhibits Progesterone Receptor Isoform A-

Mediated Human Breast Cancer Proliferation and BCl2-L1 Expression. PLoS One,

2015. 10(10): p. e0140795.

90. Kirkin, V., S. Joos, and M. Zornig, The role of Bcl-2 family members in

tumorigenesis. Biochim Biophys Acta, 2004. 1644(2-3): p. 229-49.

91. Leibowitz, B. and J. Yu, Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol Ther, 2010. 9(6): p. 417-22.

92. Clevers, H., Wnt/beta-catenin signaling in development and disease. Cell, 2006.

127(3): p. 469-80.

93. Bellance, C., et al., Progesterone receptor isoforms PRA and PRB differentially

contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes. Mol Biol Cell, 2013. 24(9): p. 1363-74.

~ 75 ~

94. Attardi, B.J., et al., CDB-4124 and its putative monodemethylated metabolite,

CDB-4453, are potent antiprogestins with reduced antiglucocorticoid activity: in vitro comparison to mifepristone and CDB-2914. Mol Cell Endocrinol, 2002.

188(1-2): p. 111-23.

95. Chabbert-Buffet, N., et al., Selective progesterone receptor modulators and

progesterone antagonists: mechanisms of action and clinical applications. Hum

Reprod Update, 2005. 11(3): p. 293-307.

96. Blithe, D.L., et al., Development of the selective progesterone receptor modulator

CDB-2914 for clinical indications. Steroids, 2003. 68(10-13): p. 1013-7.

97. Becker M., K.L.J., Hardin Jeff Il mondo della cellula, ed. Pearson. 2009.

98. Pollard, T.D. and J.A. Cooper, Actin, a central player in cell shape and movement. Science, 2009. 326(5957): p. 1208-12.

99. Erickson, C.A., Cell migration in the embryo and adult organism. Curr Opin Cell Biol, 1990. 2(1): p. 67-74.

100. Hirao, M., et al., Regulation mechanism of ERM (ezrin/radixin/moesin)

protein/plasma membrane association: possible involvement of

phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol,

1996. 135(1): p. 37-51.

101. Henry, M.D., C. Gonzalez Agosti, and F. Solomon, Molecular dissection of

radixin: distinct and interdependent functions of the amino- and carboxy-terminal domains. J Cell Biol, 1995. 129(4): p. 1007-22.

102. Pietromonaco, S.F., et al., Protein kinase C-theta phosphorylation of moesin in the

actin-binding sequence. J Biol Chem, 1998. 273(13): p. 7594-603.

103. Louvet-Vallee, S., ERM proteins: from cellular architecture to cell signaling. Biol Cell, 2000. 92(5): p. 305-16.

104. Nakamura, F., M.R. Amieva, and H. Furthmayr, Phosphorylation of threonine 558

in the carboxyl-terminal actin-binding domain of moesin by thrombin activation of human platelets. J Biol Chem, 1995. 270(52): p. 31377-85.

105. Sun, H.Q., et al., Gelsolin, a multifunctional actin regulatory protein. J Biol Chem, 1999. 274(47): p. 33179-82.

106. Yonemura, S., et al., Concentration of an integral membrane protein, CD43

~ 76 ~

cytoplasmic domain with actin-based cytoskeletons. J Cell Biol, 1993. 120(2): p.

437-49.

107. Serrador, J.M., et al., Moesin interacts with the cytoplasmic region of intercellular

adhesion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization. J Cell Biol, 1997. 138(6): p. 1409-23.

108. Pearson, M.A., et al., Structure of the ERM protein moesin reveals the FERM

domain fold masked by an extended actin binding tail domain. Cell, 2000. 101(3):

p. 259-70.

109. Tachibana, K., S.M. Haghparast, and J. Miyake, Inhibition of cell adhesion by

phosphorylated Ezrin/Radixin/Moesin. Cell Adh Migr, 2015. 9(6): p. 502-12.

110. Furthmayr, H., W. Lankes, and M. Amieva, Moesin, a new cytoskeletal protein and

constituent of filopodia: its role in cellular functions. Kidney Int, 1992. 41(3): p.

665-70.

111. Yamane, J., et al., Formation of microvilli and phosphorylation of ERM family

proteins by CD43, a potent inhibitor for cell adhesion: cell detachment is a potential cue for ERM phosphorylation and organization of cell morphology. Cell

Adh Migr, 2011. 5(2): p. 119-32.

112. Gates, R.E., et al., Potential role for focal adhesion kinase in migrating and

proliferating keratinocytes near epidermal wounds and in culture. Cell Growth

Differ, 1994. 5(8): p. 891-9.

113. Ilic, D., et al., Reduced cell motility and enhanced focal adhesion contact formation

in cells from FAK-deficient mice. Nature, 1995. 377(6549): p. 539-44.

114. Owens, L.V., et al., Overexpression of the focal adhesion kinase (p125FAK) in the

vascular smooth muscle cells of intimal hyperplasia. J Vasc Surg, 2001. 34(2): p.

344-9.

115. Luo, M. and J.L. Guan, Focal adhesion kinase: a prominent determinant in breast

cancer initiation, progression and metastasis. Cancer Lett, 2010. 289(2): p. 127-39.

116. Zhao, X. and J.L. Guan, Focal adhesion kinase and its signaling pathways in cell

migration and angiogenesis. Adv Drug Deliv Rev, 2011. 63(8): p. 610-5.

117. Schaller, M.D., et al., Focal adhesion kinase and paxillin bind to peptides

~ 77 ~

118. Cho, S.Y. and R.L. Klemke, Extracellular-regulated kinase activation and

CAS/Crk coupling regulate cell migration and suppress apoptosis during invasion of the extracellular matrix. J Cell Biol, 2000. 149(1): p. 223-36.

119. Cheresh, D.A., J. Leng, and R.L. Klemke, Regulation of cell contraction and

membrane ruffling by distinct signals in migratory cells. J Cell Biol, 1999. 146(5):

p. 1107-16.

120. Turner, C.E., Paxillin interactions. J Cell Sci, 2000. 113 Pt 23: p. 4139-40.

121. West, K.A., et al., The LD4 motif of paxillin regulates cell spreading and motility

through an interaction with paxillin kinase linker (PKL). J Cell Biol, 2001. 154(1):

p. 161-76.

122. Mitra, S.K., D.A. Hanson, and D.D. Schlaepfer, Focal adhesion kinase: in

command and control of cell motility. Nat Rev Mol Cell Biol, 2005. 6(1): p. 56-68.

123. Serrels, B., et al., Focal adhesion kinase controls actin assembly via a FERM-

mediated interaction with the Arp2/3 complex. Nat Cell Biol, 2007. 9(9): p. 1046-

56.

124. Simoncini, T., et al., Estrogen receptor alpha interacts with Galpha13 to drive

actin remodeling and endothelial cell migration via the RhoA/Rho kinase/moesin pathway. Mol Endocrinol, 2006. 20(8): p. 1756-71.

125. Jabbour, H.N., et al., Endocrine regulation of menstruation. Endocr Rev, 2006.

27(1): p. 17-46.

126. Pfaendtner, J., et al., Structure and dynamics of the actin filament. J Mol Biol, 2010. 396(2): p. 252-63.

127. Rosato, E., M. Farris, and C. Bastianelli, Mechanism of Action of Ulipristal Acetate

for Emergency Contraception: A Systematic Review. Front Pharmacol, 2015. 6: p.

315.

128. Donnez, J., et al., Ulipristal Acetate versus Leuprolide Acetate for Uterine

Fibroids. New England Journal of Medicine, 2012. 366(5): p. 421-432.

129. Donnez, J., O. Donnez, and M.M. Dolmans, Safety of treatment of uterine fibroids

with the selective progesterone receptor modulator, ulipristal acetate. Expert Opin

Drug Saf, 2016. 15(12): p. 1679-1686.

130. Gentilini, D., et al., PI3K/Akt and ERK1/2 signalling pathways are involved in

endometrial cell migration induced by 17beta-estradiol and growth factors. Mol

~ 78 ~

131. Vigano, P., et al., Culture of human endometrial cells: a new simple technique to

completely separate epithelial glands. Acta Obstet Gynecol Scand, 1993. 72(2): p.

87-92.

132. Montt-Guevara, M.M., et al., Regulatory effects of estetrol on the endothelial

plasminogen pathway and endothelial cell migration. Maturitas, 2017. 99: p. 1-9.

133. Montt-Guevara, M.M., et al., Androgens Regulate T47D Cells Motility and

Invasion through Actin Cytoskeleton Remodeling. Front Endocrinol (Lausanne),

~ 79 ~

Ringraziamenti

Giunti al termine di questo lungo percorso sono molti i grazie che devo dispensare a tutti coloro che mi sono stati accanto in questi anni, seppur queste poche righe non riescano a riassumere la gratitudine per il sostegno ricevuto e la fiducia che mi è stata dimostrata.

Ringrazio il Prof. Tommaso Simoncini che mi ha permesso di frequentare il suo laboratorio e seguire il progetto da cui è scaturita questa tesi; ringrazio Magdalena e Jorge che fin da subito mi hanno fatta sentire accolta nel “nuovo mondo” del laboratorio accompagnandomi sino a questo traguardo.

Ringrazio la mia famiglia, soprattutto i miei genitori che hanno permesso, a ciò che era soltanto un sogno, di divenire una realtà, sostenendomi in ogni momento e dimostrandomi grande fiducia; ringrazio i miei fratelli, Michelangelo e Manuele, che mi hanno supportata ma, soprattutto, sopportata in questi anni ricchi di esami. Ringrazio nonna Emma che, con la sua ironia, ha sempre saputo alleggerire ogni momento di sconforto; ringrazio i miei zii, Giuseppe, Grazia, Laura e Lorenzo che, ciascuno a suo modo, hanno tifato per me in questi anni.

Ringrazio gli amici di una vita che hanno vissuto con me ogni tappa di questo percorso, in particolare un ringraziamento speciale va a Linda che, come una sorella, ha sorriso con me per ogni successo, ha saputo consolarmi ed ascoltarmi in ogni momento di difficoltà, spronarmi quando credevo di non potercela fare e incoraggiarmi con pazienza e dedizione.

Ringrazio Alessandro che, da vero compagno, ha condiviso con me in questi anni le gioie ed i “dolori” di questo percorso, ascoltando ogni preoccupazione e dimostrando grande pazienza e comprensione per i miei ritmi folli; ringrazio inoltre Romano, Cinzia, Lavinia e Federico che, come una seconda famiglia, hanno seguito le peripezie di questa avventura tifando sempre per me.

Ringrazio Chiara, il regalo più bello che questo lungo percorso universitario mi ha regalato, una compagna di studio brillante e tenace che ha saputo rendere meno faticose le sfide di questi anni, ma soprattutto un’amica sincera e generosa con cui ho avuto il piacere di condividere questo tratto di vita; ringrazio inoltre Patrizia e Viberto che, con le loro mille attenzioni e premure, mi hanno accolta nella loro famiglia facendomi sempre sentire come a casa nelle lunghe giornate di studio trascorse con Chiara.

~ 80 ~

Ringrazio la fraternità di Marti della comunità Magnificat, con particolare riferimento alle sorelle “vecchie” e “nuove” della Piccola Comunità che in questi anni si sono sorbite con pazienza le mie condivisioni dimostrandomi grande affetto e sostegno.

Un pensiero speciale va anche a coloro che non potranno vedermi tagliare questo traguardo ma che sono stati sicuramente i miei più grandi sostenitori celesti, primi tra tutti i

Documenti correlati